Solutions to selected homework problems. Sections 4.2-4.3

4.2.44. Let n denote how many cents each child was given. Then $n \equiv 13 \equiv 3 \pmod{5}, \ n \equiv 3 \pmod{6}, \ n \equiv 2 \pmod{11}, \ \text{and} \ 300 \le n < 600.$ We can look for a solution in the form $n = 5 \cdot 6 \cdot x + 5 \cdot 11 \cdot y + 6 \cdot 11 \cdot z$. Then we get $z \equiv 3 \pmod{5}, \ y \equiv 5 \cdot 11 \cdot y \equiv 3 \pmod{6}, \ 5 \cdot 6 \cdot x \equiv 2 \pmod{11}$, i.e., $-3x \equiv 2 \pmod{11}$. The last congruence has a solution $x \equiv 3 \pmod{11}$. Thus,

$$n \equiv 5 \cdot 6 \cdot 3 + 5 \cdot 11 \cdot 3 + 6 \cdot 11 \cdot 3 \equiv 453 \pmod{5 \cdot 6 \cdot 11}$$

The inequalities on n imply that n = 453.

4.2.51. First, pick k distinct primes p_1, \ldots, p_k . Then apply the Chinese theorem to find n such that $n \equiv -1 \pmod{p_1^2}$, $n \equiv -2 \pmod{p_2^2}$, ..., $n \equiv -k \pmod{p_k^2}$. Then each of the numbers $n+1, n+2, \ldots, n+k$ will not be square free (since n+i is divisible by p_i^2).

4.3.16. Since $\phi(25) = 20$ we have

$$9^{43} \equiv 9^3 \equiv 27^2 \equiv 2^2 \equiv 4 \pmod{25}$$
.

4.3.24. 20! is divisible by 3 and by 7, hence, it is divisible by 21, since 3 and 7 are relatively prime.

4.3.34. Let n be the order of a modulo b. Then $a^n \equiv 1 \pmod{b}$. Hence, $c^n \equiv (a^k)^n \equiv (a^n)^k \equiv 1 \pmod{b}$. Hence, the order of c modulo b does not exceed n.

4.3.39. For $x = ca^{\phi(b)-1}$ we have

$$ax \equiv ca^{\phi(b)} \equiv c \pmod{b}$$

by Euler's theorem.

4.3.49. Let us denote d=(j,p-1), n=(p-1)/d. We claim that for an integer m one has (p-1)|mj if and only if n|m. Indeed, (p-1)|mj if and only if $\frac{p-1}{d}|m\frac{j}{d}$, which is equivalent to $\frac{p-1}{d}|m$ (since $(\frac{p-1}{d},\frac{j}{d})=1$). Now recall that $a^{mj}\equiv 1 \pmod{p}$ if and only if mj is divisible by

Now recall that $a^{mj} \equiv 1 \pmod{p}$ if and only if mj is divisible by the order of a (Theorem 4.6). Thus, $a^{mj} \equiv 1 \pmod{p}$ if and only if (p-1)|mj, i.e., n|m. Thus, n is the smallest number such that $(a^j)^n \equiv 1 \pmod{p}$, so by definition, n is the order of a^j .