Mark each statement True or False. Justify each answer.
(If true, cite appropriate facts or theorems. If false, explain why or give a counterexample that shows why the statement is not true in every case.) In parts (a)–(f), \(v_1, \ldots, v_p \) are vectors in a nonzero finite-dimensional vector space \(V \), and \(S = \{v_1, \ldots, v_p\} \).

a. The set of all linear combinations of \(v_1, \ldots, v_p \) is a vector space.
b. If \(\{v_1, \ldots, v_{p-1}\} \) spans \(V \), then \(S \) spans \(V \).
c. If \(\{v_1, \ldots, v_{p-1}\} \) is linearly independent, then so is \(S \).
d. If \(S \) is linearly independent, then \(S \) is a basis for \(V \).
e. If \(\text{Span} \, S = V \), then some subset of \(S \) is a basis for \(V \).
f. If \(\dim V = p \) and \(\text{Span} \, S = V \), then \(S \) cannot be linearly dependent.
g. A plane in \(\mathbb{R}^3 \) is a two-dimensional subspace.
h. The nonpivot columns of a matrix are always linearly dependent.
i. Row operations on a matrix \(A \) can change the linear dependence relations among the rows of \(A \).
j. Row operations on a matrix can change the null space.
k. The rank of a matrix equals the number of nonzero rows.
l. If an \(m \times n \) matrix \(A \) is row equivalent to an echelon matrix \(U \) and if \(U \) has \(k \) nonzero rows, then the dimension of the solution space of \(Ax = 0 \) is \(m - k \).
m. If \(B \) is obtained from a matrix \(A \) by several elementary row operations, then \(\text{rank} \, B = \text{rank} \, A \).
n. The nonzero rows of a matrix \(A \) form a basis for \(\text{Row} \, A \).
o. If matrices \(A \) and \(B \) have the same reduced echelon form, then \(\text{Row} \, A = \text{Row} \, B \).
p. If \(H \) is a subspace of \(\mathbb{R}^3 \), then there is a \(3 \times 3 \) matrix \(A \) such that \(H = \text{Col} \, A \).
q. If \(A \) is \(m \times n \) and \(\text{rank} \, A = m \), then the linear transformation \(x \mapsto Ax \) is one-to-one.
r. If \(A \) is \(m \times n \) and the linear transformation \(x \mapsto Ax \) is onto, then \(\text{rank} \, A = m \).