1. Let \(q = f(u, v, w) \), \(u = 2x - y^2 \), \(v = x \sin 3y \), and \(w = x^4 \). Find \(\frac{\partial q}{\partial x} \) and \(\frac{\partial q}{\partial y} \). Your answer will involve \(f_u \), \(f_v \), and \(f_w \).

2. Find the equation of the tangent plane to the surface \(z = \sqrt{x} + \tan^{-1} y \) at the point \((9, 0, 3)\).

3. We say that a real-valued function of one variable \(f(x) \) is differentiable at a point \(a \) if there is a number \(A \) and a function \(g(x) \) such that

\[
 f(x) = f(a) + A(x - a) + (x - a)g(x)
\]

and \(g(x) \to 0 \) as \(x \to a \). In this case we call the number \(A \) the derivative of \(f \) at \(a \) and set \(f'(a) = A \).

(a) Relate this to the definition of \(f'(a) \) that you know and love. Consider solving for \(g(x) \).
(b) Relate this to Prof. Caldararu’s definition of a differentiable function of two variables.
(c) Relate this to the Taylor series.
(d) Relate this to the tangent line approximation.