Solutions to Problem Set 8

1. (a) To go from the second to the third lines, observe that for any numbers m and n, the inequality $|m| \leq n$ is equivalent to the inequality $-n \leq m \leq n$. If $-n \leq m \leq n$, then $n \geq -m$, so $-m \leq n$, and also $m \leq n$, so $|m| \leq n$.

(b) If $f(x)$ is always positive or always negative, then $\left| \int_a^b f(x) \, dx \right| = \int_a^b |f(x)| \, dx$. But if $f(x)$ is sometimes positive and sometimes negative, then the positive and negative parts might cancel out on the left-hand side, but on the right-hand side everything will add up. For example, in the figure below, $\left| \int_a^b f(x) \, dx \right| = A_1 - A_2 + A_3$, whereas $\int_a^b |f(x)| \, dx = A_1 + A_2 + A_3$.

2. (a) No. $f(x)$ could have positive and negative pieces that cancel out, as in the figure below.

Specifically, we could take $a = 0$, $b = 2\pi$, and $f(x) = \sin x$.

(b) Yes. If $f(x)$ were never zero, then it would either be positive always or negative always (since it is continuous, it cannot jump), so $\int_a^b f(x) \, dx$ could not be 0.

(c) No. We can reuse our counterexample from part (a).

(d) Yes. The absolute value of 0 is 0.
(e) Yes. \(\int_a^b f(x) \, dx \) is less than or equal to all the upper sums by definition, so they must all be greater than or equal to 0.

(f) No. Take \(f(x) = 0 \); then all the upper sums are 0.

(g) No. \(\int_a^b f(x) \, dx \) is greater than or equal to all the lower sums by definition, so they must all be less than or equal to 0.

3. (a) Yes.
\[
\int_a^b [f(x) - g(x)] \, dx = \int_a^b f(x) \, dx - \int_a^b g(x) \, dx \geq 0.
\]

(b) No. \(g(x) \) could jump up above \(f(x) \) for a little while but be small most of the time, as in the figure below.

![Graph showing function and its integral](image)

Specifically, we could take \(a = 0, b = 1, f(x) = 2, \) and \(g(x) = 3x \). Then \(\int_a^b f(x) \, dx = 2 \) and \(\int_a^b g(x) \, dx = \frac{3}{2} \), but \(f(1) < g(1) \).

(c) Yes. If it were not true that \(f(x) \geq g(x) \) for some \(x \) in \([a, b] \), then we would have \(f(x) < g(x) \) for all \(x \) in \([a, b] \), so \(\int_a^b f(x) \, dx < \int_a^b g(x) \, dx \).

(d) No. \(\int_a^b f(x) \, dx \) could be a small positive number and \(\int_a^b g(x) \, dx \) is a large negative number, as in the figure below.

![Graph showing function and its integral](image)

Specifically, we could take \(a = 0, b = 1, f(x) = 1, \) and \(g(x) = -100 \).
(e) No. \(f(x) \) could be small and positive, while \(g(x) \) could have large positive and large negative pieces that cancel out, as in the figure below.

![Graph of f and g functions](image)

Specifically, we could take \(a = 0 \), \(b = 2\pi \), \(f(x) = 1 \), and \(g(x) = 10 \sin x \). Then \(\int_a^b f(x) \, dx = 2\pi \) and \(\int_a^b g(x) \, dx = 0 \), but \(\int_a^b |g(x)| \, dx = 40 \).

(f) Yes. \(\int_a^b g(x) \, dx \leq \int_a^b f(x) \, dx \leq \left| \int_a^b f(x) \, dx \right| \leq \int_a^b |f(x)| \, dx \). The last inequality was proved in problem 1.

4. (a) Let \(a = 0 \), \(b = 1 \), \(f(x) = x \), and \(g(x) = x^2 \). Then \(\int_0^1 x \, dx = \frac{1}{2} \) and \(\int_0^1 x^2 \, dx = \frac{1}{3} \), but
\[
\int_0^1 x^3 \, dx = \frac{1}{4},
\]
which is different from \(\frac{1}{2} \cdot \frac{1}{3} = \frac{1}{6} \).

(b) Let \(a = 0 \), \(b = \frac{3}{2} \), \(f(x) = x \), and \(g(x) = x^2 \). Then \(\int_0^{3/2} x \, dx = \frac{9}{8} \), \(\int_0^{3/2} x^2 \, dx = \frac{9}{8} \), and
\[
\int_0^{3/2} x^3 \, dx = \frac{81}{64}.
\]