Homework 2

Due Monday, January 23, 2011

- 1. (a) Show that homotopy is an equivalence relation on the set of continuous maps $X \to Y$.
 - (b) Suppose that $f_0, f_1 : X \to Y$ and $g_0, g_1 : Y \to Z$. If $f_0 \simeq f_1$ and $g_0 \simeq g_1$, show that $g_0 \circ f_0 \simeq g_1 \circ f_1$.
- 2. Let $f: S^1 \to X$. Show that the following are equivalent:
 - (a) f is nullhomotopic.
 - (b) f extends to a map $D^2 \to X$ —that is, there is a map $g: D^2 \to X$ such that the restriction $g|_{S^1} = f$.
- 3. Let X be a topological space. Define $x \sim x'$ if there is a path from x to x'. Convince yourself that \sim is an equivalence relation (but do not turn this in). The equivalence classes of \sim are called the *path* components of X. We define $\pi_0(X) = X/\sim$.
 - (a) Show that a map $f: X \to Y$ induces a map $f_*: \pi_0(X) \to \pi_0(Y)$.
 - (b) Show that homotopic maps $X \to Y$ induce the same map on π_0 .
 - (c) Show that a homotopy equivalence induces a bijection on π_0 .
- 4. What is one question you have about last week's lectures?