1. Let $E \subset \mathbb{P}^{2}$ be a smooth elliptic curve cut out by the equation $y^{2} z-x^{3}-a x z^{2}-b z^{3}=0$ (in particular, the polynomial $t^{3}+a t+b$ does not have multiple roots). We denote $e:=$ $(0,1,0) \in E$. We consider a map $\varphi: E \rightarrow \operatorname{Pic}^{0}(E), u \rightarrow[u-e]$. Prove part (c)
a) $\varphi$ is injective.
b) Given $u, v \in E$, there exists $w \in E$ such that $[u+v]=[w+e] \in \operatorname{Pic}^{2}(E)$.
c) For any effective divisor $D$ on $E$ of degree $d$, there is $w \in E$ such that

$$
[D]=[w+(d-1) e] \in \operatorname{Pic}^{d}(E)
$$

d) $\varphi$ is a bijection of sets $E \xrightarrow{\sim} \operatorname{Pic}^{0}(E)$. It is used to equip $\operatorname{Pic}^{0}(E)$ with a structure of algebraic curve, and to equip $E$ with a structure of algebraic group.
2. a) Prove that $\operatorname{dim} \Gamma\left(E, \mathcal{O}_{E}(k e)\right)=k$ for any $k>0$.
b) Write down all the elements of $\Gamma\left(E, \mathcal{O}_{E}(k e)\right)$ explicitly in the form $P(x)+y Q(x)$ for some $P, Q \in \mathrm{k}(x)$.
3. a) If $u+v=w$ in the sense of the group law of Problem 1 on $E$, write down the coordinates of $w$ in terms of coordinates of $u, v$.
b) Prove that $u+v+w=0$ iff $u, v, w$ lie on a line $\mathbb{P}^{1} \subset \mathbb{P}^{2}$.
4. Prove that if $u+v=0$, and $u$ (resp. $v$ ) has coordinates ( $x_{1}, y_{1}, 1$ ) (resp. $\left(x_{2}, y_{2}, 1\right)$ ), then $x_{1}=x_{2}, y_{1}=-y_{2}$.
5. A point $u \in E$ is called an inflection point if the tangent line $\ell_{u}$ at $u$ has the intersection order 3 (as opposed to the usual order 2) with $E$ at $u$ (in particular, $\ell_{u} \cap E=\{u\}$ ). Prove that
a) $u$ is an inflection point on $E$ iff $u$ has order 3 in the group law of Problem 1 on $E$.
b) If a line $\ell \subset \mathbb{P}^{2}$ passes through two inflection points $u_{1}, u_{2} \in E$, then the third point of $\ell \cap E$ is an inflection point as well.

