I. Problems to be graded on completion.

1. Substitute $u = 4x$ and $v = 2x$. As $x \to 0$, $u \to 0$ and $v \to 0$.

\[
\lim_{x \to 0} \frac{4x}{2x} = \lim_{x \to 0} \frac{4x}{2x} = \left(\lim_{x \to 0} \frac{4x}{2x} \right) \left(\lim_{u \to 0} \frac{\sin u}{u} \right) = 2 \cdot 1 = 2
\]

2. Substitute $u = x^2$. As $x \to 0$, $u \to 0$.

\[
\lim_{x \to 0} \frac{\sin x^2}{x^2} = \lim_{x \to 0} \frac{x \sin x^2}{x^2} = \left(\lim_{x \to 0} x \right) \left(\lim_{x \to 0} \frac{\sin x^2}{x^2} \right) = 0 \cdot \lim_{u \to 0} \frac{\sin u}{u} = 0 \cdot 1 = 0
\]

3. Substitute $u = 3x$. As $x \to 0$, $u \to 0$.

\[
\lim_{x \to 0} \frac{(\sin 3x)^2}{5x^2} = \lim_{x \to 0} \frac{1}{5} \left(\frac{\sin 3x}{x} \right)^2 = \frac{1}{5} \left(\lim_{x \to 0} \frac{\sin 3x}{x} \right)^2 = \frac{1}{5} \left(3 \lim_{x \to 0} \frac{\sin 3x}{3x} \right)^2
\]

\[
= \frac{1}{5} \left(3 \lim_{u \to 0} \frac{\sin u}{u} \right)^2 = \frac{1}{5} (3 \cdot 1)^2 = \frac{9}{5}
\]

4.

\[
\lim_{x \to 0} \frac{\sin x}{\frac{\pi}{3}} = \frac{\sin \frac{\pi}{3}}{\frac{\pi}{3}} = \frac{\sqrt{3}}{3} = \frac{3\sqrt{3}}{2\pi}
\]

12.

\[
\lim_{x \to \infty} \sqrt[3]{\frac{\pi x^3 + 3x}{\sqrt{2x^3} + 7x}} = \sqrt[3]{\lim_{x \to \infty} \frac{\pi x^3 + 3x}{\sqrt{2x^3} + 7x}} = \sqrt[3]{\lim_{x \to \infty} \frac{\pi + \frac{3}{x}}{\sqrt{2} + \frac{7}{x}}} = \sqrt[3]{\frac{\pi + 0}{\sqrt{2} + 0}} = \frac{\sqrt{\pi}}{\sqrt{2}}
\]

14.

\[
\lim_{x \to \infty} \sqrt{\frac{x^2 + x + 3}{(x-1)(x+1)}} = \sqrt{\lim_{x \to \infty} \frac{x^2 + x + 3}{x^2 - 1}} = \sqrt{\lim_{x \to \infty} \frac{1 + \frac{1}{x} + \frac{3}{x^2}}{1 - \frac{1}{x}}} = \sqrt{\frac{1 + 0 + 0}{1 - 0}} = 1
\]

16.

\[
\lim_{x \to \infty} \frac{\sqrt{2x + 1}}{x + 4} = \lim_{x \to \infty} \frac{\frac{1}{2}\sqrt{2x + 1} + \frac{1}{2}}{1 + \frac{4}{x}} = \lim_{x \to \infty} \frac{\frac{1}{2}(2x + 1)}{1 + \frac{4}{x}} = \lim_{x \to \infty} \frac{\sqrt{\frac{2 + \frac{1}{2x}}{1 + \frac{4}{x}}}}{1 + 0} = \frac{\sqrt{0 + 0}}{1 + 0} = 0
\]

18.

\[
\lim_{x \to \infty} \sqrt{x^2 + 2x - x} = \lim_{x \to \infty} \frac{(\sqrt{x^2 + 2x - x})(\sqrt{x^2 + 2x + x})}{\sqrt{x^2 + 2x + x}} = \lim_{x \to \infty} \frac{(x^2 + 2x - x)^2}{\sqrt{x^2 + 2x + x}} = \lim_{x \to \infty} \frac{2x}{\sqrt{x^2 + 2x + x}} = \lim_{x \to \infty} \frac{2}{\sqrt{\frac{1 + \frac{4}{x}}{1 + 0}} = \frac{2}{\sqrt{1 + 0 + 0}} = 2}
\]
II. Problems to be graded on correctness.

21. If we plug in $x = 4$, we get $\frac{4}{5}$, so the limit is either ∞ or $-\infty$. If x is a little bit bigger than 4 then $x - 4$ is a little bit bigger than 0, so $\frac{x}{x-4}$ is positive. Thus

$$\lim_{x \to 4^+} \frac{x}{x-4} = \infty.$$

23. If we plug in $t = 3$, we get $\frac{9}{7}$, so the limit is either ∞ or $-\infty$. If t is a little bit less than 3 then t^2 is a little bit less than 9 and $9 - t^2$ is a little bit bigger than 0, so $\frac{t^2}{9-t^2}$ is positive. Thus

$$\lim_{t \to 3^-} \frac{t^2}{9-t^2} = \infty.$$

25. If we plug in $x = 5$, we get $\frac{25}{6}$, so the limit is either ∞ or $-\infty$. If x is a little bit less than 5 then x^2 is a little bit less than 25, $x - 5$ is a little bit less than 0, and $3 - x$ is a little bit bigger than -2, so $\frac{x^2}{(x-5)(3-x)}$ is positive. Thus

$$\lim_{x \to 5^-} \frac{x^2}{(x-5)(3-x)} = \infty.$$

29.

$$\lim_{x \to 3^-} \frac{x^2 - x - 6}{x - 3} = \lim_{x \to 3^-} \frac{(x - 3)(x + 2)}{x - 3} = \lim_{x \to 3^-} (x + 2) = 5$$

50. If v is a little bit less than c then v^2/c^2 is a little bit less than 1, so $1 - v^2/c^2$ is a little bit bigger than 0, and m_0 has to be positive, so $\frac{m_0}{\sqrt{1-v^2/c^2}}$ is positive. Thus

$$\lim_{v \to c^-} \frac{m_0}{\sqrt{1-v^2/c^2}} = \infty.$$

4.

$$e^{-2\log x} = (e^{\log x})^{-2} = x^{-2} = \frac{1}{x^2}.$$

6.

$$\log e^{-2x-3} = -2x - 3.$$

8.

$$e^{x-\log x} = \frac{e^x}{e^{\log x}} = \frac{e^x}{x}.$$

10.

$$e^{\log x^2-y \log x} = e^{2\log x-y \log x} = e^{(\log x)(2-y)} = (e^{\log x})^{2-y} = x^{2-y}.$$

II. Problems to be graded on correctness.

1. Substitute $u = 3x$. As $x \to 0$, $u \to 0$.

$$\lim_{x \to 0} \frac{\tan 3x}{2x^2 + 5x} = \lim_{x \to 0} \frac{\sin 3x}{\cos 3x} \cdot \frac{\cos 3x}{(2x + 5)x} = \lim_{x \to 0} \frac{1}{(2x + 5)} \cdot \frac{\sin 3x}{x} = \left(\lim_{x \to 0} \frac{3}{(2x + 5)} \right) \cdot \frac{\sin 3x}{3x} \cdot \left(\lim_{u \to 0} \frac{\sin u}{u}\right) = \frac{3}{5} \cdot \frac{3}{5} = \frac{3}{5}$$

2. Observe that $-1 \leq \sin x \leq 1$ for all x. For x large (so we don’t have to worry about negative numbers flipping our inequality), we have

$$-\frac{1}{x} \leq \frac{-\sin x}{x} \leq \frac{1}{x}.$$

Now $\lim_{x \to \infty} -\frac{1}{x} = \lim_{x \to \infty} \frac{1}{x} = 0$, so by the sandwich theorem, $\lim_{x \to \infty} \frac{\sin x}{x} = 0$.

2
3. Substitute \(n = \frac{1}{h} \). As \(h \to 0^+ \), \(n \to \infty \).

\[
\lim_{h \to 0^+} (1 + hx)^{1/h} = \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n = e^x
\]

4. a.

\[
2 \log x - 4 \log \frac{1}{y} - 3 \log(xy) = \log \left(\frac{x^2}{y^4 (xy)^3}\right) = \log \frac{y}{x}
\]

b.

\[
2 \log x - 4 \log \frac{1}{y} - 3 \log(xy) = 2 \log x + 4 \log y - 3 \log x - 3 \log y = \log y - \log x = \log \frac{y}{x}
\]

5. a. There are many possible answers. One is

\[
p(x) = 2x^3 - 17x + 1
\]

\[
q(x) = 5x^3 + x^2 - 8
\]

\[
r(x) = -x^4 + 17
\]

b.

\[
\lim_{x \to \infty} \frac{2x^3 - 17x + 1}{-x^3 + 17} = \lim_{x \to \infty} \frac{2 - \frac{17}{x^2} + \frac{1}{x^3}}{-1 + \frac{17}{x^2}} = 0 - 0 + 0 = 0
\]

c.

\[
\lim_{x \to \infty} \frac{2x^3 - 17x + 1}{5x^3 + x^2 - 8} = \lim_{x \to \infty} \frac{2 - \frac{17}{x^2} + \frac{1}{x^3}}{5 + \frac{1}{x} - \frac{8}{x^2}} = \frac{2 - 0 + 0}{5 + 0 - 0} = \frac{2}{5}
\]

d.

\[
\lim_{x \to \infty} \frac{-x^4 + 17}{5x^3 + x^2 - 8} = \lim_{x \to \infty} \frac{-x + \frac{17}{x^2}}{5 + \frac{1}{x} - \frac{8}{x^3}} = \frac{-\infty - 0 + 0}{5 + 0 - 0} = -\infty
\]

e. We wish to consider an arbitrary rational function \(f(x) \). Let \(m \) and \(n \) be the degrees of the numerator and the denominator and \(a \) and \(b \) be the leading coefficients—that is,

\[
f(x) = \frac{ax^m + \text{lower order terms}}{bx^n + \text{lower order terms}}
\]

In general,

\[
\lim_{x \to \infty} f(x) = \lim_{x \to -\infty} \frac{ax^m}{bx^n}.
\]

To prove this, we divide the top and bottom by \(x^n \) and consider several cases.

- If \(m < n \), \(\lim_{x \to \pm\infty} f(x) = 0 \).
- If \(m = n \), \(\lim_{x \to \pm\infty} f(x) = \frac{a}{b} \).
- If \(m > n \), the limit is \(\pm\infty \), but we have to consider several subcases to say which:
 - If \(\frac{a}{b} \) is positive, \(\lim_{x \to \infty} f(x) = \infty \). If the numerator contains terms of degree greater than \(n \) but less than \(m \), we should check that they do not change our answer. For example,
 \[
 \lim_{x \to \infty} \frac{x^5 - 1000x^4 + 1}{x^3 + 1} = \lim_{x \to \infty} \frac{x^2 - 1000x + \frac{1}{x^3}}{1 + \frac{1}{x^7}}.
 \]
 On the one hand, \(x^2 \to \infty \), but \(-1000x \to -\infty \), so when we put them together, what happens? In fact, the highest-degree term \((x^2) \) in this case will always win out, but showing this carefully would require some more work.
 - If \(\frac{a}{b} \) is negative, \(\lim_{x \to \infty} f(x) = -\infty \).
 - If \(m > n \) and \(m - n \) is even, \(\lim_{x \to -\infty} f(x) = \infty \) or \(-\infty \) according as \(\frac{a}{b} \) is positive or negative. If \(m - n \) is odd, the reverse is true.

In all cases, our general claim (*) is true.