1.3.2. \(\sigma = (1 \ 13 \ 5 \ 10)(3 \ 15 \ 8)(4 \ 14 \ 11 \ 7 \ 12 \ 9) \).
\(\tau = (1 \ 14)(2 \ 9 \ 15 \ 13 \ 4)(3 \ 10)(5 \ 12 \ 7)(8 \ 11) \).

1.3.15. First we show that an \(m \)-cycle has order \(m \). If \(\sigma = (a_1 \ a_2 \ \ldots \ a_m) \) is a \(m \)-cycle, then \(\sigma(a_1) = a_2 \), \(\sigma^2(a_1) = a_3 \), \(\sigma^3(a_1) = a_4 \), and similarly \(\sigma^k(a_1) \) is different from \(a_1 \) for all \(k < m \), but \(\sigma^m \) is the identity.

Now let \(\sigma_1, \ldots, \sigma_k \) be disjoint cycles of lengths \(m_1, \ldots, m_k \), let \(\sigma = \sigma_1 \cdots \sigma_m \), and let \(m \) be the least common multiple of \(m_1, \ldots, m_k \). Since disjoint cycles commute, \(\sigma^m = \sigma_1^m \cdots \sigma_k^m = 1 \), so \(|\sigma| \leq m \).

1.4.8. Every field contains a 0 and a 1 which are not equal, so let

\[
A = \begin{pmatrix} 1 & 1 & \cdots & 0 \\ 0 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix} \quad \quad B = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 1 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix}.
\]

Then

\[
AB = \begin{pmatrix} 2 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix} \quad \quad BA = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & 2 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix}
\]

where \(2 = 1 + 1 \neq 1 \). Thus \(AB \neq BA \), so \(GL_n(F) \) is not abelian.

1.6.1. (a) \(\varphi(x^n) = \varphi(x \cdot x \cdots x) = \underbrace{\varphi(x) \varphi(x) \cdots \varphi(x)}_{n \text{ times}} = \varphi(x)^n \).

(b) First, \(\varphi(1) = \varphi(1 \cdot 1) = \varphi(1) \varphi(1) \), so \(1 = \varphi(1) \), so the claim is true for \(n = 0 \). Next, \(\varphi(x \varphi(x^{-1}) = \varphi(xx^{-1}) = \varphi(1) = 1 \), so \(\varphi(x^{-1}) = \varphi(x)^{-1} \). If \(n > 0 \) then

\[
\varphi(x^{-n}) = \underbrace{\varphi(x^{-1}x^{-1} \cdots x^{-1})}_{n \text{ times}} = \underbrace{\varphi(x^{-1}) \varphi(x^{-1}) \cdots \varphi(x^{-1})}_{n \text{ times}} = \underbrace{\varphi(x^{-1}) \varphi(x^{-1}) \cdots \varphi(x^{-1})}_{n \text{ times}} = \varphi(x)^{-n}.
\]

1.6.9. An element of \(S_4 \) is one of the following: the identity, a transposition, a product of disjoint transpositions, a 3-cycle, or a 4-cycle. Thus an element of \(S_4 \) has order at most 4. But \(D_{24} \) has an element of order 24, namely \(r \).