Problem Set 8
March 28 and 29, in class

Recall some facts:

• If \(f(x) \leq g(x) \) for all \(x \) in \([a, b]\) then \(\int_a^b f(x) \, dx \leq \int_a^b g(x) \, dx \).

• If \(k \) is a constant then \(\int_a^b kf(x) \, dx = k \int_a^b f(x) \, dx \).

• \(\int_a^b [f(x) + g(x)] \, dx = \int_a^b f(x) \, dx + \int_a^b g(x) \, dx \).

1. (a) Understand the following proof:

\[
-|f(x)| \leq f(x) \leq |f(x)|
\]
\[
- \int_a^b |f(x)| \, dx \leq \int_a^b f(x) \, dx \leq \int_a^b |f(x)| \, dx
\]
\[
\left| \int_a^b f(x) \, dx \right| \leq \int_a^b |f(x)| \, dx
\]

(b) Explain why the last inequality makes sense. Hint: Find some functions for which the left-hand side and the right-hand side are not equal. Then explain why the left-hand side always has to be less.

2. Suppose that \(f \) is continuous, \(a < b \), and \(\int_a^b f(x) \, dx = 0 \).

(a) Does it necessarily follow that \(f(x) = 0 \) for all \(x \) in \([a, b]\)?

(b) Does it necessarily follow that \(f(x) = 0 \) for some \(x \) in \([a, b]\)?

(c) Does it necessarily follow that \(\int_a^b |f(x)| \, dx = 0 \)?

(d) Does it necessarily follow that \(\left| \int_a^b f(x) \, dx \right| = 0 \)?

(e) Must all the upper sums \(U(P) \) be nonnegative?

(f) Must all the upper sums \(U(P) \) be positive?

(g) Can a lower sum \(L(P) \) be positive?
3. Suppose that \(f \) and \(g \) are continuous, \(a < b \), and \(\int_a^b f(x) \, dx \geq \int_a^b g(x) \, dx \).

(a) Does it necessarily follow that \(\int_a^b [f(x) - g(x)] \, dx \geq 0 \)?

(b) Does it necessarily follow that \(f(x) \geq g(x) \) for all \(x \) in \([a, b]\)?

(c) Does it necessarily follow that \(f(x) \geq g(x) \) for some \(x \) in \([a, b]\)?

(d) Does it necessarily follow that \(\left| \int_a^b f(x) \, dx \right| \geq \int_a^b |g(x)| \, dx \)?

(e) Does it necessarily follow that \(\int_a^b |f(x)| \, dx \geq \int_a^b |g(x)| \, dx \)?

(f) Does it necessarily follow that \(\int_a^b |f(x)| \, dx \geq \int_a^b g(x) \, dx \)?

4. While \(\int_a^b [f(x) + g(x)] \, dx = \int_a^b f(x) \, dx + \int_a^b g(x) \, dx \), in general it is not true that

\[
\int_a^b f(x)g(x) \, dx = \left(\int_a^b f(x) \, dx \right) \left(\int_a^b g(x) \, dx \right).
\]

(a) Find two numbers \(a \) and \(b \) and two functions \(f \) and \(g \) for which the equation above fails—any random choice of \(a, b, f, \) and \(g \) should work.

(b) Find two numbers \(a \) and \(b \) and two functions \(f \) and \(g \) for which the equation above holds—you will have to choose \(a, b, f, \) and \(g \) carefully.