Solutions to selected homework problems. 3.

- 1.6.29. For n=1 this is Theorem 1.13. Suppose n>1 and the statement is true for n-1. Assume also we are given a and b_1, \ldots, b_n, c such that $a|b_1 \cdot b_2 \cdot \ldots \cdot b_n \cdot c$ and $(a,b_i)=1$ for $i=1,\ldots,n$. Then we can apply the induction assumption to the numbers b_1,\ldots,b_{n-1} and $c'=b_n\cdot c$ to deduce that $a|b_n\cdot c$. Since $(a,b_n)=1$, by Theorem 1.13, this implies that a|c.
- 1.6.44. For n = 1 this is true since 8|24 = 4!. Suppose n > 1 and the statement is true for n 1. Then we have $8^n = 8 \cdot 8^{n-1}|(4n)! \cdot 8$. But $(4(n+1))! = (4n+4)! = (4n)! \cdot (4n+1)(4n+2)(4n+3)(4n+4)$. It remains to observe that 8|(4n+2)(4n+4), so $(4n)! \cdot 8|(4n+4)!$.
- 1.6.60. Let $d=(a^n-1,a^m+1)$. Then $a^n\equiv 1 \pmod d$ and $a^m\equiv -1 \pmod d$. Raising the first congruence to the mth power and the second to the nth power we deduce that $a^{mn}\equiv 1 \pmod d$ and $a^{mn}\equiv (-1)^n \pmod d$. Hence $(-1)^n\equiv 1 \pmod d$. But n is odd, so we get $-1\equiv 1 \pmod d$, i.e., $2\equiv 0 \pmod 2$. This means that d|2, so d=1 or 2, as required.
- 2.2.24. Let d = (a, c). We can write a = da', c = dc', where (a', c') = 1. Note that $a^2 = d^2(a')^2$, $c^2 = d^2(c')^2$. Thus, the condition $a^2|bc^2$ implies that $(a')^2|b(c')^2$. Since (a', c') = 1, we also know that $((a')^2, (c')^2) = 1$ (problem 1.4.39). Hence, by Theorem 1.13, we deduce that $(a')^2|b$. If a' > 1 this would imply that b is divisible by the square of some prime (pick a prime divisor of a'). Hence, we should have a' = 1, so a = d divides c.