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Measurement of knowledge spillovers remains an important challenge. While patent citation analyses
are one common empirical approach, questions persist about their efficacy and potential biases. In an
effort to assess various measures of knowledge diffusion, this paper compares patent data surrounding
recombinant DNA technology to licenses and publications building on the same technology. Evaluation of
these measures highlights errors of both omission and over-representation in each measure, and reveals
potential biases tied to organizational age and location. The results suggest that studies of knowledge
diffusion can be strengthened dramatically by drawing upon multiple indicators.

© 2009 Elsevier B.V. All rights reserved.
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each measure, this paper introduces a novel dataset of matched
patents, licenses and publications flowing from recombinant DNA
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nnovation diffusion
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. Introduction

Knowledge diffusion and knowledge spillovers have received
ignificant attention in the economics, management and public
olicy literatures (e.g., Audretsch and Feldman, 1996; Breschi and
issoni, 2001; Feldman and Kelley, 2006; Fritsch and Franke, 2004;
riliches, 1992; Jaffe, 1989; Krugman, 1991a,b; Owen-Smith and
owell, 2004; Romer, 1986). But, the growth of this literature has
dded new urgency to a fundamental associated question: How
an knowledge spillovers be measured? Perhaps the most common
mpirical approach relies on patent citations to serve as indications
f knowledge flows (e.g., Acs et al., 1992, 1994; Jaffe, 1989; Jaffe et
l., 1993, 2000; Thompson and Fox-Kean, 2005). Recent research,
owever, has questioned the efficacy and validity of patent cita-
ion measures (e.g., Brouwer and Kleinknecht, 1999; Graham and
iggins, 2007; Sampat, 2005). These studies, in the aggregate, sug-
est that patents and patent citations may both under-represent
nnovation by failing to capture all innovative activity and over-
epresent innovation by capturing inventive activities that are of
ittle economic import.

While some studies have compared patent counts and patent

itations to R&D expenditures and/or survey data in order to assess
he efficacy of patent indicators (e.g., Acs and Audretsch, 1989;
uguet and MacGarvie, 2005; Jaffe et al., 2000; Kaiser, 2002;
cherer, 1983), technology licenses and publications have been
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underutilized as comparable measures of knowledge diffusion.
These additional measures are advantageous for several reasons.
I argue that patent-linked technology licenses may be a highly
accurate measure of downstream knowledge utilization since the
competing economic interests on the part of licensor and licensee
act as a system of “checks and balances” to ensure correctness. The
importance of publications, meanwhile, is reflected in survey data
on the sources and channels of knowledge that contribute to firms’
innovation efforts. In reporting on the results of a survey in the
U.S. manufacturing sector, Cohen et al. (2002) found that publica-
tions are the dominant channel by which knowledge flows from the
public sector. Similarly, Agrawal and Henderson (2002) reported
that the MIT faculty whom they interviewed consider publications
to be two-and-one-half times more important than patents as a
knowledge channel. When a single invention is both patented and
published (c.f. Murray, 2002; Murray and Stern, 2007), publications
can be especially informative.

To assess the extent to which these different measures cap-
ture knowledge spillovers1 and to explore the potential biases of
technology—an advantageous selection since the core technology
was patented and published, and subsequently licensed broadly.

1 I use the term “spillovers” somewhat loosely here, since many economists argue
that a spillover exists only when the originating party is not compensated and/or
there is no investment required on the part of the absorbing party.

http://www.sciencedirect.com/science/journal/00487333
http://www.elsevier.com/locate/respol
mailto:ajnelson@uoregon.edu
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present data on each diffusion measure over time in order to
ssess patterns of involvement on the organizational level along
ith errors of omission by individual measures. Notably, I find that
irect patent citations dramatically understate the extent of tech-
ology diffusion compared to licenses and publications. But, the
everity of biases in each measure depends on timing, firm age, and
eography. To conclude, I discuss what the different results for each
easure imply for our studies of firm innovation performance and

nowledge diffusion, and I build a case for the simultaneous use of
ultiple indicators.

. Patents as measures of innovation and knowledge
iffusion

Patents are one of the most prevalent measures of innovation,
nd for good reason: they are easily accessible in electronic form;
y definition, they are linked to inventiveness; they are classified
y category and sub-categories; they identify individuals and orga-
izations; and they contain a trace of what knowledge they build
pon through the citation of prior art. This last feature, in particu-

ar, makes patents useful for tracing knowledge flows. Nevertheless,
here are lingering questions as to whether patents accurately
apture innovations and whether citations are good measures of
nowledge flows.

The most straightforward use of patents involves a simple count
f the number of patents that an organization produces, usually
oded by time, industry and other characteristics. In an early study,
omanor and Scherer (1969) investigated how pharmaceutical
atent counts in 1952–1957 were correlated with product introduc-
ions from 1955 to 1960, finding that patent counts appeared to be a
redictor. More recently, Narin et al. (1987) found a high correlation
etween research inputs, patent counts, and patent citations. Simi-

arly, Ahuja and Katila (2001) found a strong correlation (almost .9)
etween R&D inputs and patent counts.

Many researchers, however, question the use of patents to assess
nnovation since patents may reflect two types of errors. On one
and, patent data count only those inventions that inventors choose
o patent and they therefore understate the full extent of inventive
ctivity (Acs and Audretsch, 1989; Griliches, 1990; Hall et al., 2005;
cherer, 1983). Surveys by Levin et al. (1987) and Cohen et al. (2000)
ndicated that firms often employ alternative mechanisms such as
ecrecy to protect inventions. Arundel and Kabla’s (1998) survey
f large European firms indicated that errors of omission in patent
ata may be very large, with significant variation across industrial
ectors. But, the full extent of these errors remains unknown. As Hall
t al. (2005:18) noted, “Unfortunately, we have very little idea of the
xtent to which patents are representative of the wider universe of
nventions, since there is no systematic data about inventions that
re not patented.”

On the other hand, patent data may overstate innovation since
atents are tied to inventions and not to innovations. (I define inven-
ions as new technological developments and innovations as those
nventions that are economically useful and diffused.) Based on

einhardt’s (1946) data, Moser (2005) relayed that only 5–20% of
atents become economically useful innovations.

For these reasons, other researchers have employed alterna-
ive measures altogether. For example, in a novel and painstaking
ata-gathering effort, Moser (2005) matched patent data to exhibi-
ion data from two 19th-century technology fairs in order to assess
hich inventions were patented. She found that patent laws influ-
nced the direction of inventive activity, such that inventors in
ountries without patent laws focused on industries where secrecy
as an effective means of protection. Moser’s results suggest that

he efficacy of patents as a measure will depend upon regulatory
nvironments and the specific industry under consideration.
38 (2009) 994–1005 995

Another popular measure of innovation is a firm’s research
and development expenditures (e.g., Scherer, 1983). Cockburn and
Griliches (1988:422) matched the survey data on patenting com-
piled by the Yale group (Levin et al., 1987) to National Bureau of
Economic Research data on research and development. They found
that patent count data are “subject to much error” and that data on
R&D expenditures were better measures than patents of the inputs
into firm innovation processes. In a later piece, Griliches (1990)
argued that firm R&D expenditures capture a very early stage in the
innovation process, while patents capture a later (albeit still early)
stage in the process. But, the relationship between R&D expendi-
tures and innovation is somewhat tenuous since R&D expenditures
only capture input into the innovation process and not output.
Moreover, R&D data alone provide little indication of the role of
external sources of knowledge in firm innovation activities.

Hagedoorn and Cloodt (2003) compared four measures of
innovation performance: patent counts, patent citations, R&D
expenditures and new product announcements. While they pointed
to some advantages of a composite construct made up of multiple
measures, they also argued that the significant overlap between
indicators means that any of the four measures can be taken
as reflective of innovation in the broad sense. By contrast, in
attempting to replicate Hagedoorn and Cloodt’s results as closely
as possible, Graham and Higgins (2007) found little support for the
claim that patents are a valid indicator of innovative performance.

Beginning with Trajtenberg (1990), a number of researchers
have employed citation-based patent measures, rather than strict
counts. These citation-based measures assess the number and char-
acteristics of downstream patents that reference a particular focal
patent. Trajtenberg argued that citations provide a better indica-
tion of a patent’s technological and economic value. Moreover, the
use of citations addresses issues of knowledge flows, since an orga-
nization that cites a foregoing patent is presumed to have made
use of knowledge in that foregoing patent. A primary concern with
citation-based measures, however, centers on whether all subse-
quent innovations that build directly upon a patent actually contain
a citation to that patent.

On one hand, there is reason to believe that patent citations
would be quite accurate in their references to prior art. United
States patent applicants have a “duty of candor” to disclose prior
art on which an invention is based. The United States Patent and
Trademark Office (USPTO) guidelines read: “This section should
also contain a description of information known to you, including
references to specific documents, which are related to your inven-
tion” (USPTO, 2007). Citations to prior art are typically citations
to patents (and publications) that codify this existing knowledge
base. In a comparison of international patents, Michel and Bettels
(2001) found that US patent applications contain many more refer-
ences than do applications to non-US patent offices—a result that
Michel and Bettels attribute to the USPTO requirement to supply a
complete list of the state of the art. Since a patent can be deemed
unenforceable if the inventor or attorney/agent fails to properly dis-
close relevant references (Allison and Lemley, 1998; Sampat, 2005),
Michel and Bettels (2001:192) claim that “rather than running the
risk of filing an incomplete list of references, [applicants] tend to
quote each and every reference even if it is only remotely related to
what is to be patented.”

On the other hand, Kesan (2002) argued that relevant prior art
often is not disclosed. Both the level of proof required to show a
willful failure to disclose and the associated expense of reexam-
ination are high enough that patent applicants may face limited

risk from a failure to disclose all prior art (see also Merges, 1999).
Moreover, patent applicants may have disincentives to search for
prior art. Since damages for “willful infringement” of a patent are
significantly higher than damages for unintentional infringement,
applicants may be better off if they are unaware of competitors’
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tant source of information, downstream organizations must also
publish (and cite) in order for downstream publications themselves
to provide information on knowledge diffusion. In universities and
other public science organizations, in which individual researchers
96 A.J. Nelson / Research

atents (Lemley and Tangri, 2003). To the extent that patents do
ot cite prior art upon which they build, citation measures will fail
o fully capture the diffusion and impact of knowledge protected by
n earlier patent.

The situation is confounded by the fact that many citations are
dded by patent examiners rather than by the inventor herself or
er agent (Alcácer & Gittelman, 2006). Such citations, which may
ccount for up to 40% of all citations in a patent, may indicate
enuous connections between a prior patent and the knowledge
mployed by a later inventor (Sampat, 2005). Only in the past few
ears has the USPTO made data available on which citations are
dded by examiners. Of course, since patent attorneys have long
dded citations in service of their inventor-clients, examiner-added
itations may represent a simple extension of such third-party addi-
ions. In fact, they may “clean” citation data by better representing
revious related knowledge upon which an invention builds.

We do have limited survey data on the extent to which patent
itations actually represent knowledge flows. Jaffe et al. (2000) sur-
eyed both citing and cited inventors around specific inventions and
hen matched the survey responses. They found that citations do
ndicate knowledge flows, but with a substantial amount of noise.
uguet and MacGarvie (2005) employed a survey about the inno-
ative activities of French firms. They found that the correlation
etween patent citations and firms’ statements about knowledge
cquisition varied by geography and by channels of knowledge
cquisition. For the French firms surveyed, patent citations were
est at capturing knowledge sources from European firms and
btained via cooperative R&D, equipment purchases, and merg-
rs and acquisitions. By contrast, patent citations were poor at
apturing knowledge sourced from outside Europe and via other
hannels such as analyses of competing products, personnel hiring
nd exchanges, and communications with suppliers and customers.

Like the Jaffe et al. (2000) and Duguet and MacGarvie (2005)
urveys, my interest lies in assessing the extent to which citation
nalyses capture knowledge flows. But rather than rely on sur-
ey data, my study compares various complementary indicators of
nowledge diffusion – patents, licenses and publications – in order
o assess the potential omissions and biases of each measure.

. Technology licenses and publications as measures of
nowledge diffusion

The comparison of technology licenses, publications and patents
ermits an assessment of the magnitude and direction of poten-
ial biases in citation analyses. Technology licenses are contractual
greements that grant organizations permission to use a particular
iece of patent-protected knowledge held by another organization.
icenses are an appealing measure of innovation for two reasons.
irst, licenses often provide an indication of the economic value of
hose innovations that make use of the license. In order to receive
license, a licensee typically must pay (1) an upfront fee and/or (2)
n annual fee and/or (3) a percentage of annual revenue on related
roducts. Those licenses that include the third element – related-
roduct revenue – are particularly informative since they permit a
esearcher to assess if and when a licensee has released a product
ased on the patented technology. Moreover, if the percentage fig-
re is known, the revenue data permit a precise measurement of
he total firm revenue for these same related products.

A second reason that licenses are an appealing measure is that
he competing interests of licensor and licensees serve to enforce a

ystem of “checks and balances” that results in an accurate capture
f all relevant organizations. On one hand, the organization issuing
license for use of its patent(s) has a vested interest in ensuring

hat all of those organizations that are using the patented knowl-
dge have in fact signed a license. This enforcement is important in
38 (2009) 994–1005

order to maximize revenue by capturing the full population of users.
Moreover, failure to strictly enforce a license requirement against
any one organization would lead, in a game-theoretic sense, to a
decreased likelihood that all organizations would sign the license; if
organizations observe that the license requirement is not enforced,
their incentive to comply is reduced.

As a result of this interest in strict enforcement, organizations in
the technology-licensing business are rigorous in investigating the
activities of a broad range of firms in order to determine if these
firms’ innovations are making use of a patent held by the licens-
ing organization. In fact, interviews that I conducted with licensing
professionals in fields ranging from the life sciences to digital audio
indicate that out-licensing organizations employ dedicated person-
nel for the express purpose of ensuring that all organizations using
their technology are, in fact, signed up as licensees.

On the other hand, potential licensees act as a “check” on the
out-licensor’s desire to capture as many organizations as possible.
Licenses cost the licensee some amount of money in the form of an
upfront fee and/or an annual fee and/or a share of related-product
revenue. This cost is one that potential licensees are willing to pay
only if they truly are making use of the patented technology of the
licensor.2 In short, then, strict investigation and enforcement on the
part of the licensor balanced against the economic interests of the
licensee create a system of “checks and balances” to counteract both
the under- and over-representation of follow-on firms that patent
citations alone may reflect.

It must be emphasized these in-licensing organizations are mak-
ing use of the out-licensing organization’s patent. Since the only
way for the out-licensor to enforce a license requirement is via
patent protection (and the threat of a patent infringement lawsuit
against those that do not sign a license), licensing organizations are,
by definition, those organizations that intend to make use of the
patented technology covered by the license. Similarly, the subset
of licensing organizations that pay a percentage of related-product
revenue to the licensor are, by definition, those organizations that
have, in fact, made use of the patented technology covered by the
license.

Theoretically, organizations that pay a percentage of related-
product revenue should also be amongst the organizations that
cite back to the focal patent. Failure on the part of these product-
releasing organizations to cite the patent can only be explained
in two ways: either some organizations are using the technology
in downstream applications that they have not patented, or some
organizations are not citing back to the focal patent even though
they are making use of the technology in products that they have
patented.

This study also makes use of a third measure of knowledge diffu-
sion: publications. Survey data on sources of knowledge emphasize
the importance of publications (Cohen et al., 2002; Agrawal and
Henderson, 2002). In fact, Branstetter and Ogura (2005) present evi-
dence from the University of California that suggests that citations
to publications (as opposed to citations to patents) provide a much
broader view of knowledge spillovers from academic science. (For
discussion of patent citations to publications, see also Hicks et al.,
2001; Narin et al., 1997.) But, while publications may be an impor-
2 More specifically, a firm will take out a license if the cost of the license does
not exceed the cost of a patent infringement lawsuit times the probability of such a
lawsuit. Thus, “non-using” firms may take out a license if the cost is relatively low
and they fear that a lawsuit is likely, or “using” firms may fail to take out a license if
the license cost is relatively high and they determine that a lawsuit is unlikely.
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re presumed to subscribe to a reward system based upon pres-
ige built through publication (Merton, 1973), publications may
e common. With commercial firms, however, such downstream
ublication may be rare since publications, by definition, openly
hare knowledge with others. Firms may be unlikely to engage
n such sharing since doing so would allow competitors to gain
nsight into a firm’s inventive activities—potentially exploiting the
esults for their own benefit and to the detriment of the inventing
rm (Dasgupta and David, 1994). Nevertheless, in industries such
s biotechnology, we know that firms engage in significant pub-
ishing activity since the need to engage with inter-organizational
nowledge sharing networks outweighs the danger of alerting com-
etitors to their activity (Cockburn and Henderson, 1998; Powell et
l., 1996). Moreover, publications can actually be part of a firm’s
atenting strategy. As Hicks (1995) pointed out, firms often patent
nd then immediately publish on the same material in order to pre-
lude other firms from patenting in the same area. This strategy is
ne reason that patent-publication pairs are not uncommon, par-
icularly in biotechnology (Murray, 2002; Murray and Stern, 2007).

As with patent citations, publication citations may indicate
xisting knowledge upon which the current publication builds
Cole, 2000). A long line of literature in the sociology of science
as dissected this claim and led to a richer understanding of what
ublication citations represent. MacRoberts and MacRoberts (1986,
989), for example, develop the useful concept of “influence.” They
rite, “When an author makes use of another’s work either directly

r through secondary sources, and this is evident in the text, he has
een influenced by that work” (MacRoberts and MacRoberts, 1989:
42). While some citation analyses are based upon the assump-
ion that authors cite the work that influences them, MacRoberts
nd MacRoberts (1986) found that authors cite only about 30%
f their formal influences. Moreover, Edge (1979) maintains that
ublication citations only capture the influence of other formal pub-

ications, ignoring informal communications and tacit knowledge
hat may be far more important as influences.

MacRoberts and MacRoberts (1989, 1996) point to a number of
ther concerns with publication citation analyses, including biases
n citation patterns, motivations to cite that extend beyond intel-
ectual influence (e.g., “political” motivations to cite), “negative”
itations (in which a publication is cited as wrong or misleading),
ariation between specialties, and authors’ ignorance of some rel-
vant literature. Together, these concerns with citation patterns,
long with the different organizational incentives for publishing
n the first place, suggest that while publication citations contain

uch useful information, they are unlikely to fully capture knowl-
dge flows. The challenge, therefore, is to assess the extent and
haracteristics of errors in each measure.

. Data and methods

My interest in tracing knowledge diffusion led me to take an
nvention-centric focus and to investigate the spread of single newly
nvented technique across organizations and over time. To assess
ifferences between various indicators of diffusion, I employ a novel
ataset consisting of matched patents, licenses and publications
urrounding a single invention: recombinant DNA (rDNA). Stan
ohen of Stanford University and Herb Boyer of the University of
alifornia at San Francisco (UCSF) developed rDNA technology in
973. Cohen and Boyer published their findings in the Proceedings
f the National Academy of Science in 1973 and Stanford, acting as

he agent for itself and UCSF, applied for patent protection in 1974.

Cohen and Boyer’s technique, commonly known as gene splic-
ng, permits the insertion of foreign DNA into a host organism.
ogether with monoclonal antibodies and polymerase chain reac-
ion, it is considered to be a foundational technology for the
38 (2009) 994–1005 997

biotechnology industry and it has been used to create synthetic
insulin, human growth hormone, and drugs for diabetes, ane-
mia and blood clots. Its discovery also led to a Nobel Prize in
Chemistry. Thus, while the study’s design is limited to a single
invention, this invention is nearly unmatched in impact and impor-
tance.

The USPTO ultimately issued three patents on Cohen and Boyer’s
discovery, covering both process and product for different organ-
isms. These patents were issued between 1980 and 1982, though
the 1980 patent, which also received the most subsequent citations,
was strong enough for Stanford to enforce a license requirement
starting in that year. (Stanford only required a license of firms,
not nonprofit organizations; for complete details on the licensing
arrangement, see Reimers, 1987; Feldman et al., 2005.) This 1980
patent expired in 1997. In the analyses that follow, I group the
three Stanford rDNA patents together. To compile the patent data,
I employed a custom-programmed data-scraping tool to download
and parse information from the USPTO website on all issued patents
through 2007 that referenced any of the three core rDNA patents,
capturing a total of 346 patents. I refer to these 346 patents as
“direct-citing” or “one-step” patents since they directly cite the core
rDNA patents and are therefore only one step removed from them.
I also collected data on all patents that referenced any of these
346 one-step patents, which yielded an additional 3547 patents.
I refer to these 3547 patents as “two-step” patents since they are
two citation steps removed from the core rDNA patents.

The Stanford University Office of Technology Licensing (OTL)
managed for Stanford and UCSF all licensing activities related to
the Cohen–Boyer rDNA discovery. This office was gracious to pro-
vide me with the full list of licensees for the technology, including
the date upon which a license was signed, the dates during which it
was active, and the associated fees and related-product revenues.

Given the importance of the Cohen–Boyer patent to both Stan-
ford and UCSF, and the need to police users of the technology in
order to ensure that all were paying their due, Stanford employed
two full-time employees who were charged with determining
whether an organization was using rDNA technology and, if so,
with forcing them to sign a license if they had not done so already.
Stanford’s enforcement of this license requirement hinged on their
ability to prosecute the Stanford-held rDNA patents; in other words,
if an organization were not drawing upon the Stanford patents, they
would have no reason to sign a license. Therefore, discrepancies
between the in-licensing organizations and the organizations that
cite these core patents have only two explanations: either some
organizations used rDNA in downstream applications that they did
not patent, or some organizations did not cite back to any of the core
rDNA patents even though they were making use of the technology
in their own patented inventions. Given the setting of this investiga-
tion in the field of biotechnology, I reject the first explanation. Firms
that develop any products based in biotechnology are very likely to
patent these products; in biotechnology more so than any other
industry, patents (versus secrecy, for example) are the preferred
method for protecting intellectual property (Cohen et al., 2000).
Thus, I contend that differences between licensing organizations
and patent-citing organizations are indicative of imperfec-
tions in the ability of patent citations to capture downstream
users.

To compile publication information, I accessed the ISI SciSearch
database. I downloaded all publications through 2007 that refer-
enced the core 1973 rDNA publication, capturing a total of 756
publications.
For all four measures (direct-citing patents, two-step patents,
licenses and publications), I then created a master list of all organi-
zations that appeared in any of the datasets. Given misspellings and
alternative labels for some organizations, this process required the
manual review of each record to determine organizational matches.



9 Policy

(
p
a
o
t
a
p
B
P
d
t
2
i

I
p
o
i
fi
(
p

n
p
l
b
t

5

t
t
t
m
t
fi
t
r

r
v
W
t
p
t
8
s
a
i
o
i

p
t
l
fi

T
N

D
T
D
L

98 A.J. Nelson / Research

See Melamed et al., 2006, for a discussion of related issues for
atents alone.) Over the 35-year time period covered, there were
number of mergers, acquisitions and name changes amongst the
rganizations in the master list. I was liberal in my matching cri-
eria. For example, Schering-Plough acquired DNAX in 1982 and
cquired Canji in 1996. Neither Schering-Plough nor Canji holds a
atent that directly references back to the original rDNA patents.
ut, DNAX does hold such a patent. I therefore count Schering-
lough, Canji, and DNAX as having a match between a license and a
irect patent citation. I was also liberal in counting all issued patents
hrough 2007, though I truncate the patent trend lines in graphs at
003 in order to account for the lag between patent application and

ssue.
To provide a sense of the demography of involved organizations,

coded each organization as a firm, a university or a non-university
ublic research organization (PRO). In addition, I researched each
rganization to determine its date of founding and the location of
ts headquarters. While it would be desirable to capture additional
rm characteristics such as R&D expenditures, the early time period
beginning in 1973) and the large number of non-public companies
rohibit such an analysis.

In my analyses, I first assess the number and type of active orga-
izations captured by each measure over time. I then compare each
air of indicators – patents versus licenses, patents versus pub-

ications, and licenses versus publications – to assess differences
etween the measures in the organizational activity and features
hat they capture and neglect.

. Results

Table 1 conveys the demographic composition of organiza-
ions captured by each measure. Direct patent citations capture
he fewest organizations while two-step patent citations capture
he most organizations. Publications capture almost three times as

any organizations as do direct-citing patents, though they cap-
ure only about two-thirds as many firms. Licenses capture far more
rms than either direct patent citations or publications, though
hey miss other types of organizations since Stanford/UCSF did not
equire universities and other PROs to sign a license.

Fig. 1 illustrates patenting, publication and licensing trends for
DNA over time. It is clear from the graph that each measure pro-
ides a very different picture of activity around the technology.
hereas publication citations peak 4 years after the invention of

he technique (and 4 years after the first publication), citations in
atent applications peak 21 years after the original patent applica-
ion (15 years after the first patent issued), with a second local peak
years after application, in 1982. Like direct patent citations, two-

tep patent citations also peak in 1995, though they emerge later
nd exhibit a second local peak in 2000. Licenses, by contrast, peak
n 1980, the first year in which Stanford required them, with a sec-
nd local peak in 1993. Thus, the four measures provide different
ndications of the intensity of activity at various points in time.
Figs. 2 and 3 break out, respectively, the one-step patent and
ublication measures in Fig. 1 according to the demography of
he organizations involved. (Stanford only required firms to sign
icenses and therefore the license data is attributable entirely to
rms.) It is little surprise that firms are responsible for the vast

able 1
umber of organizations of various types captured by each measure.

Universities Other PROs Firms Total

irect patent citations 31 14 90 135
wo-step patent citations 102 73 633 807
irect publication citations 201 113 55 369
icenses – – 464 464
38 (2009) 994–1005

majority of patents while universities and other public research
organizations produce the majority of publications. Nevertheless,
the extent of “cross-realm” activity (firm publications and univer-
sity/PRO patents) is worth noting. In particular, the considerable
number of firm publications provides an initial indication that
publication measures are relevant towards capturing firm-level
phenomena.

5.1. Organizations involved

While Figs. 1 through 3 count the total number of patents, pub-
lications and new licenses in a given year, another approach is
to consider the number of different organizations that each mea-
sure captures in a given year, along with related trends over time.
Fig. 4 displays, for each year, the number of organizations patent-
ing, publishing, and maintaining an active license. The number of
organizations active in patenting and publishing is highly corre-
lated to the total count of patents and publications in a year; for
patenting, the correlation coefficient is .93, while for publishing
the correlation coefficient is .90. While patents and publications
are measures of research output, holding an active license in a year
(typically accomplished by paying a modest annual maintenance
fee) is akin to engaging in the pursuit of an output—or, at least, main-
taining the option of engaging in such a pursuit. For this reason, the
measure of active licenses differs considerably from the number of
new licenses signed in a year. While some companies dropped the
license after a period of time, apparently abandoning their related
rDNA research efforts, the s-curve of the active licensees indicates a
continually expanding number of firms that were actively pursuing
applications of the technique. Thus, licenses provide an indication
of current and ongoing research activities by a firm, whereas patents
and publications only show the single year that such activities result
in that particular output.

Fig. 5 breaks out the one-step patenting activity in Fig. 4 accord-
ing to organization type. Firms are responsible for the majority of
patenting over time (66.7%). PROs account for 10.4% of patenting
organizations and universities account for 23.0% of patenting orga-
nizations. Amongst two-step citations (not included in Fig. 5), the
proportion of PROs remains about the same (8.9%). But the pro-
portion of universities falls to 12.5%, with firms comprising the
remaining 78.6% of organizations. Overall, the average organization
with a one-step patent produces 2.56 patents that directly reference
back to one of the core rDNA patents. By organization type, the aver-
age patenting firm produces 2.78 patents that directly cite one of
the core rDNA patents; the average patenting PRO produces 2.36
such patents; and the average patenting university produces 1.65
such patents.

Fig. 6 breaks out the publishing activity in Fig. 4 according to
organization type. Universities are responsible for the majority of
publishing over time (54.5%). PROs comprise 30.6% of publishing
organizations and firms comprise 14.9% of publishing organiza-
tions. Overall, the average organization that directly cites the core
rDNA publication produces 2.05 such publications. By organization
type, the average publishing firm produces 1.55 such publications;
the average publishing PRO produces 1.73 such publications; and
the average publishing university produces 2.70 such publications.

In sum, the comparisons within and between Figs. 1 through 6
indicate that patents, licenses and publications provide alterna-
tive images of diffusion that differ in timing and in organizational
demography. At the same time, the measures are not orthogonal,
meaning that they do not capture unrelated aspects of innovation

performance. For example, even if interest is limited to a subgroup
such as firms developing successful follow-on innovations, com-
parison of indicators reveals shortcomings in individual measures.
I discuss direct comparisons between the measures in the sections
that follow.
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Fig. 1. Number of publications in year/number of patent applications in year/number of licenses initiated in year.

Fig. 2. Patents per year by type of organization listed as assignee on the patent (year of application for issued patents). The sum on this graph is greater than the total number
of patents due to multiple assignees.

Fig. 3. Publications per year by type of organization listed as assignee on the publication.

Fig. 4. Number of organizations patenting/publishing in a given year, and number of organizations maintaining active licenses in a given year.
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Fig. 5. Number of organizations patenting in a given year, by organization type.
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.2. Licenses versus patents

Direct patent citations miss the vast majority of the organiza-
ions that build upon the focal rDNA patents: 464 organizations
igned licenses for rDNA while only 135 organizations hold patents
hat directly cite back to original rDNA patents (upon which the
icense is based).3 The overlap between the two samples is 55 orga-
izations. Therefore, patents fail to capture 409 organizations in
he license sample, or 88.1% of the organizations that are building
pon the patents (per the license data). This is an extreme error of
mission.

An argument can be made, of course, that patent citation data
eflect those organizations that actually have made a downstream
nvention of value, whereas licensing data only reflect those organi-

ations that attempted or intended to make something. Fortunately,
he licensing data facilitate a test of this proposition: since licensing
ontracts were structured to provide a share of revenue for related
roducts, it is possible to identify which firms paid back a share of

3 The Stanford Office of Technology Licensing lists 468 licensees and this figure
s used in other studies of recombinant DNA licensing (Feldman et al., 2005). But,
n four cases, the OTL uses two separate entries for the same company. Clorox and
astman Kodak renegotiated their licenses, leading to two entries for each company
o reflect the different periods in which specific licensing terms were in effect. In
998, Beckman Instruments acquired Coulter Corporation and Beckman Instruments
hanged its name to Beckman Coulter. The company has two entries to reflect this
ame change even though it is Beckman that held the license in both time periods.
inally, there are two entries for Ciba-Geigy, as a result of its later merger to form
ovartis and its purchase of Corning’s share of an earlier joint venture, Ciba-Corning
iagnostics Corp. But, since Ciba-Corning and Novartis each have their own entries,

t seems reasonable to only maintain one entry for Ciba-Geigy.
in a given year, by organization type.

revenue to Stanford/UCSF, indicating that they did, in fact, release
products. The data indicate that 117 of the 464 licensing organi-
zations released revenue-generating products during the license
period (1980 through 1997). Of these 117 organizations, only 21
have patents at any point time (1973 through 2007) that directly cite
one of the three Cohen–Boyer patents. Thus, even if organizations of
interest are limited to firms that actually released related products,
direct patent citations still miss a large proportion (82.1%) of the
relevant organizations. In these cases, direct patent citations are
grossly under-representing related downstream innovations and
the organizations associated with them.

The downstream innovations that patent citations miss are
important. Of the top ten licensees in terms of revenue returned
to Stanford, three of them (Johnson & Johnson, Novo-Nordisk, and
Chiron) do not have patents that directly cite back to the core rDNA
patents. (The revenue paid back to Stanford may be taken as a direct
proxy for the sales of related drugs.) Collectively, these firms, which
all signed licenses in 1980, paid over $26 million in revenues based
on four blockbuster drugs (Feldman et al., 2005). Thus, the innova-
tions that patent citations miss are not on the fringe of the field, but
instead are amongst the most successful.

Since the one-step patent citation measure only picks up those
organizations that directly cite one of the Stanford rDNA patents
(that also form the basis of the license), it is informative to assess
how much additional activity is captured via two-step patent
citations. As discussed earlier, two-step citations pick up many

more patents (3547 versus 346) and many more organizations
(807 versus 135). Two-step patent citations also pick up all of
the top 10 licensees (including the three missed by direct patent
citations). Nevertheless, two-step patent citations still miss consid-
erable activity, capturing only 195 of the 464 licensing organizations
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42.0%) and only 54 of the 117 product-releasing organizations
46.2%).

Moreover, the use of two-step patent citations compounds
rrors in the other direction, capturing numerous organizations
hat did not commercially develop rDNA technology (according to
he license data). For example, Cooligy Inc. holds seven two-step
atents, all of which cite patent 6103199, which in turn cites a core
DNA patent. Patent 6103199, held by Aclara Biosciences, describes
device that uses microfluidic processes to dispense samples in

he separation of biomolecules. This biomolecular application led
o the inclusion of the rDNA patent citation. Cooligy Inc., how-
ver, designs and manufactures a product that cools computer chips
sing microfluidic channels. They, and their seven two-step patents,
ave no link to rDNA. In total, two-step patent citations pick up 377
rms through 1997, when the licensing requirement expired. But,
nly 54 of these 377 firms actually released rDNA-related prod-
cts (per the licensing data), indicating that use of this measure
ay introduce significant noise into the population of downstream

sers.
Direct patent citations also capture many organizations that

pparently did not commercialize rDNA. There are 55 organiza-
ions that directly cite back to the focal patent and hold a license.
ut, only 21 of these organizations released products. Thus, the
emaining 34 organizations hold patents that never materialized
nto revenue-generating products, indicating a significant amount
f patenting even when no related product is released. There are,
f course, many reasons that firms may patent besides the protec-
ion of actual products released into the marketplace (Levin et al.,
987; Cohen et al., 2000). The present data indicate that in 61.8%
f direct-citation cases (34 of 55), patents are not tied to related
roducts.

The data also show that 80 organizations have patents with
irect citations to the core rDNA patents but had no license, reveal-

ng potential imperfections in the licensing data. Only 35 of the
0 organizations were firms, however, so only 35 needed a license.
Stanford/UCSF did not require licenses of public research organiza-
ions.) Of these 35 organizations, 11 applied for their patents after
he license requirement had expired in 1997. Still, that leaves 24
rganizations that were never picked up by the Stanford OTL, but
robably should have been, with a broad distribution over the time
eriod. License data, it appears, are also an imperfect reflection of
ho has accessed a technology with commercial intentions. In this

ase, license data miss 4.9% of the relevant organizations (from a
otal population composed of organizations with a patent and/or a
icense).

What are the characteristics of the organizations that are missed

y patent data but captured by licensing data? They are all firms,
ince Stanford only required for-profit organizations to take out a
icense. They are also over-represented in the later years, as indi-
ated in Figs. 7 and 8. Fig. 7 tracks organizations by year of license
nitiation, displaying the number of new licenses signed each year

Fig. 7. Organizations signing up for a license in a given year.
Fig. 8. Organizations actively holding a license in a given year.

and the percentage of these licenses captured via one-step and two-
step patent citations. Fig. 8 employs the same schema, but tracks
organizations that actively maintain a license in a given year. In all
cases, the percentage of organizations captured tapers off in later
years. Practically speaking, this finding means that studies focused
on innovations that follow closely on the heels of their predeces-
sors may capture a relatively representative sample by relying on
patent data to indicate timing of diffusion. But, those studies that
cover a longer time period for a technology will grossly understate
innovation and the extent of diffusion in later years.

Geographically, there is little difference between licensing orga-
nizations captured by patent measures and those missed by patent
measures. In both cases, the average distance from Stanford/UCSF is
far (2217 miles for patent holders versus 1880 miles for license hold-
ers, and 2217 miles for licensees with a direct-citing patent versus
1836 miles for licensees without a direct-citing patent). These dis-
tances reflect the dominance of the distant Boston biotechnology
community as well as the presence of international organizations
in both samples. The differences in average distance are not sig-
nificant. In terms of potential local biases, direct patent citations
pick up only four of the 62 licensing organizations that are within
50 miles (6.5%), while they pick up 51 of the 402 licensing organiza-
tions that are more than 50 miles away (12.7%). These differences,
however, are not significant.

In terms of organization age, patent data bias the sample towards
older organizations. The average founding year of a firm in the
patent data is 1944. The average founding year of a firm in the
licensing data is 1966 (p < .001) Within the licensing data, the aver-
age founding year of a firm with both a patent and a license is 1935.
The average founding year of an organization with a license but no
direct patent is 1970 (p < .001).

These differences remain with two-step patents. Within the
licensing data, the average founding year of a firm with both a
license and a patent or two-step patent is 1953. The average found-
ing year of an organization with a license but no patent or two-step
patent is 1975 (p < .001).

The difference in founding years also remains if the population is
limited to those organizations actually released products. The aver-
age founding year of an organization that both released a product
(per the license data) and appears in the patent data is 1942. The
average founding year of an organization that released a product
(per the license data) but is not in the patent data is 1967 (p < .01).
Together, these findings indicate that reliance on patent citations as
a downstream measure of firm innovation biases a sample towards
older firms.

Despite this bias, however, it must be noted that there is little

evidence that patent data are biased against startups in particular.
179 of the 464 licensing organizations were startups at the time
that they signed their license. (I define a startup as an organization
that is less than 5 years old.) Direct patent citations capture 16 of
these organizations, or 8.9%, and capture 11.9% of all licensing orga-
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izations (startups and established firms). These differences are not
ignificant.

.3. Patents versus publications

As Figs. 1 through 6 indicate, publications provide a very dif-
erent picture of knowledge diffusion than do patents—one that
merges earlier and that highlights the involvement of public sci-
nce organizations. Publications also indicate broader diffusion
han one-step patents, both in terms of outputs – there are 756
ublications versus 346 patents – and in terms of involved organiza-
ions: there are 369 organizations with citing publications and 135
rganizations with direct-citing patents. (Two-step patent citations
apture 807 organizations and 3547 patents.) The direct patent
roup is not a subset of the publication group, but instead repre-
ents a relatively unique sample. In fact, only 43 of the organizations
old both a citing publication and a direct-citing patent.

Since the patent and publication populations are relatively dis-
inct and since there are a significant number of firms that publish,
ublications pick up 32 firms that direct patent citations miss (and
7 firms that two-step patent citations miss). Inclusion of these 32
rms would increase the overall firm population by 35.6% compared
o the use of direct patent citations alone. Publications are also
emarkably effective in picking up product-releasing firms. Direct
atent citations pick up 90 firms, 21 (23.3%) of which released prod-
cts (per the license data). Publication citations pick up 55 firms,
4 (25.5%) of which released products (per the license data). Thus,
he two measures are comparable in terms of the percentage of
roduct-releasing firms that they capture amongst the full set of
rms captured.

Finally, publication citations add a significant number of orga-
izations to the population captured via direct patent citations
lone. Reliance on direct patent data misses 326 (70.7%) of the total
rganizations involved if the researcher employs both publications
nd patents, while reliance on two-step patents misses 270 (25.1%)
f the total organizations involved if the researcher employs both
ublications and two-step patents. Particularly if one believes that
ublic science organizations play a unique role in diffusion (e.g.,
wen-Smith and Powell, 2004), the tendency of patent data alone

o under represent such organizations may be problematic.
Another difference between patents and publications concerns

iming. Patent data construct a much later diffusion curve than do
ublication data (see Fig. 1). In part, this delay may reflect a nat-
ral increase in patenting activity around the time of commercial

aunch, consistent with Basberg’s (1982) findings around patenting
n the Norwegian whaling industry. In part, the later timing also
esults from the fact that the rDNA patents issued much later than
he publication appeared. A high degree of uncertainty surrounded
ife sciences patenting in the 1970s (as indicated in part by the Dia-

ond versus Chakrabarty case that brought the issue before the US
upreme Court) and the first rDNA patent did not issue until 1980
Hughes, 2001).

Historical context is seen to have a major influence on the tim-
ng of patent data throughout the sample. For example, the peak
n 1995 (see Fig. 1) may be traced to the TRIPs Agreement, which
rought United States patent law in line with that of other nations
hrough the General Agreement on Tariffs and Trade (GATT). Article
3 of the TRIPs Agreement specified that the term of patent protec-
ion should be 20 years from the date of filing, whereas US patent
aw had previously granted protection for 17 years from the date
f patent grant. The change in US patent law took effect on June 8,

995. Patents filed before this date were granted a monopoly based
n the longer of the two possible patent terms (17 years from the
ssue date or 20 years from the earliest filing date). Of the 75 direct-
iting rDNA patents filed in 1995, 62 were filed between May 30 and
une 7. Only three direct-citing patents were filed in the remainder
38 (2009) 994–1005

of the calendar year after June 7. In discussing TRIPs, Branstetter
and Ogura (2005) note that overall applications submitted to the
USPTO more than doubled in May and June of 1995, and that the
surge appears to have been driven by the desire to benefit from
the two potential patent terms. Thus, policy shifts exert a major
influence on trends indicated by patent data. More generally, this
finding reinforces Moser’s (2005) contention that regulatory envi-
ronments shape the efficacy of patents as a measure. In the present
case, it is not only broad national differences that matter, but also
specific within-country legislative changes that can interfere with
the validity of longitudinal data. Absent the 1995 spike, citations
in patent applications would peak in 1982, 8 years after the initial
rDNA application and 2 years after the first rDNA patent issued.

These patent data anomalies do not imply that publication
data are superior to patent data. (Indeed, while publications cap-
ture more organizations overall, they miss 93 organizations that
only hold a direct-citing patent and do not publish.) First, while
publication data are less prone to policy shocks, they are highly
susceptible to changes in journal populations and standards. Sec-
ond, the publication process differs in important respects from the
patent process. Patent applications impose application and attor-
ney fees and are subject to review only by a single organization (the
USPTO). Rejected papers, by contrast, may be submitted to alter-
native journals and still appear as publications. Therefore, issued
patents may reflect, on average, higher quality additions to the
knowledge base, depending on the patent review process and the
specific journal publications to which they are compared. Sim-
ilarly, since patents are intended to protect economic interests,
they may serve as better innovation indicators than publications.
Finally, it is critical to note that citations in patents and publica-
tions serve somewhat different purposes. While patent citations
indicate important examples of prior art against which technical
novelty is judged, publication citations indicate influences upon
the published work. In fact, citing publications may not build on
this cited work in any related technical fashion, as evidenced by
the significant number of review article citations and social science
citations to the rDNA technique.

As with the patent/license comparison, it is possible to compare
the geographic distances and founding dates of organizations cap-
tured by each measure. It is not a surprise that publications capture
older organizations than do patents given the dominance of univer-
sities in the publication sample and the relatively long history that
most universities enjoy. An analysis limited only to firms, however,
finds no statistically significant differences between the age of firms
captured by publications and the age of firms captured by patents.
Following Gittelman (2007), it might also be expected that publish-
ing organizations would be farther from the point of invention than
patenting organizations. Across all organizations, this expectation
holds; the average distance from Stanford/UCSF is 3397 miles for
publishers versus 2217 miles for patenters (p < .0001). When the
analysis is limited to firms, however, the difference in distances
converges and is no longer significant.

Finally, it is worth noting the discrepancy between patent cita-
tions to the core rDNA patents versus patent citations to the core
rDNA publication. The core patents and core publication contain
roughly the same information. Indeed, all three of the core rDNA
patents cite the publication. Thus, one might expect downstream
patents to be indifferent as to whether they cite the patent or the
publication as the relevant prior art. But, only four patents (besides
the original core rDNA patents) actually cite the core publication,
reflecting a strong tendency for downstream patents to cite other

patents as prior art, even where there is a matched publication.
(Unfortunately, it is impossible to determine which citations to the
core rDNA patents were added by examiners. Sampat, 2005, sug-
gests that examiners are at a comparative disadvantage in adding
citations to publications versus patents.)
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.4. Licenses versus publications

Both publications and licenses provide a broad image of diffu-
ion with 369 and 464 involved organizations respectively. Since
icenses are given only to firms, however, they miss the considerable
nvolvement of non-profit organizations in knowledge diffusion.
gain, to the extent that such organizations may represent crucial
odes in a diffusion network (Owen-Smith and Powell, 2004), their
mission may be critical. Moreover, licenses also miss some firms.
ublications pick up 55 firms and 38 of these 55 appear amongst the
64 licensees. Thus, there are 17 firms that have published and do
ot appear in the license database. Those 17 firms would add 3.5%
ore to a sample of firms pulled only from license data. On the

ther hand, since publications are dominated by universities and
ther public science organizations, as indicated in Fig. 6, their use
n isolation also provides a limited sample that is skewed towards
articular types of organizations.

Publications and licenses also differ in their indications of the
iming of diffusion. As evidenced in Fig. 4, licenses only reflect activ-
ty during the license period, which is bounded by patent issue on
ne end and by patent expiration on the other end. Thus, reliance
n license data provides a skewed image of diffusion timing that is
haped as much by intellectual property considerations as it is by
ctual knowledge-access patterns.

Finally, as with the other comparisons, it is possible to assess
he geography and age of firms captured by licensing versus pub-
ication data. Consistent with Gittelman’s (2007) contention that

arket-oriented activities are more geographically clustered than
re general knowledge-building activities reflected in publications,
he average distance from Stanford/UCSF of a licensing firm is
880 miles while the average distance for a publishing firm is
832 miles (p < .0001). Moreover, publication data pick up much
lder firms than do licensing data. The average founding date of
firm in the publication dataset is 1926, while the average found-

ng date of a firm in the full licensing dataset is 1965 (p < .001). But,
here is no evidence that startups differ from established firms in
heir likelihood of holding publications that cite the core rDNA pub-
ication. Of the 179 startups in the licensing population, 11 (6.7%)
old such publications. Of the 285 non-startups, 26 (9.1%) hold such
ublications. The differences are not statistically significant.

. Discussion

In this paper, I have attempted to assess the efficacy of various
easures of knowledge diffusion by comparing rDNA patent cita-

ions, publications citations, and licensing data. The results show
ramatic differences in magnitude and timing for the different

ndicators. Fig. 9 compares the various measures in terms of organi-
ations captured, firms captured, and firms with products captured
y each measure. To summarize, direct patent citations – the most
ommon measure of knowledge spillovers – appear to be the most
estrictive measure of diffusion, capturing the smallest number
f organizations. Judged by the licensing data, direct patent cita-
ions miss 88% of all organizations building upon a core patent and
2% of those organizations that release a product based on a core
atent. Moreover, in 62% of cases, one-step patents are not tied to
ctual released products. Thus, direct patent citations appear to be a
noisy” measure, capturing a significant number of firms who never
elease directly related products.

Two-step patent citations capture the greatest number of orga-

izations in general and the greatest number of firms. But, they
till miss the majority of licensing organizations and they are far
ess effective than licenses in capturing firms that release products.
s a result, two-step patent citations also are a very noisy measure

hat captures numerous organizations with questionable linkages
38 (2009) 994–1005 1003

to rDNA. Finally, with both direct and two-step patents, changes
in policy through the TRIPs Agreement had a dramatic effect on
the overall level of patenting, thereby interfering with longitudinal
analyses.

Licenses provide the only reliable assessment of actual products
released and they capture more organizations than either publica-
tion citations or direct patent citations. Moreover, the incentives
on the part of licensor and licensees ensure that licenses are a
highly accurate representation of downstream technology users.
Only firms signed licenses, however, meaning that this measure
does not capture any of the significant university/PRO activity.
Moreover, it does not capture activity outside of the license period.

Finally, publication citations are most effective in picking up uni-
versities/PROs and they add a significant number of firms missed
by direct patent citations. But, they undercount firms overall and
their connection to economically useful innovations is tenuous.

Practically speaking, the obvious points for innovation research
are that different measures provide different patterns and that,
ceteris paribus, more measures are better since they capture a
greater amount of activity. As Fig. 9 indicates, combinations of indi-
cators are almost always superior to any single indicator. Amongst
the various combinations, however, it is worth noting that the
simultaneous use of patents and publications – an increasingly
common measure – is the least effective combination.

The analyses also revealed systematic biases between measures.
Publication citations portray a world of innovation diffusion that
emerges earlier, features older organizations, and is more geo-
graphically dispersed than that of patent citations. In turn, patent
citations paint a picture of innovation diffusion that is smaller,
poorer, older, and emerges earlier than that of licenses. But, it is
important to note that the results do not appear to be biased against
startups in particular, and instead reflect more general features of
the population of organizations.

One obvious question resulting from these analyses concerns
why direct patent citations miss so many organizations and so much
activity. The answer lies in legal function of patent citations, which
has on occasion been misinterpreted by innovation scholars. Orga-
nizations are required to cite techniques such as rDNA only when
the technique is “material to the patentability” of present patent,
meaning that citation affects the novelty or non-obviousness of the
technique. Thus, patent citations cannot be expected to capture all
downstream uses or users of a technology, particularly as that tech-
nology becomes well-known and widely diffused. In other words,
while the licensing data highlight shortcomings in the ability of
patent citations to capture downstream applications of rDNA, the
data do not necessarily imply legal failings on the part of patent
applicants. Instead, they point to the importance of understanding
the role and legal context of patents (Gittelman, 2008).

The growing discrepancy between measures over time also
reflects Merton’s (1968) idea of “obliteration by incorporation.”
As Merton explains, scientists primarily make use of more recent
contributions, which have developed earlier ideas. As a result, “ear-
lier and often much weightier scientific contributions tend to be
obliterated. . .by incorporation into later work” (Merton, 1968: 28).
Citing Kessler, Merton notes that a serious student of physics can
safely ignore the original foundational work of Newton, Faraday and
Maxwell. Moreover, he argues that this dynamic is especially active
in science (as opposed to the humanities). Undoubtedly, much of
the fading tail on patent and publication citations to rDNA has to
do with the inability of citations to reflect use, rather than a lack of
use or diffusion.
A core finding of the present study is that different measures
capture different aspects of diffusion, suggesting that diffusion
itself is a concept in need of specification and elaboration. Depend-
ing upon the study, diffusion can refer to knowledge of the existence
of a technique, to application of the technique in scientific experi-
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Fig. 9. Number of unique organizations/firm

ents or in product development, or to the sale of products based
pon the technology. (Bozeman, 2000, offers a useful discussion of
he various definitions of technology diffusion.) It is clear that cer-
ain measures are more effective at measuring certain aspects. For
xample, licenses appear to be the most reliable measure of product
ales. But, it is also doubtful that any single indicator is an adequate
easure of even one specific perspective on diffusion.
The limited scope of this study demands, of course, that these

onclusions be taken in context. In particular, the life-sciences set-
ing of this study and the study’s focus on a single core technology

ust be acknowledged as limitations. As such, it is important to
uestion the generalizability of this analysis. On one hand, the core
nvention studied garnered a Nobel Prize and is nearly unmatched
n importance since it laid the foundation for an entire industry.

oreover, previous investigations indicate that patent protection
s more important in this industry than in any other (Cohen et al.,
000) and that applicants insert a higher number of citations in
iomedical (and chemical) patents than in other technology fields
Sampat, 2005). These findings imply that the present study is a lib-
ral test of patent efficacy, and that patent citation data presumably
ould miss even more activity in other technological realms.

On the other hand, the desire to obtain a long time series led
o selection of a technology that emerged when norms around
ntellectual property and universities were in flux (Colyvas, 2007).

oreover, the biotechnology industry is unique in the emphasis
hat firms place on publication. In other industries, the inclusion of
ublication citations might not yield as large a boost in the pop-
lation of downstream users. Finally, the normative commentary
n the use of licensing data must be tempered with the acknowl-
dgement that such data can be difficult to obtain. In fact, in some
ndustries, licensing data may be lacking simply because licensing
s not a common practice amongst organizations. These limitations
ignal the need for greater cross-industry analyses of markers and
ractices of knowledge diffusion.

The intention of this study has not been to dismiss any particu-
ar measure used to study innovation diffusion. Rather, the results
uggest that the ease of collecting and analyzing certain types of
ata should not blind us to alternative measures, nor assuage our
aution at interpreting results, nor guide the ways in which we
hoose to study innovation. For example, in the field of university
echnology transfer, researchers, policy analysts, and practitioners

ften emphasize university-assigned patents as a key measure of
uccessful technology transfer. By contrast, the present analysis
ndicates that patents fail to capture most formal technology trans-
er activities—much less the critical informal activities. Innovation
s difficult to measure and specific indicators can provide impor-
s-with-products captured by each measure.

tant insights. But, in our rush to employ them, we should neither
be blinded to their biases nor lose sight of the critical perspectives
that alternative measures provide.
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