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Preface

This is a preliminary draft of Chapters 1–3 of our forthcoming textbook
Introduction to cluster algebras, joint with Andrei Zelevinsky (1953–2013).
Other chapters have been posted as

• arXiv:1707.07190 (Chapters 4–5),

• arXiv:2008.09189 (Chapter 6), and

• arXiv:2106.02160 (Chapter 7).

We expect to post additional chapters in the not so distant future.

This book grew from the ten lectures given by Andrei at the NSF CBMS
conference on Cluster Algebras and Applications at North Carolina State
University in June 2006. The material of his lectures is much expanded but
we still follow the original plan aimed at giving an accessible introduction
to the subject for a general mathematical audience.

Since its inception in [23], the theory of cluster algebras has been actively
developed in many directions. We do not attempt to give a comprehensive
treatment of the many connections and applications of this young theory.
Our choice of topics reflects our personal taste; much of the book is based
on the work done by Andrei and ourselves.
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Chapter 1

Total positivity

Total positivity, along with G. Lusztig’s theory of canonical bases, was one
of the main motivations for the development of cluster algebras. In this
chapter, we present the basic notions of total positivity, focusing on three
important examples (to be re-examined again in the future): square matri-
ces, Grassmannians, and basic affine spaces. As our main goal here is to
provide motivation rather than develop a rigorous theory, the exposition is
somewhat informal. Additional details and references can be found in [18].

1.1. Totally positive matrices

An n × n matrix with real entries is called totally positive (TP for short)
if all its minors—that is, determinants of square submatrices—are positive.
A real matrix is called totally nonnegative (or TNN) if all its minors are
nonnegative. The first systematic study of these classes of matrices was
conducted in the 1930s by F. Gantmacher and M. Krein [28], following the
pioneering work of I. Schoenberg [45]. In particular, they showed that the
eigenvalues of an n×n totally positive matrix are real, positive, and distinct.

Total positivity is a remarkably widespread phenomenon: TP and TNN
matrices play an important role, inter alia, in classical mechanics, proba-
bility, discrete potential theory, asymptotic representation theory, algebraic
and enumerative combinatorics, and the theory of integrable systems.

The Binet-Cauchy Theorem implies that TP (resp., TNN) matrices in
G = SLn are closed under multiplication; they thus form a multiplicative
semigroup, denoted by G>0 (resp., G≥0). The following “splitting lemma”
due to C. Cryer [12, 13] shows that the study of G≥0 can be reduced to
the investigation of its subsemigroup of upper-triangular unipotent TNN
matrices, i.e. upper-triangular TNN matrices with 1’s on the diagonal:

1



2 1. Total positivity

Lemma 1.1.1. A matrix z ∈ SLn is totally nonnegative if and only if it
has a Gaussian decomposition

z =















1 0 0 · · · 0
∗ 1 0 · · · 0
∗ ∗ 1 · · · 0
...

...
...

. . .
...

∗ ∗ ∗ · · · 1





























∗ 0 0 · · · 0
0 ∗ 0 · · · 0
0 0 ∗ · · · 0
...

...
...

. . .
...

0 0 0 · · · ∗





























1 ∗ ∗ · · · ∗
0 1 ∗ · · · ∗
0 0 1 · · · ∗
...

...
...

. . .
...

0 0 0 · · · 1















in which all three factors (lower-triangular unipotent, diagonal, and upper-
triangular unipotent) are totally nonnegative.

There is also a counterpart of this statement for totally positive matrices.

The Loewner-Whitney Theorem [36, 52] identifies the infinitesimal gen-
erators of G≥0 as the Chevalley generators of the corresponding Lie algebra.
In pedestrian terms, each n × n TNN matrix can be written as a product
of matrices of the form xi(t), yi(t), and zi(t), where each parameter t is
positive, the matrices xi(t) are defined by

xi(t) =





















1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · 1 t · · · 0
0 · · · 0 1 · · · 0
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · 1





















,

where the t is in row i of xi(t), yi(t) is the transpose of xi(t), and zi(t) is
the diagonal matrix with diagonal entries (1, . . . , 1, t, t−1, 1, . . . , 1) where t
and t−1 are in positions i and i+ 1. This led G. Lusztig [37] to the idea of
extending the notion of total positivity to other semisimple Lie groups G,
by defining the set G≥0 of TNN elements in G as the semigroup generated
by the Chevalley generators. Lusztig proved that G≥0 is a semialgebraic
subset of G, and described it by inequalities of the form ∆(x) ≥ 0 where ∆
lies in the appropriate dual canonical basis; see [38, Section 5]. A simpler
description in terms of generalized minors [20] was given in [22].

A yet more general (if informal) concept is one of a totally positive (or
totally nonnegative) (sub)variety of a given complex algebraic variety Z.
Vaguely, the idea is this: suppose that Z comes equipped with a family ∆

of “important” regular functions on Z. The corresponding TP (resp., TNN)
variety Z>0 (resp., Z≥0) is the set of points at which all of these functions
take positive (resp., nonnegative) real values:

Z>0 = {z ∈ Z : ∆(z) > 0 for all ∆ ∈∆}.
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If Z is the affine space of n× n matrices (or Z = GLn(C), or Z = SLn(C)),
and∆ is the set of all minors, then we recover the classical notions. One can
restrict this construction to matrices lying in a given stratum of a Bruhat
decomposition, or in a given double Bruhat cell [20, 37]. Another important
example is the totally positive (resp., nonnegative) Grassmannian consisting
of the points in a usual Grassmann manifold where all Plücker coordinates
can be chosen to be positive (resp., nonnegative). This construction can be
extended to arbitrary partial flag manifolds, and more generally to homo-
geneous spaces G/P associated to semisimple complex Lie groups.

We note that in each of the examples alluded to above, the notion of
positivity depends on a particular choice of a coordinate system: a basis in a
vector space allows us to view linear transformations as matrices, determines
a system of Plücker coordinates, etc.

Among many questions which one may ask about totally positive/non-
negative varieties Z>0 and Z≥0 , let us restrict our attention to the problem
of efficient TP testing : how many inequalities (and which ones) does one
need to check in order to ascertain that a given point in Z is totally positive?
In particular, are there efficient ways for testing a very large matrix for total
positivity? (It is not hard to see that an n×n matrix has altogether

(2n
n

)

−1
minors, a number which grows exponentially in n.) Examples 1.1.2 and 1.1.3
provide a glimpse into the tricks used to construct efficient TP criteria.

Example 1.1.2. A 2 × 2 matrix z =

[

a b
c d

]

has five minors: the matrix

entries a, b, c, d and the determinant ∆ = det(z) = ad−bc. Now the identity

(1.1.1) ad = ∆+ bc

shows that we do not have to check all five minors: if a, b, c, and ∆ are
positive, then so is d = (∆+bc)/a. (Alternatively, test the minors d, b, c,∆.)

Example 1.1.3. Now let n = 3. To keep it simple (cf. also Lemma 1.1.1),
let us consider the subgroup of unipotent upper triangular matrices

z =





1 a b
0 1 c
0 0 1



 ∈ SL3 .

Since some of the entries of z are equal to 0, we modify the definition of
total positivity by requiring that ∆(z) > 0 for each minor ∆ which does not
identically vanish on the subgroup. This leaves us with four minors to check
for positivity: the matrix entries a, b, c, and the 2×2 minor P = ac−b. Again
we can reduce the number of needed checks from 4 to 3 using the identity

(1.1.2) ac = P + b .

Thus each of the sets {a, b, P} and {b, c, P} provides an efficient TP test.
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We note that in each of the above examples, the number of checks in-
volved in each positivity test was equal to the dimension of the variety at
hand. It seems implausible that one could do better.

1.2. The Grassmannian of 2-planes in m-space

Before developing efficient total positivity tests for square matrices, we shall
discuss the somewhat simpler case of Grassmannians of 2-planes.

Recall that the complex Grassmann manifold (the Grassmannian for
short), denoted Grk,m = Grk,m(C), is the variety of all k-dimensional sub-
spaces in an m-dimensional complex vector space. Let us fix a basis in this
space, thereby identifying it with Cm. Now any k ×m matrix z of rank k
defines a point [z] ∈ Grk,m, the row span of z.

Given a k-element subset J ⊂ {1, . . . ,m}, the Plücker coordinate PJ(z)
(evaluated at a matrix z as above) is, by definition, the k × k minor of z
determined by the column set J . The collection (PJ(z))|J |=k only depends
on the row span [z] (up to common rescaling), and in fact provides an
embedding of Grk,m into the complex projective space of dimension

(

m
k

)

−1,
called the Plücker embedding.

The Plücker coordinates PJ generate the Plücker ring Rk,m, the homoge-
neous coordinate ring of Grk,m with respect to the Plücker embedding. The
ideal of relations that they satisfy is generated by the quadratic Grassmann-
Plücker relations.

The Plücker coordinates are used to define the totally positive points of
the Grassmannian, as follows.

Definition 1.2.1. The totally positive Grassmannian Gr+k,m is the subset

of Grk,m consisting of points whose Plücker coordinates can be chosen so
that all of them are positive real numbers. (Recall that Plücker coordinates
are defined up to a common rescaling.)

In simple terms, an element [z] ∈ Grk,m defined by a full-rank k × m
matrix z (without loss of generality, z can be assumed to have real entries)
is TP if all the maximal (i.e., k× k) minors PJ(z) are of the same sign. We
can begin by checking one particular value PJ (z), and if it happens to be
negative, replace the top row of z by its negative. Thus the problem at hand
can be restated as follows: find an efficient method for checking whether all
maximal minors of a given k × m matrix are positive. A brute force test
requires

(

m
k

)

checks. Can this number be reduced?

In this section, we systematically study the case k = 2 (Grassmannians
of 2-planes). Chapter 8 will generalize the treatment below to arbitrary
Grassmannians Grk,m.

In the case of the Grassmannian Gr2,m, there are
(

m
2

)

Plücker coordinates
Pij = P{i,j} labeled by pairs of integers 1 ≤ i < j ≤ m. It turns out however
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that in order to verify that all the 2 × 2 minors Pij(z) of a given 2 × m
matrix z are positive, it suffices to check the positivity of only 2m − 3
special minors. (Note that 2m − 3 = 2(m − 2) + 1 is the dimension of the
affine cone over Gr2,m.)

Exercise 1.2.2. Show that the 2×2 minors of a 2×m matrix (equivalently,
the Plücker coordinates Pij) satisfy the three-term Grassmann-Plücker re-
lations

(1.2.1) Pik Pjl = Pij Pkl + Pil Pjk (1 ≤ i < j < k < l ≤ m).

We are going to construct a family of “optimal” tests for total positivity
in Gr2,m using triangulations of an m-gon. Consider a convex m-gon Pm

with its vertices labeled clockwise. We associate the Plücker coordinate Pij

with the chord (i.e., a side or a diagonal of Pm) whose endpoints are i and j.

Now, let T be a triangulation of Pm by pairwise noncrossing diagonals.
(Common endpoints are allowed.) We view T as a maximal collection of
noncrossing chords; as such, it consists ofm sides andm−3 diagonals, giving
rise to a collection x̃(T ) of 2m − 3 Plücker coordinates, which we call an
extended cluster. The Plücker coordinates corresponding to the sides of Pm

are called frozen variables. They are present in every extended cluster x̃(T ),
hence the term “frozen;” an alternative terminology is coefficient variables.
The remaining m−3 Plücker coordinates corresponding to diagonals of Pm

are called cluster variables; they form a cluster. Thus each extended cluster
consists of m − 3 cluster variables and m frozen variables. We note that
these 2m−3 quantities are algebraically independent. See Figure 1.1.

P46

P47 P24

P27

P17

4

3

2

18

7

6

5

Figure 1.1. A triangulation T of an octagon P8 . The extended clus-
ter x̃(T ) consists of the cluster variables P17, P24, P27, P46, P47 and the
frozen variables P12, P23, . . . , P78, P18 .



6 1. Total positivity

Theorem 1.2.3. Each Plücker coordinate Pij can be written as a sub-
traction-free rational expression in the elements of a given extended clus-
ter x̃(T ) . Thus, if the 2m − 3 Plücker coordinates Pij ∈ x̃(T ) evaluate
positively at a given 2×m matrix z, then all 2× 2 minors of z are positive.

To clarify, a subtraction-free expression is a formula involving variables
and positive integers that uses only the operations of addition, multiplica-
tion, and division.

Proof of Theorem 1.2.3. Let us visualize the three-term relations (1.2.1)
using the m-gon Pm . Take four vertices i < j < k < l of Pm , cf. Figure 1.2.
Then the relation (1.2.1) is reminiscent of the classical Ptolemy Theorem
which asserts that for an inscribed quadrilateral, the products of the lengths
of two pairs of opposite sides add up to the product of the two diagonals.

i

j

k

l

Figure 1.2. Three-term Grassmann-Plücker (or Ptolemy) relation (1.2.1).

Now Theorem 1.2.3 is an immediate consequence of the following three facts:

(1) Every Plücker coordinate appears as an element of an extended
cluster x̃(T ) for some triangulation T of the polygon Pm.

(2) Any two triangulations of Pm can be transformed into each other
by a sequence of flips. Each flip removes a diagonal of a trian-
gulation to create a quadrilateral, then replaces it with the other
diagonal of the same quadrilateral. See Figure 1.3.

(3) Each flip, say one involving the diagonals ik and jl, acts on ex-
tended clusters by exchanging the Plücker coordinates Pik and Pjl.
This exchange can be viewed as a subtraction-free transformation
determined by the corresponding three-term relation (1.2.1). �

Remark 1.2.4. In fact something stronger than Theorem 1.2.3 holds: every
Plücker coordinate can be written as a Laurent polynomial with positive
coefficients in the Plücker coordinates from x̃(T ). This is an instance of
very general phenomena of Laurentness and positivity in cluster algebras,
which will be discussed later in the book.



1.2. The Grassmannian of 2-planes in m-space 7

−→

Figure 1.3. A flip of a diagonal in a quadrilateral.

The combinatorics of flips is captured by the graph whose vertices are
labeled by the triangulations of the polygon Pm and whose edges correspond
to flips. This is a regular graph: all its vertices have degree m− 3. More-
over, this graph is the 1-skeleton of an (m−3)-dimensional convex polytope
(discovered by J. Stasheff [50]) called the associahedron. See Figure 1.4.

Figure 1.4. The 3-dimensional associahedron.

In the forthcoming terminology of cluster algebras, this graph is an ex-
ample of an exchange graph. Its vertices correspond to extended clusters (all
of which have the same cardinality) while its edges correspond to exchange
relations (1.2.1): adjacent extended clusters are related to each other by
interchanging the cluster variables appearing on the left-hand side of an
exchange relation.
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Recall that the Plücker ring R2,m is generated by the Plücker coordi-
nates Pij subject to the three-term relations (1.2.1). The combinatorics of
extended clusters provides an elegant way to construct a linear basis for this
ring. Define a cluster monomial to be a monomial in (i.e., a product of a
multiset of) cluster and/or frozen variables, all of which belong to one ex-
tended cluster; in other words, the corresponding collection of arcs does not
contain two diagonals which cross each other. These monomials appeared
already in the classical 19th century literature on invariant theory; in par-
ticular, it is known [35, 51] that the set of all cluster monomials form a
linear basis of R2,m. Later on we shall discuss a far-reaching generalization
of this result in the context of cluster algebras.

As mentioned above, the ideas we have discussed for the Grassman-
nian Gr2,m can be generalized to a beautiful theory that works for arbitrary
Grassmannians Grk,m, cf. Chapter 8. In Chapter 10, we shall describe a gen-
eralization of the Gr2,m example in a different direction, which involves the
combinatorics of flips for triangulations of a Riemann surface with boundary
and punctures. That construction has an intrinsic interpretation in hyper-
bolic geometry where an analogue of the Ptolemy relation holds for the
exponentiated hyperbolic distances between horocycles drawn around ver-
tices of a polygon with geodesic sides and cusps at the vertices (the “Penner
coordinates” on the corresponding decorated Teichmüller space [41]).

1.3. The basic affine space

We next turn our attention to total positivity criteria for square matrices.
In view of Lemma 1.1.1, it makes sense to study lower- and upper-triangular
matrices first, and then proceed to the whole group SLn. We choose a related
but different strategy: first study matrices for which a certain subset of “flag
minors” are positive, then treat the general case.

Definition 1.3.1. The flag minor PJ labeled by a nonempty proper subset
J ( {1, . . . , n} is a function on the special linear group G = SLn defined by

PJ : z = (zij) 7→ det(zij | i ≤ |J |, j ∈ J).

Since an n-element set has 2n−2 proper nonempty subsets, a matrix in SLn

has 2n − 2 flag minors; each of them occupies the first several rows and an
arbitrary subset of columns (of the same cardinality).

Let U ⊂ G be the subgroup of unipotent lower-triangular matrices, i.e.
the lower-triangular matrices with 1’s on the diagonal. The group U acts
on G by multiplication on the left. It consequently acts on C[G], the ring of
polynomials in the matrix entries of a generic matrix of determinant 1. It
is easy to see that each flag minor PJ is an invariant of this action: for any
z ∈ G and y ∈ U , we have PJ(yz) = PJ (z). Similarly to the case of Plücker
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coordinates in a Plücker ring, we have (thanks to the appropriate versions
of the First and Second Fundamental Theorems of invariant theory):

(1) the flag minors generate the ring C[G]U of U -invariant polynomials
in the matrix entries, and

(2) the ideal of relations among the flag minors is generated by certain
quadratic generalized Plücker relations.

The ring C[G]U plays an important role in the representation theory of the
semisimple Lie group G: it naturally carries all irreducible representations
of G, each with multiplicity 1. (We will not rely on this in what follows.)
This ring is the coordinate ring of the basic affine space, the (Geometric
Invariant Theory) quotient U\G. This space is also known as the base
affine space, the fundamental affine space, and the principal affine space.
In this section, this space plays the role analogous to the role that the
Grassmannians played in Section 1.2. As before, we can state everything
we need in an elementary fashion, in terms of matrices and their minors.

Definition 1.3.2. An element z ∈ G is flag totally positive (FTP) if all flag
minors PJ take positive values at z.

We would like to detect flag total positivity in an efficient way, by testing
as few of the 2n−2 flag minors as possible. It turns out that the optimal test

of this kind probes only (n−1)(n+2)
2 flag minors. We note that (n−1)(n+2)

2 =

n2 − 1−
(

n
2

)

is the dimension of the basic affine space.

Following [3], we construct a family of tests for flag total positivity
labeled by combinatorial objects called wiring diagrams which play the same
role as triangulations did in Section 1.2.

This notion is best explained by an example such as the one in Fig-
ure 1.5. A wiring diagram consists of a family of n piecewise-straight lines,
considered up to isotopy, which can be viewed as graphs of n continuous
piecewise-linear functions defined on the same interval. The lines are labeled
1, . . . , n as shown in Figure 1.5. The key requirement is that each pair of
lines intersects exactly once.

3

2

1

1

2

3

Figure 1.5. A wiring diagram.
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The notion of a wiring diagram is closely related to that of a reduced
word for an element of maximal length in the symmetric group Sn. See [3,
Section 2.3] for detailed explanations.

We then assign to each chamber of a wiring diagram (i.e., a connected
component of its complement inside the vertical strip) a subset of [1, n] =
{1, . . . , n} indicating which lines pass below that chamber; cf. Figure 1.6.

3

2

1

1

2

3

1 2 3

12 23

Figure 1.6. Chamber minors P1, P2, P3, P12, and P23.

Thus every chamber is naturally associated with a flag minor PJ , called
a chamber minor, that occupies the columns specified by the set J in the
chamber, and the rows 1, 2, . . . , |J |. The total number of chamber minors is

always (n−1)(n+2)
2 .

The chamber minors associated to a wiring diagram make up an extended
cluster. Such an extended cluster will always contain the 2n− 2 flag minors
associated to the unbounded chambers:

P1, P1,2, . . . , P1,2,...,n−1 and Pn, Pn−1,n, . . . , P2,3,...,n;

these are the frozen variables. The
(

n−1
2

)

chamber minors associated with
bounded chambers are the cluster variables; they form the corresponding
cluster.

Theorem 1.3.3 ([3]). Every flag minor can be written as a subtraction-
free rational expression in the chamber minors of any given wiring diagram.

Thus, if these (n−1)(n+2)
2 chamber minors evaluate positively at a matrix

z ∈ SLn, then z is FTP.

Proof. Theorem 1.3.3 is implied by the following three facts:

(1) Each flag minor appears as a chamber minor in some wiring dia-
gram.

(2) Any two wiring diagrams can be transformed into each other by a
sequence of local braid moves of the form shown in Figure 1.7.

(3) Under each braid move, the corresponding collections of chamber
minors are obtained from each other by exchanging the minors Y
and Z (cf. Figure 1.7), and these minors satisfy the identity

(1.3.1) Y Z = AC +BD .
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Statement (1) is easily checked by direct inspection. Statement (2) is a
theorem of G. Ringel [44]; it is also equivalent to a well known property
of reduced words in the symmetric group (Tits’ Lemma): any two such
words are related by braid moves. Finally, formula (1.3.1) is one of the
aforementioned generalized Plücker relations; see Exercise 1.3.4 below. �

A Y D

B C B Z C

A D

Figure 1.7. A braid move.

Exercise 1.3.4. Prove (1.3.1). Hint: use Proposition 1.3.6.

Proposition 1.3.6 and Proposition 1.3.5 below are used to prove (1.3.1),
which in turn completes the proof of Theorem 1.3.3.

Proposition 1.3.5 (Muir’s Law of extensible minors [39]). Suppose that
(I) is a polynomial identity involving minors ∆A,B of a generic matrix,
which is homogeneous in that every term in (I) is a product of the same
number of determinants. Let R and C be finite sets of positive integers
such that R (resp., C) is disjoint from every row set A (resp., every column
set B) appearing in a determinant in (I). Then one can get a new identity
(I ′) from I by replacing each minor ∆A,B by ∆A∪R,B∪C .

Proposition 1.3.6. Suppose (I) is a polynomial identity involving flag mi-
nors PB of a generic matrix, such that every term in (I) is a product of
the same number of flag minors. Let C be a finite set of positive integers
such that C is disjoint from every column set B appearing in a flag minor
PB in (I). Then one can get a new identity (I

′′

) from (I) by replacing each
term PB by PB∪C .

Proof. Let b = |B| and c = |C|. Recall that the flag minor PB is equal
to ∆{1,2,...,b},B. Note that if the identity (I) is true, then the identity (I ′)
is true, where (I ′) is obtained from (I) by replacing each term ∆{1,2,...,b},B

by the term ∆{c+1,c+2,...,c+b},B. But now if we apply Muir’s Law with R =

{1, 2, . . . , c} and C, then we get a new identity (I
′′

) from (I ′) by replacing
each term ∆{c+1,c+2,...,c+b},B by ∆{1,2,...,c+b},B∪C = PB∪C . �

Remark 1.3.7. Just as in the case of Gr2,m (cf. Remark 1.2.4), something
much stronger than Theorem 1.3.3 is true: each flag minor can be written
as a Laurent polynomial with positive coefficients in the chamber minors of
a given wiring diagram.
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Before moving on to our final example (total positivity for square ma-
trices), let us pause to make a few observations based on our study of total
positivity in the Grassmannian Gr2,m, flag total positivity in G = SLn, and
the related rings R2,m and C[G]U . In both cases, we observed the following
common features:

• a family of distinguished generators of the ring (Plücker coordinates
and flag minors, respectively);

• a finite subset of frozen generators;

• a grouping of the generators into overlapping extended clusters all
of which have the same size; each extended cluster contains the
frozen generators;

• combinatorial data accompanying each extended cluster (triangu-
lations and wiring diagrams, respectively);

• exchange relations that can be written using those data; these re-
lations lead to subtraction-free birational maps relating extended
clusters to each other;

• a “mutation rule” for producing new combinatorial data from the
current one (flips of triangulations and braid moves, respectively).

In the case of the Grassmannian Gr2,m, we defined a graph whose vertices
are indexed by the set of triangulations of Pm, and whose edges correspond
to flips. This graph is regular, i.e., all its vertices have the same degree.
Indeed, in any triangulation, we can flip any of the participating diagonals.
Put another way, given an extended cluster and a cluster variable within it,
there is a unique way to construct a new extended cluster by replacing that
cluster variable by another one.

We could construct an analogous graph related to the flag TP elements
of SLn, with vertices corresponding to wiring diagrams, and edges corre-
sponding to braid moves. However, this graph is not regular for n ≥ 4. The
framework of cluster algebras will rectify this issue by providing a recipe for
constructing the missing cluster variables and clusters.

Another important property that we observed for the Grassmannian
Gr2,m concerned cluster monomials. Recall that a cluster monomial is a
product of cluster and frozen (=coefficient) variables (not necessarily dis-
tinct) all of which belong to one extended cluster. Cluster monomials form
a linear basis for the Plücker ring R2,m . Unfortunately the analogous state-

ment does not hold for the ring C[G]U . However, the cluster monomials
are still linearly independent, and hence can be included in an additive ba-
sis for the ring. Explicit constructions of such additive bases that possess
“nice” properties (e.g., various versions of positivity) remain at the center
of current research on cluster algebras.
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1.4. The general linear group

We now turn to total positivity criteria for the general linear group, or
equivalently, for square matrices of arbitrary size. It turns out that to test
whether a given n×n matrix is TP it suffices to check the positivity of only
n2 special minors.

For an n × n matrix z, let ∆I,J(z) denote the minor of z determined
by the row set I and the column set J ; here I and J are nonempty subsets
of [1, n] = {1, . . . , n} of the same cardinality. Thus z is TP if and only if
∆I,J(z) > 0 for all such I and J .

Following [20, 21] we construct a family of “optimal” tests for total
positivity, labeled by combinatorial objects called double wiring diagrams.
They generalize the wiring diagrams we saw in the previous section. A
double wiring diagram is basically a superposition of two ordinary wiring
diagrams, each colored in its own color (‘thin’ or ‘thick’); see Figure 1.8.

3

2

1

1

2

3

1

2

3

3

2

1

Figure 1.8. A double wiring diagram.

The lines in a double wiring diagram are numbered separately within
each color. (Note the difference in the numbering schemes for the two col-
ors.) We then assign to every chamber of a diagram a pair of subsets of [1, n]:
each subset indicates which lines of the corresponding color pass below that
chamber; see Figure 1.9. Thus every chamber is naturally associated with
a minor ∆I,J (again called a chamber minor) that occupies the rows and
columns of an n× n matrix specified by the sets I and J written into that
chamber. The total number of chamber minors is always n2.

3

2

1

1

2

3

1

2

3

3

2

1

3,1 3,2 1,2 1,3

23,12 13,12 13,23 12,23

123,123

Figure 1.9. This double wiring diagram has 32 = 9 chamber minors:
∆3,1 , ∆3,2 , ∆1,2 , ∆1,3 , ∆23,12 , ∆13,12 , ∆13,23 , ∆12,23 , and ∆123,123.
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Theorem 1.4.1 ([20]). Every minor of a square matrix can be written as a
subtraction-free rational expression in the chamber minors of a given double
wiring diagram. Thus, if these n2 chamber minors evaluate positively at a
given n× n matrix z, then z is totally positive.

By now the reader can guess the strategy for proving this theorem.

Proof. Theorem 1.4.1 is a consequence of the following facts:

(1) Every minor is a chamber minor for some double wiring diagram.

(2) Any two double wiring diagrams are related to each other via a se-
quence of local moves of three different kinds, shown in Figure 1.10.

(3) Under each local move, the corresponding collections of chamber
minors transform by exchanging the minors Y and Z, and these
minors satisfy the identity

(1.4.1) Y Z = AC +BD .

A Y D

B C B Z C

A D

A Y D

B C B Z C

A D

A Y C

B

D

A Z C

B

D

Figure 1.10. Local “moves.”

Statements (1) and (2) can be easily derived from their counterparts for
ordinary wiring diagrams, which appeared in the proof of Theorem 1.3.3.
Each instance of the relation (1.4.1) is a well known determinantal identity;
the reader may enjoy finding its proof on her/his own. The identities corre-
sponding to the top two cases in Figure 1.10 are nothing but the three-term
relation (1.3.1) which we discussed earlier; the third one is sometimes called
the “Lewis Carroll identity,” due to the role it plays in C. L. Dodgson’s



1.4. The general linear group 15

condensation method [14, pp. 170–180]. All of these identities were proved
by P. Desnanot as early as in 1819, see [39, pp. 140–142]. �

Exercise 1.4.2. A minor ∆I,J is called solid if both I and J consist of
several consecutive indices. It is easy to see that an n × n matrix z has n2

solid minors ∆I,J such that I ∪ J contains 1 (see Figure 1.11). Show that z
is TP if and only if all these n2 minors are positive.

Figure 1.11. Solid minors ∆I,J with 1 ∈ I ∪ J .

Remark 1.4.3. Similarly to Remarks 1.2.4 and 1.3.7, Theorem 1.4.1 can
be strengthened as follows: every minor of a square matrix can be written
as a Laurent polynomial with positive coefficients in the chamber minors of
a given double wiring diagram.

The algebraic/combinatorial construction described above possesses the
same key features that we identified in the two previous settings. The
collections of chamber minors associated to double wiring diagrams are
again examples of extended clusters in the future cluster algebra setup.
As noted above, all these extended clusters have the same cardinality n2.
Each of them contains the 2n− 1 minors of the form ∆[1,p],[n−p+1,n] and/or
∆[n−p+1,n],[1,p] (for p ∈ [1, n]), which correspond to unbounded chambers.
These 2n − 1 minors are the frozen variables. Removing them from an ex-
tended cluster, we obtain a cluster consisting of (n − 1)2 cluster variables,
the chamber minors associated with the bounded chambers. A “mutation”
of one of the three kinds depicted in Figure 1.10 replaces a single cluster
variable in a cluster by a new one; the product of these two cluster vari-
ables (minors) appears on the left-hand side of the corresponding exchange
relation (1.4.1).

For n = 3, there are 34 clusters corresponding to double wiring dia-
grams. They are shown in Figure 1.12 as vertices of a graph whose edges
correspond to local moves. Looking closely at this graph, we see that it is
not regular: of the 34 vertices, 18 have degree 4, and 16 have degree 3. Thus,
for each of the 16 clusters corresponding to vertices of degree 3, there is one
minor that cannot be exchanged from this cluster to form another cluster.
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This “irregularity” can be repaired using two additional polynomials in the
matrix entries, see Exercise 1.4.4.

Exercise 1.4.4. For a 3× 3 matrix z = (zij), let

K(z) = z33∆12,12(z) − det(z),(1.4.2)

L(z) = z11∆23,23(z) − det(z).(1.4.3)

Use K and L to add 16 more clusters to the graph in Figure 1.12. The
resulting graph will be regular of degree 4. As an example, the cluster
{e, f, g,A} at the bottom of Figure 1.12 will be joined to the new cluster
{e, f, g,K} by an edge corresponding to a new exchange relation

(1.4.4) ∆23,23K = ∆12,23∆23,12z33 + det(z)z23z32 .

This construction will yield 16 additional TP tests for 3× 3 matrices.

The theory of cluster algebras, to be developed in subsequent chap-
ters, will unify the three examples we have treated here, and will provide
a systematic way to produce the “missing” clusters and exchange relations,
thereby generating a large class of new total positivity tests.



1.4. The general linear group 17

abcG

acFG

ceFG

cdeG

bcdG

bdfG

bfEG

abEG

defG

bcdA

cdeA

defA

bdfA

efgA

egAB

ceAB

ceBF bfCE

bfAC

fgAC

aEFG

egBF acBF abCE fgCE

aDEF

aBDF aCDE

gDEF

aB CD
gBDF gCDE

gBCD

gABC

a = z11

b = z12

c = z21

d = z22

e = z23

f = z32

g = z33

A = ∆23,23

B = ∆23,13

C = ∆13,23

D = ∆13,13

E = ∆13,12

F = ∆12,13

G = ∆12,12

Figure 1.12. Total positivity tests for a 3×3 matrix z=(zij). Each test
checks 9 minors. The frozen minors z31, z13,∆23,12(z),∆12,23(z),det(z)
are common to all tests. The remaining 4 minors form a cluster shown
near the corresponding vertex. To illustrate, the test derived from Fig-
ure 1.9 involves the cluster bfCE = {z32, z12,∆13,12,∆13,23}. The edges
of the graph correspond to local moves.





Chapter 2

Mutations of quivers

and matrices

In this chapter we discuss mutations of quivers and of skew-symmetrizable
matrices. These constructions lie at the heart of the combinatorial frame-
work underlying the general theory of cluster algebras.

Quivers (or more generally, skew-symmetrizable matrices) are the combi-
natorial data which accompany (extended) clusters and determine exchange
relations between them. The notion of mutation generalizes many exam-
ples of “local” transformations of combinatorial objects, including those dis-
cussed in Chapter 1: flips in triangulations, braid moves in wiring diagrams,
etc.

In some guise, quiver mutation appeared in the work of theoretical physi-
cists (cf. [9, 47] and the discussion in [15, Section 6]) several years before
its discovery by mathematicians [23]. However, the systematic study of the
combinatorics of mutations has only begun with the advent of cluster alge-
bras.

2.1. Quiver mutation

Definition 2.1.1. A quiver is a finite oriented graph, consisting of vertices
and directed edges (called arrows). We allow multiple edges, but we disallow
loops (i.e., an arrow may not connect a vertex to itself) and oriented 2-
cycles (i.e., no arrows of opposite orientation may connect the same pair of
vertices). A quiver does not have to be connected.

In what follows, we will need a slightly richer notion, with some vertices
in a quiver designated as frozen. The remaining vertices are called mutable.
We will always assume that there are no arrows between pairs of frozen
vertices. (Such arrows would make no difference in the future construction
of a cluster algebra associated with a quiver.)

19
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The terminology in Definition 2.1.1 anticipates the role that quiver muta-
tions play in the forthcoming definition of a cluster algebra; wherein the
vertices of a quiver are labeled by the elements of an extended cluster, so
that the frozen vertices correspond to frozen variables, and the mutable
vertices to the cluster variables. In this chapter, all of this remains in
the background.

Definition 2.1.2. Let k be a mutable vertex in a quiver Q. The quiver
mutation µk transforms Q into a new quiver Q′ = µk(Q) via a sequence of
three steps:

(1) For each oriented two-arrow path i → k → j, add a new arrow
i→ j (unless both i and j are frozen, in which case do nothing).

(2) Reverse the direction of all arrows incident to the vertex k.

(3) Repeatedly remove oriented 2-cycles until unable to do so.

An example is given in Figure 2.1.

a b

q k r

µk7−→
a b

q k r

Figure 2.1. A quiver mutation µk. Vertices q and r are frozen. Step 1
adds arrows a → b, a → q, and two arrows r → b. Step 2 reverses five
arrows connecting k to a, b, q, r. Step 3 removes the arrows a → b and
b → a.

Remark 2.1.3. If a vertex k of a quiver is a sink or a source, then mutation
at k reverses the orientations of all arrows incident to k, and does nothing
else. This operation was first considered in the context of quiver represen-
tation theory (the reflection functors of Bernstein-Gelfand-Ponomarev [5]).

We next formulate some simple but important properties of quiver mu-
tation.

Exercise 2.1.4. Verify the following properties of quiver mutation:

(1) Mutation is an involution: µk(µk(Q)) = Q.

(2) Mutation commutes with the simultaneous reversal of orientations
of all arrows of a quiver.

(3) Let k and ℓ be two mutable vertices which have no arrows between
them (in either direction). Then mutations at k and ℓ commute
with each other: µℓ(µk(Q)) = µk(µℓ(Q)).

In particular, mutations in different connected components of a quiver
do not interact with each other.
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2.2. Triangulations of polygons

Triangulations of polygons were discussed in Section 1.2 in the context of
studying total positivity in the Grassmannian of 2-planes in m-space.

We now associate a quiver to each triangulation of a convex m-gon Pm

and explain how flips of such triangulations correspond to quiver mutations.

Definition 2.2.1. Let T be a triangulation of the polygon Pm by pairwise
noncrossing diagonals. The quiver Q(T ) associated to T is defined as fol-
lows. The frozen vertices of Q(T ) are labeled by the sides of Pm, and the
mutable vertices of Q(T ) are labeled by the diagonals of T . If two diago-
nals, or a diagonal and a boundary segment, belong to the same triangle, we
connect the corresponding vertices in Q(T ) by an arrow whose orientation
is determined by the clockwise orientation of the boundary of the triangle.
See Figure 2.2.

Figure 2.2. The quiver Q(T ) associated to a triangulation T of an octagon.

Exercise 2.2.2. Let T be a triangulation of Pm as above. Let T ′ be the
triangulation obtained from T by flipping a diagonal γ. Verify that the
quiver Q(T ′) is obtained from Q(T ) by mutating at the vertex labeled by γ.

The construction of Definition 2.2.1 can be generalized to triangulations
of more general oriented surfaces with boundary and punctures; this will
be discussed in Chapter 10. Another generalization [16] was developed in
the study of cluster structures arising in higher Teichmüller theory ; a very
special case is described in the exercise below.
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Exercise 2.2.3. To each triangulation T of a convex polygon by noncrossing
diagonals, let us associate a quiver Q3(T ) as follows. Place two mutable
vertices of Q3(T ) on each diagonal of T , two frozen vertices on each side
of the polygon, and one mutable vertex in the interior of each triangle
of T . For a triangle in T , let A1, A2, B1, B2, C1, C2 be the vertices of Q3(T )
lying on the boundary of the triangle, listed clockwise so that A1 and A2

(resp., B1 and B2, C1 and C2) lie on the same side of the triangle. Let
K denote the vertex of Q3(T ) lying inside the triangle. Draw the arrows
A1 → K → B2 → C1 → K → A2 → B1 → K → C2 → A1. Doing so for
each triangle of T , and removing the arrows between frozen vertices, yields
the quiver Q3(T ). Show that if T and T ′ are connected by a flip, then Q3(T )
and Q3(T

′) are connected by a sequence of mutations. See Figure 2.3.

Figure 2.3. The quiver Q3(T ) associated to a triangulation T of a quadrilateral.

2.3. Wiring diagrams

Wiring diagrams were introduced in Section 1.3 in the context of studying
total positivity in basic affine spaces. We also explained how to label each
chamber of a wiring diagram by a subset of [1, n], cf. Figure 1.6.

We now associate a quiver to each wiring diagram and demonstrate that
braid moves in wiring diagrams translate into quiver mutations.

The left end (resp., right end) of a chamber is a crossing point of two
wires located at the very left (resp., right) of the chamber. Each bounded
chamber has two ends; an unbounded chamber has one.

Definition 2.3.1. The quiver Q(D) associated to a wiring diagram D is de-
fined as follows. The vertices of Q(D) are labeled by the chambers ofD. The
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bounded chambers correspond to mutable vertices; the unbounded cham-
bers correspond to frozen vertices. Let c and c′ be two chambers, at least
one of which is bounded. Then there is an arrow c→ c′ in Q(D) if and only
if one of the following conditions is met:

(i) the right end of c coincides with the left end of c′;

(ii) the left end of c lies directly above c′, and the right end of c′ lies directly
below c;

(iii) the left end of c lies directly below c′, and the right end of c′ lies directly
above c.

An example is shown in Figure 2.4.

3

2

1

1

2

3

1 2 3

12 23

Figure 2.4. A quiver associated with a wiring diagram. All vertices
but 2 are frozen (the latter corresponds to the only bounded chamber). Con-
sequently the quiver does not include the arrow 12 → 23 because 12 and 23

are both frozen/ unbounded.

The somewhat technical construction of Definition 2.3.1 is justified by
the fact that braid moves on wiring diagrams translate into mutations of
associated quivers:

Proposition 2.3.2. Let D and D′ be wiring diagrams related by a braid
move at chamber Y (cf. Figure 1.7). Then Q(D′) = µY (Q(D)).

We leave the proof of Proposition 2.3.2 as an exercise for the reader.

Exercise 2.3.3. Draw the wiring diagrams corresponding to the quivers in
Figure 2.5. Verify that these wiring diagrams are related by a braid move,
and that the quivers are related by a quiver mutation.

Remark 2.3.4. We note that the wiring diagrams introduced in Section 1.3
can be identified with reduced decompositions of the longest permutation
w0 of the symmetric group. One can extend the notion of wiring diagram
to the setting of decompositions (not necessarily reduced) of an arbitrary
element of the symmetric group. The quiver Q(D) and the correspondence
between braid moves and mutations also make sense in this setting.
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1 2 3 4

12 23 34

123 234

1 13 3 4

12 23 34

123 234

Figure 2.5. Quivers for two wiring diagrams related by a braid move.

2.4. Double wiring diagrams

We next extend the constructions of Section 2.3 to the double wiring dia-
grams discussed in Section 1.4.

Recall that each chamber of a double wiring diagram D is labeled by
a pair of subsets of [1, n], cf. Figure 1.9. Similarly to the case of ordinary
wiring diagrams, each chamber of D has either one or two “ends,” and each
end is either “thick” or “thin” (formed by two thick lines or two thin lines).

Definition 2.4.1. The quiver Q(D) associated with a double wiring di-
agram D is defined as follows. The vertices of Q(D) are labeled by the
chambers of D. The bounded chambers correspond to mutable vertices; the
unbounded chambers correspond to frozen vertices. Let c and c′ be two
chambers, at least one of which is bounded. Then there is an arrow c→ c′

in Q(D) if and only if one of the following conditions is met (cf. Figure 2.6):

(i) the right (resp., left) end of c is thick (resp., thin), and coincides with
the left (resp., right) end of c′;

(ii) the left end of c′ is thin, the right end of c′ is thick, and the entire
chamber c′ lies directly above or directly below c;

(iii) the left end of c is thick, the right end of c is thin, and the entire
chamber c lies directly above or directly below c′;

(iv) the left (resp., right) end of c′ is above c and the right (resp., left) end
of c is below c′ and both of these ends are thin (resp., thick);

(v) the left (resp., right) end of c is above c′ and the right (resp., left) end
of c′ is below c and both of these ends are thick (resp., thin).

Remark 2.4.2. One can check that the quiver Q(D) defined as above
depends only on the isotopy type of the double wiring diagram D.

As before, local moves translate into quiver mutations:

Proposition 2.4.3. Suppose that double wiring diagrams D and D′ are
related by a local move (cf. Figure 1.10) at chamber Y . Then Q(D′) =
µY (Q(D)).
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3
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1

1

2

3

1

2

3

3

2

1

3,1 3,2 1,2 1,3

23,12 13,12 13,23 12,23

123,123

3,1 3,2 1,2 1,3

23,12 13,12 13,23 12,23

123,123

Figure 2.6. A double wiring diagram D and the corresponding quiver Q(D).

The verification of this statement, which generalizes Proposition 2.3.2,
is left as an exercise for the reader.

Remark 2.4.4. While the constructions of the quiver associated to a (dou-
ble) wiring diagram given in Definition 2.3.1 and Definition 2.4.1 appear a
bit complicated, we will explain in Chapter 8 how these constructions can
be viewed as a special case of the quiver associated to a planar bicolored
graph in a disk. Section 2.5 below will give a first introduction to quivers
associated to planar bipartite graphs.

2.5. Urban renewal

Urban renewal [33] is an operation on bipartite graphs which arises in several
different contexts including statistical mechanics (spider moves in dimer
models [30]), gauge theory (Seiberg duality action on brane tilings [27]), and
total positivity (square moves in dual graphs of Postnikov diagrams [42]).

We will give urban renewal a more thorough treatment in Chapter 7. In
Chapter 8, it will play an important role in the study of cluster structures
on Grassmannians.

Definition 2.5.1. Let G be a connected planar bipartite graph, properly
embedded in a disk, and considered up to isotopy. More precisely, we require
the following:

• each vertex in G is colored either white or black and lies either in the
interior of the disk or on its boundary;

• each edge in G connects two vertices of different colors, and is represented
by a simple curve whose interior is disjoint from the other edges and from
the boundary;
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• each boundary vertex has degree 1, and each internal vertex has degree
at least 2.

• the closure of each face (i.e, a connected component of the complement
of G) is simply connected.

To such a bipartite planar graph G, we associate a quiver Q(G) as follows.
The vertices of Q(G) are labeled by the faces of G. A vertex of Q(G) is
frozen if the corresponding face is incident to the boundary of the disk,
and is mutable otherwise. For each edge e in G, we introduce an arrow
connecting the (distinct) faces separated by e; this arrow is oriented so that
it “sees” the white endpoint of e to the left and the black endpoint to the
right as it crosses over e, see Figure 2.7. We then remove oriented 2-cycles
from the resulting quiver, one by one, to get Q(G).

Figure 2.7. Constructing a quiver associated to a bipartite graph on a surface.

We assume that the quiver Q(G) is connected. One simple observation is

that if G has a vertex v of degree 2, and we construct G̃ from G by deleting
v and contracting its two incident edges, then the associated quiver does
not change: Q(G) = Q(G̃).

Definition 2.5.2. Urban renewal is a local transformation of a bipartite
graph G as above that takes a quadrilateral face, each of whose vertices has
degree at least 3, and adds or removes four “legs” as shown in Figure 2.8.

←→

Figure 2.8. Urban renewal.

Exercise 2.5.3. Verify that if bipartite graphs as above are related via
urban renewal, then the corresponding quivers are related by a mutation.

Definition 2.5.2 can be generalized to bipartite graphs properly embed-
ded into an oriented surface.
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2.6. Mutation equivalence

Definition 2.6.1. Two quivers Q and Q′ are called mutation equivalent if
Q can be transformed into a quiver isomorphic to Q′ by a sequence of muta-
tions. (Equivalently, Q′ can be transformed into a quiver isomorphic to Q.)
The mutation equivalence class [Q] of a quiver Q is the set of all quivers (up
to isomorphism) which are mutation equivalent to Q.

Definition 2.6.2. Two quivers Q and Q′ are said to have the same type if
their mutable parts are mutation equivalent. Here the mutable part of the
quiver refers to the mutable vertices together with all arrows which connect
two mutable vertices. When the mutation equivalence class of the mutable
part has a name (e.g. type ADE) then we will use that name to describe
the type.

Example 2.6.3. Consider the quiver Q at the left of Figure 2.9; this is an
orientation of the type A3 Dynkin diagram. The mutation equivalence class
[Q] of Q consists of quivers isomorphic to one of those shown in Figure 2.9.
In particular, we consider an oriented 3-cycle to be a quiver of type A3.

Figure 2.9. The isomorphism classes of the quivers of type A3. All
three vertices are mutable.

Example 2.6.4. The Markov quiver is a quiver Q of the form shown in
Figure 2.10. MutatingQ at any of its 3 vertices produces a quiver isomorphic
to Q, so [Q] consists of a single element (up to isomorphism).

Figure 2.10. The Markov quiver. All three vertices are mutable.

Exercise 2.6.5. Show that all orientations of a tree (with no frozen vertices)
are mutation equivalent to each other via mutations at sinks and sources.

Exercise 2.6.6. Which orientations of an n-cycle are mutation equivalent?

An a × b grid quiver is an orientation of an a × b grid in which each
4-cycle is oriented either clockwise or counterclockwise; see Figure 2.11. All
vertices are mutable.
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Exercise 2.6.7. Show that a grid quiver is mutation equivalent to the
corresponding triangulated grid quiver (see Figure 2.11).

Figure 2.11. The 3×4 grid quiver, and the corresponding triangulated
grid quiver.

Exercise 2.6.8. Verify that in each row of Figure 2.12, the quiver on the
left is mutation equivalent to any orientation of the Dynkin diagram on the
right.

Figure 2.12. Quivers mutation equivalent to orientations of Dynkin
diagrams of types D4, D5, E6, E7, E8.

A triangular grid quiver with k vertices on each side is a quiver with
(

k+1
2

)

vertices and 3
(

k
2

)

arrows that has the form shown in Figure 2.13. All
vertices are mutable.
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Figure 2.13. A triangular grid quiver.

Exercise 2.6.9. Show that the triangular grid quiver with three vertices
on each side (see Figure 2.13) is mutation equivalent to an orientation of a
tree. (However, this is no longer true for a triangular grid quiver with four
vertices on each side.)

Exercise 2.6.10. Show that the k× (2k+1) grid quiver is mutation equiv-
alent to the triangular grid quiver with 2k vertices on each side.

Definition 2.6.11. A quiver Q is said to have finite mutation type if the
mutation equivalence class [Q] of Q is finite.

Quivers with no frozen vertices of finite mutation type can be com-
pletely classified in explicit combinatorial terms. This classification will be
described in Chapter 10.

We conclude this section by stating, without proof, an innocent-looking
but rather nontrivial result about quiver mutation.

A quiver is called acyclic if it has no oriented cycles.

Theorem 2.6.12 (see [7]). Let Q and Q′ be acyclic quivers mutation equiv-
alent to each other. Then Q can be transformed into a quiver isomorphic
to Q′ via a sequence of mutations at sources and sinks. Consequently (cf.
Remark 2.1.3), all acyclic quivers in a given mutation equivalence class have
the same underlying undirected graph.

Corollary 2.6.13. An acyclic quiver which is mutation equivalent to an
orientation of a tree is itself an orientation of the same tree. In particular,
orientations of non-isomorphic trees are not mutation equivalent.

The proof of Theorem 2.6.12 (and hence Corollary 2.6.13) uses cluster
categories; it would be very interesting to find a purely combinatorial proof
of either of these results.

In general, it can be very hard to determine whether two quivers are
mutation equivalent to each other.

Problem 2.6.14. Design a (reasonably efficient) algorithm for deciding
whether two quivers are mutation equivalent or not.
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2.7. Matrix mutation

In this section, we extend the notion of mutation from quivers to a certain
class of matrices. We begin by explaining how matrices can be viewed as
generalizations of quivers.

Definition 2.7.1. Let Q be a quiver (as in Definition 2.1.1) withm vertices,
n of them mutable. Let us label the vertices of Q by the indices 1, . . . ,m
so that the mutable vertices are labeled 1, . . . , n. The extended exchange
matrix of Q is the m× n matrix B̃(Q) = (bij) defined by

bij =











ℓ if there are ℓ arrows from vertex i to vertex j in Q;

−ℓ if there are ℓ arrows from vertex j to vertex i in Q;

0 otherwise.

The exchange matrix B(Q) is the n×n skew-symmetric submatrix of B̃(Q)
occupying the first n rows:

B(Q) = (bij)i,j∈[1,n] .

To illustrate, consider the Markov quiver Q shown in Figure 2.10. Then

B̃(Q) = B(Q) = ±





0 2 −2
−2 0 2
2 −2 0



 ,

where the sign depends on the labeling of the vertices.

Remark 2.7.2. While the definition of B̃(Q) depends on the choice of
labeling of the vertices of Q by the integers 1, . . . ,m, we often consider
extended exchange matrices up to a simultaneous relabeling of rows and
columns 1, 2, . . . , n, and a relabeling of the rows n+ 1, n+ 2, . . . ,m.

The proof of the following lemma is straightforward.

Lemma 2.7.3. Let k be a mutable vertex of a quiver Q. The extended
exchange matrix B̃(µk(Q)) = (b′ij) of the mutated quiver µk(Q) is given by

(2.7.1) b′ij =



























−bij if i = k or j = k;

bij + bikbkj if bik > 0 and bkj > 0;

bij − bikbkj if bik < 0 and bkj < 0;

bij otherwise.

We next move from skew-symmetric matrices to a more general class of
matrices.
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Definition 2.7.4. An n× n matrix B = (bij) with integer entries is called
skew-symmetrizable if dibij = −djbji for some positive integers d1, . . . , dn.
In other words, a matrix is skew-symmetrizable if it differs from a skew-
symmetric matrix by a rescaling of its rows by positive scalars.

An m × n integer matrix, with m ≥ n, whose top n × n submatrix is
skew-symmetrizable is called an extended skew-symmetrizable matrix.

Exercise 2.7.5. Show that the class of matrices B described in Defini-
tion 2.7.4 would not change if instead of rescaling the rows of B, we allow
to rescale its columns; alternatively, we could allow conjugation of B by a
diagonal matrix with positive real diagonal entries.

We are now ready to define the notion of matrix mutation.

Definition 2.7.6. Let B̃ = (bij) be an m×n extended skew-symmetrizable
integer matrix. For k ∈ [1, n], the matrix mutation µk in direction k trans-

forms B̃ into the m × n matrix µk(B̃) = (b′ij) whose entries are given

by (2.7.1).

By Lemma 2.7.3, matrix mutation generalizes quiver mutation.

Exercise 2.7.7. Under the conventions of Definitions 2.7.4 and 2.7.6, verify
that

(1) the mutated matrix µk(B̃) is again extended skew-symmetrizable,
with the same choice of d1, . . . , dn;

(2) µk(µk(B̃)) = B̃;

(3) µk(−B̃) = −µk(B̃);

(4) µk(B
T ) = (µk(B))T , where BT denotes the transpose of B;

(5) if bij = bji = 0, then µi(µj(B̃)) = µj(µi(B̃)).

For b ∈ R, let sgn(b) be 1, 0, or −1, depending on whether b is positive,
zero, or negative.

Definition 2.7.8. Let B be a skew-symmetrizable matrix. The skew-
symmetric matrix S(B) = (sij) defined by

(2.7.2) sij = sgn(bij)
√

|bijbji|

is called the skew-symmetrization of B. Note that S(B) has real (not nec-
essarily integer) entries. Exercise 2.7.9 shows that skew-symmetrization
commutes with mutation (extended verbatim to matrices with real entries).

Exercise 2.7.9. For any skew-symmetrizable matrix B and any k, we have

(2.7.3) S(µk(B)) = µk(S(B)).
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Definition 2.7.10. The diagram of a skew-symmetrizable n × n matrix
B = (bij) is the weighted directed graph Γ(B) with the vertices 1, . . . , n
such that there is a directed edge from i to j if and only if bij > 0, and this
edge is assigned the weight |bijbji| . In particular, if bij ∈ {−1, 0, 1} for all i
and j, then Γ(B) is a quiver whose exchange matrix is B.

To illustrate Definition 2.7.10, consider B =
[ 0 2 −2
−1 0 2
1 −2 0

]

. Then Γ(B) is

an oriented cycle with edge weights 2, 4, and 2.

More generally, we use the term diagram in the rest of this chapter to
mean a finite directed graph Γ (no loops, multiple edges, or 2-cycles allowed)
whose edges are assigned positive real weights.

We note that the diagram Γ(B) does not determine B: for instance, the
matrix (−BT ) has the same diagram as B. Here is another example:

Γ

([

0 1
−4 0

])

= Γ

([

0 2
−2 0

])

.

Note that the diagram Γ(B) and the skew-symmetric matrix S(B) en-
code the same information about B: having an edge i→ j in Γ(B) supplied
with weight c is the same as saying that sij =

√
c and sji = −

√
c.

Proposition 2.7.11. For a skew-symmetrizable matrix B, the diagram Γ′=
Γ(µk(B)) is uniquely determined by the diagram Γ = Γ(B) and an index k.

Proof. By Exercise 2.7.9, S(µk(B)) = µk(S(B)). It remains to translate
this property into the language of diagrams. �

In the situation of Proposition 2.7.11, we write Γ′ = µk(Γ), and call the
transformation µk a diagram mutation in direction k. A detailed description
of diagram mutation can be found in [24, Proposition 8.1]. Two diagrams
Γ and Γ′ related by a sequence of mutations are called mutation equivalent,
and we write Γ ∼ Γ′.

Remark 2.7.12. While the entries of B are integers, the entries of S(B)
may be irrational, as the weights of Γ(B) may not be perfect squares. On
the other hand, one can deduce from the skew-symmetrizability of B that
the product of weights over the edges of any cycle in the underlying graph
of Γ(B) is a perfect square.

Lemma 2.7.13. If the diagram Γ(B) of an n×n skew-symmetrizable matrix
B is connected, then the skew-symmetrizing vector (d1, . . . , dn) is unique up
to rescaling.

Proof. Let (d1, . . . , dn) and (d′1, . . . , d
′
n) be two skew-symmetrizing vectors.

We have dibij = −djbji and d′ibij = −d′jbji for all i and j. So if bij is nonzero,
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then
bij
bji

=
−dj
di

=
−d′j
d′i

and hence
dj
d′j

= di
d′i
. Since Γ(B) is connected, there

exists an ordering ℓ1, ℓ2, . . . , ℓn of its vertices such that every vertex ℓj with
2 ≤ j ≤ n is connected by an edge in Γ(B) to a vertex ℓi with i < j; in

other words, bℓiℓj 6= 0. It follows that
dℓ1
d′
ℓ1

=
dℓ2
d′
ℓ2

= · · · = dℓn
d′
ℓn

, as desired. �

2.8. Invariants of matrix mutations

The following notion is a straightforward extension of Definition 2.6.1.

Definition 2.8.1. Two skew-symmetrizable matrices B and B′ are muta-
tion equivalent if one can get from B to B′ by a sequence of mutations,
possibly followed by simultaneous renumbering of rows and columns. The
mutation equivalence class [B] of B is the set of all matrices mutation equiv-
alent to B. These notions generalize to extended skew-symmetrizable ma-
trices in an obvious way.

It is natural to extend Problem 2.6.14 to the setting of matrix mutations:

Problem 2.8.2. Find an effective way to determine whether two given n×n
skew-symmetrizable matrices are mutation equivalent.

Problem 2.8.2 remains wide open, even in the case of skew-symmetric
matrices (or equivalently quivers). For n = 2, the question is trivial, since
mutation simply negates the entries of the matrix. For n = 3, there is an
explicit algorithm for determining whether two skew-symmetric matrices
are mutation equivalent, see [2].

Problem 2.8.2 is closely related to the problem of identifying explicit
nontrivial invariants of matrix (or quiver) mutation. Unfortunately, very
few invariants of this kind are known at present.

Theorem 2.8.3 ([4, Lemma 3.2]). Mutations preserve the rank of a matrix.

Proof. Let B̃ be an m × n extended skew-symmetrizable integer matrix.
Fix an index k ∈ [1, n] and a sign ε ∈ {1,−1}. The rule (2.7.1) describing
the matrix mutation in direction k can be rewritten as follows:
(2.8.1)

b′ij =

{

−bij if i = k or j = k;

bij +max(0,−εbik) bkj + bik max(0, εbkj) otherwise.

(To verify this, examine the four possible sign patterns for bik and bkj.)
Next observe that (2.8.1) can be restated as

µk(B̃) = Jm,k B̃Jn,k + Jm,k B̃Fk + Ek B̃Jn,k(2.8.2)

= (Jm,k + Ek) B̃ (Jn,k + Fk)

where
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• Jm,k (respectively, Jn,k) denotes the diagonal matrix of size m ×m (re-
spectively, n × n) whose diagonal entries are all 1, except for the (k, k)
entry, which is −1;
• Ek = (eij) is the m×m matrix with eik = max(0,−εbik), and all other
entries equal to 0;

• Fk = (fij) is the n × n matrix with fkj = max(0, εbkj), and all other
entries equal to 0.

(Here we used that Ek B̃Fk = 0 because bii = 0 for all i.) Since

(2.8.3) det(Jm,k + Ek) = det(Jn,k + Fk) = −1,

it follows that rank(µk(B̃)) = rank(B̃). �

Theorem 2.8.4. The determinant of a skew-symmetrizable matrix is in-
variant under mutation.

Proof. This follows from (2.8.2) and (2.8.3) (taking m = n and B = B̃). �

Another invariant of matrix mutations is the greatest common divisor of
the matrix elements of B. A finer invariant is the greatest common divisor
of the matrix elements of the ith row (or column) of B, for a fixed index i
[48].

Remark 2.8.5. For skew-symmetric matrices (equivalently, quivers with
no frozen vertices), formulas (2.8.2) and (2.8.3) allow us to interpret muta-
tion as a transformation of a skew-symmetric bilinear form over the integers
under a particular unimodular change of basis. One can then use the general
theory of invariants of such transformations (the skew Smith normal form,
see [40, Section IV.3])) to identify some invariants of quiver mutation. Un-
fortunately this approach does not yield much beyond the facts established
above.



Chapter 3

Clusters and seeds

This chapter introduces cluster algebras of geometric type. A more general
construction of cluster algebras over an arbitrary semifield will be discussed
in Chapter 12.

3.1. Basic definitions

Let us recall the three motivating examples discussed in Chapter 1: Grass-
mannians of 2-planes, affine base spaces, and general linear groups. In each
of these examples, we manipulated two kinds of data:

• combinatorial data (triangulations, wiring diagrams) and

• algebraic data (Plücker coordinates, chamber minors).

Accordingly, transformations applied to these data occurred on two levels:

• on the “primary” level, we saw the combinatorial data evolve via local
moves (flips in triangulations, braid moves in wiring diagrams); as shown
in Chapter 2, a unifying description of this dynamics can be given using
the language of quiver mutations;

• on the “secondary” level, we saw the algebraic data evolve in a way that
was “driven” by the combinatorial dynamics, with subtraction-free bira-
tional transformations, called exchange relations, encoded by the current
combinatorial data.

An attempt to write the exchange relations in terms of the quiver at hand
naturally leads to the axiomatic setup of cluster algebras of geometric type,
which we now describe.

Let m and n be two positive integers such that m ≥ n. As an ambient
field for a cluster algebra, we take a field F isomorphic to the field of rational
functions over C (alternatively, over Q) in m independent variables.

35
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Definition 3.1.1. A labeled seed of geometric type in F is a pair (x̃,B̃) where

• x̃ = (x1, . . . , xm) is an m-tuple of elements of F forming a free gener-
ating set ; that is, x1, . . . , xm are algebraically independent, and F =
C(x1, . . . , xm);

• B̃ = (bij) is an m× n extended skew-symmetrizable integer matrix, see
Definition 2.7.4.

We shall use the following terminology:

• x̃ is the (labeled) extended cluster of the labeled seed (x̃, B̃);

• the n-tuple x = (x1, . . . , xn) is the (labeled) cluster of this seed;

• the elements x1, . . . , xn are its cluster variables;

• the remaining elements xn+1, . . . , xm of x̃ are the frozen variables (or
coefficient variables);

• the matrix B̃ is the extended exchange matrix of the seed;

• its top n× n submatrix B is the exchange matrix.

Definition 3.1.2. Let (x̃, B̃) be a labeled seed as above. Take an index

k ∈ {1, . . . , n}. The seed mutation µk in direction k transforms (x̃, B̃) into

the new labeled seed µk(x̃, B̃) = (x̃′, B̃′) defined as follows:

• B̃′ = µk(B̃) (cf. Definition 2.7.6).

• the extended cluster x̃′ = (x′1, . . . , x
′
m) is given by x′j = xj for j 6= k,

whereas x′k ∈ F is determined by the exchange relation

(3.1.1) xk x
′
k =

∏

bik>0

xbiki +
∏

bik<0

x−bik
i .

We note that if the indexing set for one of the two monomials above
is the empty set, then by convention we set the corresponding product
equal to 1.

Exercise 3.1.3. Consider each of the three settings that we discussed in
Sections 1.2, 1.3, and 1.4. Construct a seed (x̃, B̃(Q)) where Q is a quiver
associated with a particular triangulation, wiring diagram, or double wiring
diagram (see Definitions 2.2.1, 2.3.1, and 2.4.1, respectively), and x̃ is the ex-
tended cluster consisting of the corresponding Plücker coordinates or cham-
ber minors. Verify that applying the recipe (3.1.1) to these data recovers
the appropriate exchange relations (1.2.1), (1.3.1), and (1.4.1), respectively.

To keep track of the various labeled seeds one can obtain by mutation
from a given one, we introduce the following combinatorial setup.
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T1
1

T2
2 2 21 1 1

T3

2 2

2

1 1

1

3 3

3

Figure 3.1. The n-regular trees Tn for n = 1, 2, 3.

Definition 3.1.4. Let Tn denote the n-regular tree whose edges are labeled
by the numbers 1, . . . , n, so that the n edges incident to each vertex receive
different labels. See Figure 3.1.

We shall write t
k−−− t′ to indicate that vertices t, t′ ∈ Tn are joined by

an edge labeled by k.

Definition 3.1.5. A seed pattern is defined by assigning a labeled seed
(x̃(t), B̃(t)) to every vertex t ∈ Tn, so that the seeds assigned to the end-

points of any edge t
k−−− t′ are obtained from each other by the seed muta-

tion in direction k. A seed pattern is uniquely determined by any one of its
seeds. See Figure 3.2.

x1, x2, x3

x1, x2, x
′
3

3

x1, x
′
2, x3

2

x′1, x2, x3
1

Figure 3.2. Clusters in a seed pattern.
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Now everything is in place for defining cluster algebras.

Definition 3.1.6. Let (x̃(t), B̃(t))t∈Tn be a seed pattern as above, and let

X =
⋃

t∈Tn

x(t)

be the set of all cluster variables appearing in its seeds. We let the ground
ring be R = C[xn+1, . . . , xm], the polynomial ring generated by the frozen
variables. (A common alternative is to take R = C[x±1

n+1, . . . , x
±1
m ], the

ring of Laurent polynomials in the frozen variables, see Section 6.6 for an
example. Sometimes the scalars are restricted to Q, or even to Z.)

The cluster algebra A (of geometric type, over R) associated with the
given seed pattern is the R-subalgebra of the ambient field F generated by
all cluster variables: A = R[X ]. To be more precise, a cluster algebra is the
R-subalgebra A as above together with a fixed seed pattern in it.

A common way to describe a cluster algebra is to pick an initial (labeled)

seed (x̃◦, B̃◦) in F and build a seed pattern from it. The corresponding

cluster algebra, denoted A(x̃◦, B̃◦), is generated over the ground ring R by

all cluster variables appearing in the seeds mutation equivalent to (x̃◦, B̃◦).

Remark 3.1.7 (cf. Exercise 3.1.3). It can be shown that applying this
construction in each of the three settings discussed in Chapter 1, one ob-
tains cluster algebras naturally identified with the Plücker ring R2,m (cf.
Section 6.7), the ring of invariants C[SLk]

U (cf. Section 6.5), and the poly-
nomial ring C[z11, z12, . . . , zkk] (cf. Section 6.6), respectively.

Remark 3.1.8. It is often more natural to work with (unlabeled) seeds,

which differ from the labeled ones in that we identify two seeds (x̃, B̃) and

(x̃′, B̃′) in which x′ is a permutation of x, and B̃′ is obtained from B̃ by the
corresponding permutation of rows and columns. Note that ignoring the
labeling does not affect the resulting cluster algebra in a meaningful way.

Remark 3.1.9. Many questions arising in cluster algebra theory and its
applications do not really concern cluster algebras as such. These are ques-
tions which are not about commutative rings carrying a cluster structure;
rather, they are about seed patterns and the birational transformations that
relate extended clusters to each other. For those questions, the choice of
the ground ring is immaterial: the formulas remain the same regardless.

Remark 3.1.10. Since any free generating collection of m elements in F
can be mapped to any other such collection by an automorphism of F , the
choice of the initial extended cluster x̃◦ is largely inconsequential: the cluster
algebra A(x̃◦, B̃◦) is determined, up to an isomorphism preserving all the

matrices B̃(t), by the initial extended exchange matrix B̃◦, and indeed by

its mutation equivalence class. Also, replacing B̃◦ by −B̃◦ yields essentially
the same cluster algebra (all matrices B̃(t) change their sign).
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Remark 3.1.11. The same commutative ring (or two isomorphic rings) can
carry very different cluster structures. One can construct two seed patterns
whose sets of exchange matrices are disjoint from each other, yet the two
rings generated by their respective sets of cluster variables are isomorphic.
We will give concrete examples later on.

Remark 3.1.12. We will soon encounter many examples in which different
vertices of the tree Tn correspond to identical labeled or unlabeled seeds.
In spite of that, the set X of cluster variables will typically be infinite.
Note that this does not preclude a cluster algebra A from being finitely
generated (which is often the case). We shall also see in Section 6.8 (see
Example 6.8.13) that even when X is finite, the exchange relations (3.1.1)
do not always generate the defining ideal of A, i.e. the ideal of all relations
satisfied by the cluster variables X .

3.2. Examples of rank 1 and 2

The rank of a cluster algebra (or its underlying seed pattern) is the cardi-
nality of each of its clusters (denoted above by n). In this section, we look
at some examples of cluster algebras of small rank.

Rank 1. This case is very simple. The tree T1 has two vertices, so we only
have two seeds, and two clusters (x1) and (x′1). The extended exchange

matrix B̃◦ can be any m × 1 matrix whose top entry is 0. The single
exchange relation has the form x1 x

′
1 = M1 + M2 where M1 and M2 are

monomials in the frozen variables x2, . . . , xm which do not share a common
factor xi. The cluster algebra is generated by x1, x

′
1, x2, . . . , xm, subject to

this relation, and lies inside the ambient field F = C(x1, x2, . . . , xm).

Simple as they might be, cluster algebras of rank 1 do arise “in nature,”
cf. Examples 1.1.2 and 1.1.3. We give two more examples here.

Example 3.2.1 (cf. Section 1.3). Let U ⊂ G = SL3(C) be the subgroup of
unipotent lower triangular 3× 3 matrices. The ring C[G]U is generated by
the six flag minors PJ , for J a nonempty proper subset of {1, 2, 3}. This
ring has the structure of a cluster algebra of rank 1 in which

• the ambient field is C(P1, P2, P3, P12, P23);

• the frozen variables are P1, P3, P12, P23;

• the cluster variables are P2 and P13;

• the single exchange relation is P2P13 = P1P23 + P3P12.

The two seeds of this cluster algebra correspond to the two wiring diagrams
with 3 strands. Their respective sets of chamber minors are the two extended
clusters {P2, P1, P3, P12, P23} (cf. Figure 2.4) and {P13, P1, P3, P12, P23}.
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Example 3.2.2 (cf. Example 1.1.3). The coordinate ring of the subgroup
U+ of unipotent upper-triangular 3× 3 matrices





1 a b
0 1 c
0 0 1



 ∈ SL3(C)

is C[a, b, c]. This ring has the structure of a cluster algebra of rank 1 in which

• the ambient field is F = C(a, b, c);

• the frozen variables are b and P = ac− b;

• the cluster variables are a and c;

• the single exchange relation is ac = P + b.

We will discuss other examples in Chapter 6.

Rank 2. Any 2× 2 skew-symmetrizable matrix looks like this:

(3.2.1) ±
[

0 b
−c 0

]

,

for some integers b and c which are either both positive, or both equal to 0.
Applying a mutation µ1 or µ2 to a matrix of the form (3.2.1) simply changes
its sign.

Example 3.2.3. In the case b = c = 0, the two mutations commute,
because each µk changes the sign of the entries in column k of the ex-
tended exchange matrix while leaving the other column untouched; as the
two matrix columns do not affect each other, the story reduces to the rank 1
case. We get four cluster variables x1, x2, x

′
1, x

′
2, four clusters (x1, x2),

(x′1, x2), (x1, x
′
2), and (x′1, x

′
2), and two exchange relations of the form

x1x
′
1 = M1 + M2 and x2x

′
2 = M3 +M4, where M1,M2,M3,M4 are mono-

mials in the frozen variables.

For the rest of this section, we assume that b > 0 and c > 0. We denote
the cluster variables in our cluster algebra A of rank 2 by

. . . , z−2, z−1, z0, z1, z2, . . . ,

so that the seed pattern looks like this:

· · · 1−−−
( )z1 z0
[ ]

0 −b
c 0

2−−−
( )z1 z2
[ ]

0 b
−c 0

1−−−
( )z3 z2
[ ]

0 −b
c 0

2−−−
( )z3 z4
[ ]

0 b
−c 0

1−−− · · ·

where we placed each cluster on top of the corresponding exchange matrix.
(The extended exchange matrix may have additional rows.)
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We denote by A = A(b, c) a cluster algebra of rank 2 which has exchange
matrices ±

[

0 b
−c 0

]

and no frozen variables. (Cluster algebras without frozen
variables are generally said to have trivial coefficients.) The exchange rela-
tions in A(b, c) are, in the notation introduced above:

(3.2.2) zk−1 zk+1 =

{

zck + 1 if k is even;

zbk + 1 if k is odd.

Example 3.2.4. The cluster variables in the cluster algebra A(1, 1) with
trivial coefficients satisfy the recurrence

(3.2.3) zk−1 zk+1 = zk + 1.

Expressing everything in terms of the initial cluster (z1, z2), we get:
(3.2.4)

z3 =
z2 + 1

z1
, z4 =

z1 + z2 + 1

z1z2
, z5 =

z1 + 1

z2
, z6 = z1, z7 = z2, . . . ,

so the sequence is 5-periodic! Thus in this case, we have only 5 distinct
cluster variables. In the seed pattern, we will have:

· · · 2−−−
( )z1 z2
[ ]

0 1
−1 0

1−−−
( )z3 z2
[ ]

0 −1
1 0

2−−− · · · 1−−−
( )z7 z6
[ ]

0 −1
1 0

2−−− · · ·

Note that even though the labeled seeds containing the clusters (z1, z2) and
(z7, z6) are different, the corresponding unlabeled seeds coincide. Just switch
z6 and z7, and interchange the rows and the columns in the associated ex-
change matrix. Thus, this exchange pattern has 5 distinct (unlabeled) seeds.

Remark 3.2.5. The recurrence (3.2.3) arises in different mathematical con-
texts such as dilogarithm identities (cf., e.g., bibliographical pointers in [19,
Section 1.1]), the Napier-Gauss Pentagramma Mirificum (cf. [8] and [11,
Section 12.7]) and Coxeter’s frieze patterns [10].

Example 3.2.6. We now keep the same exchange matrices but introduce
a single frozen variable y. Consider a seed pattern which looks like this:

· · ·

z1 z2
[ ]0 1
−1 0
p q

1−−

z3 z2
[ ]0 −1
1 0
−p p+q

2−−

z3 z4
[ ]0 1
−1 0
q −p−q

1−−

z5 z4
[ ]0 −1
1 0
−q −p

2−−

z5 z6
[ ]0 1
−1 0
−q p

1−−

z7 z6
[ ]0 −1
1 0
q p

· · · ,

where p and q are nonnegative integers. Relabeling the rows and columns
to keep the 2× 2 exchange matrices invariant, we get

· · ·

z1 z2
[ ]0 1
−1 0
p q

−−

z2 z3
[ ]0 1
−1 0
p+q −p

−−

z3 z4
[ ]0 1
−1 0
q −p−q

−−

z4 z5
[ ]0 1
−1 0
−p −q

−−

z5 z6
[ ]0 1
−1 0
−q p

−−

z6 z7
[ ]0 1
−1 0
p q

· · · ,
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so the sequence of extended exchange matrices remains 5-periodic. We then
compute the cluster variables:

z3 =
z2 + yp

z1
, z4 =

yp+qz1 + z2 + yp

z1z2
, z5 =

yqz1 + 1

z2
, z6 = z1, z7 = z2 ;

the 5-periodicity persists! Just as in the case of trivial coefficients, there are
five distinct cluster variables overall, and five distinct unlabeled seeds.

The above computations were based on the assumption that both entries
in the third row of the initial extended exchange matrix are nonnegative. In
fact, this condition is not required for 5-periodicity. Note that we could start
with an initial seed containing the cluster (zi, zi+1), for any i ∈ {1, 2, 3, 4, 5},
together with the associated extended exchange matrix in the relabeled
sequence above, and we would get the same 5-periodic behaviour. Since
any row vector in Z2 has the form (p, q), (p+ q,−p), (q,−p− q), (−p,−q),
or (−q, p), for some p, q ≥ 0 (see Figure 3.3), we conclude that any seed

pattern with extended exchange matrices of the form ±
[

0 1
−1 0
∗ ∗

]

has exactly

five seeds.

As we shall later see, the general case of a seed pattern with exchange ma-
trices±

[

0 1
−1 0

]

and an arbitrary number of frozen variables exhibits the same
qualitative behaviour: there will still be five cluster variables and five seeds.

(−p,−q)

(−q, p) (p, q)

(q,−p−q)

(p+q,−p)

Figure 3.3. Five types of “frozen rows” in extended exchange matrices
with top rows (0, 1) and (−1, 0). Within each of the five cones, the points
are parameterized by p, q ≥ 0.

Example 3.2.7. The cluster variables in the cluster algebra A(1, 2) satisfy
the recurrence

(3.2.5) zk−1 zk+1 =

{

z2k + 1 if k is even;

zk + 1 if k is odd.

Expressing everything in terms of the initial cluster (z1, z2), we get:

z3 =
z22 + 1

z1
, z4 =

z22 + z1 + 1

z1z2
, z5 =

z21 + z22 + 2z1 + 1

z1z22
, z6 =

z1 + 1

z2
,
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and then z7 = z1 and z8 = z2, so the sequence is 6-periodic! Thus in this
case, we have only 6 distinct cluster variables, and 6 distinct seeds.

Exercise 3.2.8. Compute the cluster variables for the cluster algebra with

the initial extended exchange matrix
[

0 1
−2 0
p q

]

.

Exercise 3.2.9. Compute the cluster variables of the cluster algebraA(1, 3).
(Start by evaluating them in the specialization z1 = z2 = 1; notice that all
the numbers will be integers.)

Example 3.2.10. Consider the cluster algebra A(1, 4). Setting z1 = z2 = 1
and applying the recurrence (3.2.2), we see that the cluster variables z3, z4, . . .
specialize to the following values:

2, 3, 41, 14, 937, 67, 21506, 321, 493697, 1538, 11333521, 7369, 260177282, . . .

This does not look like a periodic sequence, so the (unspecialized) sequence
of cluster variables is not periodic either!

The good news is that all these numbers are integers. Why does this
happen? To understand this, let us recursively compute the cluster variables
z3, z4, . . . in terms of z1 and z2:

z3 =
z42 + 1

z1
,

z4 =
z3 + 1

z2
=

z42 + z1 + 1

z1z2
,

z5 =
z44 + 1

z3

=
z122 + 4z1z

8
2 + 3z82 + 6z21z

4
2 + 8z1z

4
2 + z41 + 3z42 + 4z31 + 6z21 + 4z1 + 1

z31z
4
2

,

z6 =
z5 + 1

z4
=

z82 + 3z1z
4
2 + 2z42 + z31 + 3z21 + 3z1 + 1

z21z
3
2

, etc.

Now we see what is going on: the evaluations of these expressions at z1 =
z2 = 1 are integers because they are Laurent polynomials in z1 and z2, i.e.,
their denominators are monomials. (This is by no means to be expected:

for example, the computation of z6 involves dividing by z4=
z42+z1+1

z1z2
.)
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3.3. Laurent phenomenon

The examples of Laurentness that we have seen before are special cases of
the following general phenomenon.

Theorem 3.3.1. In a cluster algebra of geometric type, each cluster variable
can be expressed as a Laurent polynomial with integer coefficients in the
elements of any extended cluster.

The rest of this section is devoted to the proof of Theorem 3.3.1. First,
we state a simple auxiliary lemma which can be obtained by direct inspection
of the exchange relations (3.1.1).

Lemma 3.3.2. Let B̃◦ be an m × n extended exchange matrix. Let B̃′
◦

be the matrix obtained from B̃◦ by deleting the rows labeled by a subset
I ⊂ {n + 1, . . . ,m}. Then the formulas expressing the cluster variables in

a cluster algebra A(x̃′
◦, B̃

′
◦) in terms of the initial extended cluster x̃′

◦ can

be obtained from their counterparts for A(x̃◦, B̃◦) by specializing the frozen
variables xi (i ∈ I) to 1, and relabeling the remaining variables accordingly.

Remark 3.3.3. A specialization of the kind described in Lemma 3.3.2 sends
Laurent polynomials to Laurent polynomials. This means that if we add
extra frozen variables to the initial seed and establish Laurentness of an
arbitrary cluster variable in this modified setting, it would then imply the
Laurentness of the cluster variable’s counterpart in the original setting.

Let us set up the notation needed for the proof of Theorem 3.3.1:

• t◦ ∈ Tn is an (arbitrarily chosen) initial vertex;

• (x̃◦, B̃◦) is the initial seed;

• x̃◦ = (x1, . . . , xm) is the initial extended cluster;

• B̃◦ = (b0ij) is the initial m× n extended exchange matrix;

• t ∈ Tn is an arbitrary vertex;

• x ∈ x(t) is a cluster variable at t;

• t1 and t2 are the first two vertices on the unique path in Tn connect-
ing t◦ to t, obtained via mutations in direction j then k, so that locally

we have t◦
j−− t1

k−− t2;

• d is the length of this path, i.e., the distance in Tn between t◦ and t;

• x̃(t1) = (x̃(t◦)− {xj}) ∪ {x′j};
• x̃(t2) = (x̃(t1)− {xk}) ∪ {x′k}.
We will prove the Laurentness of x, viewed as a function of x◦, by induc-
tion on d. (More precisely, the statement we prove by induction concerns
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arbitrary seeds at distance d from each other in arbitrary cluster algebras
of geometric type.) The base cases d = 1 and d = 2 are trivial.

There are two possibilities to consider.

Case 1: b0jk = b0kj = 0. Let t3 be the vertex in Tn connected to t◦ by an

edge labeled k. Since µj and µk commute at t◦ (cf. Exercise 2.7.7(5)), each
of the two seeds at t1 and t3, respectively, lies at distance d− 1 from a seed
containing x, and x̃(t3) = (x̃(t◦)− {xk}) ∪ {x′k}.

By the induction assumption, the cluster variable x is expressed as a Lau-
rent polynomial in terms of the extended cluster x̃(t1) = (x1, . . . , x

′
j , . . . , xm).

Also, x′j =
M1+M2

xj
, where M1 and M2 are monomials in x1, . . . , xm. Substi-

tuting this into the aforementioned Laurent polynomial, we obtain a formula
expressing x in terms of x̃◦. Another such formula is obtained by taking
the Laurent polynomial expression for x in terms of x̃(t3), and substituting

x′k = M3+M4

xk
, with M3 and M4 some monomials in x1, . . . , xm. Removing

common factors, we obtain (necessarily identical) expressions for x as a ratio
of coprime polynomials in x1, . . . , xm, with monic denominator.

Note that in the first computation, all non-monomial factors that can
potentially remain in the denominator must come from M1 + M2; in the
second one, they can only come fromM3+M4. IfM1+M2 andM3+M4 were
coprime to each other, the Laurentness of x would follow. This coprimality
however does not hold in general. (For example, if columns j and k of B̃◦

are equal to each other, then M1 +M2 = M3 +M4.) We can however use
a trick based on Lemma 3.3.2, cf. Remark 3.3.3. Let us introduce a new
frozen variable xm+1 and extend the matrix B̃◦ by an extra row in which
the (m + 1, j)-entry is 1, and all other entries are 0. Now M1 + M2 has
become a binomial which has degree 1 in the variable xm+1. Note that the
supports of M1 and M2 are disjoint, so M1 +M2 does not have a monomial
factor, and if it had a nontrivial factorization, that factorization would give
a nontrivial factorization of 1 + xm+1 after specializing the other cluster
variables to 1. Therefore M1 +M2 is irreducible; moreover it cannot divide
M3+M4 as the latter does not depend on xm+1. So M1+M2 and M3+M4

are coprime to each other, and we are done with Case 1.

Case 2: b0jkb
0
kj < 0. This case is much harder. The general shape of the

proof remains the same: we use induction on d together with a coprimality
argument assisted by the introduction of additional frozen variables. One
new aspect of the proof is that we need to separately consider the case d = 3
since the induction step relies on it.

Without loss of generality we assume that b0jk < 0 and b0kj > 0. Other-
wise, change the signs of all extended exchange matrices; this will not affect
the formulas relating extended clusters to each other, see Exercise 2.7.7(3).
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We denote by t3 ∈ Tn the vertex connected to t2 by an edge labeled j,
and introduce notation

x̃(t3) = (x̃(t2)− {x′j}) ∪ {x′′j } = (x1, . . . , x
′′
j , . . . , x

′
k, . . . , xm).

(Whether j < k or k < j is immaterial.) See Figure 3.4.

To be clear, we are not assuming that t3 lies on the unique path in Tn

connecting t0 to t.

j k jt◦ t1 t2 t3

xj , xk x′j , xk x′j , x
′
k x′′j , x

′
k

Figure 3.4. Cluster variables obtained via successive mutations µj , µk, µj .

Note that among cluster variables obtained by at most three mutations
from the initial seed, those of the form x′′j are the only ones whose Laurent-
ness is not obvious. Therefore to establish Case 2 when d = 3, it is enough
to prove Lemma 3.3.4 below.

Lemma 3.3.4. The cluster variable x′′j is a Laurent polynomial in x̃◦.

Proof. Let µj(B̃◦) = B̃(t1) = (bij) and µk(B̃(t1)) = B̃(t2) = (b′ij) be the
extended exchange matrices at t1 and t2, respectively. Our assumption
b0jk < 0 implies that bjk > 0 and b

′

kj > 0.

We will view each of the cluster variables x′j , x
′
k, x

′′
j as a rational function

in the elements x1, . . . , xm of the initial extended cluster x̃◦. The notation
P ∼ Q will mean that P and Q differ by a monomial factor, i.e., P = QM
where M is a Laurent monomial in x1, . . . , xm. Given a polynomial P , the
notation Q ≡ R mod P will mean that Q − R = PS for some Laurent
polynomial S. We also define

Pj = Pj(x1, . . . , xm) =
∏

i

x
bij
i + 1.

The relevant instances of the exchange relation (3.1.1) imply that

x′j ∼ x−1
j

(

∏

i

x
bij
i + 1

)

∼ Pj ,(3.3.1)

x′k = x−1
k

(

(x′j)
bjk

∏

bik>0
i 6=j

xbiki +
∏

bik<0

x−bik
i

)

≡ x−1
k

∏

bik<0

x−bik
i mod Pj ,(3.3.2)

x′′j ∼ (x′j)
−1

(

(x′k)
b
′

kj

∏

i 6=k

x
b
′

ij

i + 1

)

.(3.3.3)
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To establish that x′′j is a Laurent polynomial in x1, . . . , xm, we need to show

that the second factor in (3.3.3) is divisible by Pj .

Working modulo Pj we obtain

(x′k)
b
′

kj

∏

i 6=k

x
b
′

ij

i + 1 ≡
(

x−1
k

∏

bik<0

x−bik
i

)b
′

kj ∏

i 6=k

x
b
′

ij

i + 1

= x
bkj
k

∏

bik<0

x
bikbkj
i

∏

i 6=k

x
b
′

ij

i + 1 =
∏

i

x
bij
i + 1 ≡ 0,

as desired. In the last line, we used the fact that bkj < 0 and consequently

b
′

ij =

{

bij − bikbkj if bik < 0;

bij if bik ≥ 0 and i 6= k. �

After proving the following technical lemma, we will be ready to com-
plete the inductive proof of Case 2.

Lemma 3.3.5. Suppose that distinct indices q, r ∈ {n+1, . . . ,m} are such
that b0qj = 1 and b0rk = 1, and moreover all other entries in rows q and r of

B̃◦ are equal to 0. Then x′j is coprime to both x′k and x′′j .

Here “coprime” means that those cluster variables, viewed as Laurent
polynomials in x◦, have no common non-monomial factor.

Proof. Let us denote b0jk = −b and b0kj = c. Recall that b0kj > 0, so b, c > 0.
The local structure of the extended exchange matrices at t◦, t1, and t2 at
the intersections of rows j, k, q, r and columns j, k is as follows:

j k
...

...
j · · · 0 −b · · ·
k · · · c 0 · · ·

...
...

q · · · 1 0 · · ·
r · · · 0 1 · · ·

j k
...

...
j · · · 0 b · · ·
k · · · −c 0 · · ·

...
...

q · · · −1 0 · · ·
r · · · 0 1 · · ·

j k
...

...
j · · · 0 −b · · ·
k · · · c 0 · · ·

...
...

q · · · −1 0 · · ·
r · · · 0 −1 · · ·

B̃◦ µj(B̃) µk(µj(B̃))

We then have

x′j = x−1
j (xck xqM1 +M2)

x′k = x−1
k ((x′j)

b xrM3 +M4)

x′′j = (x′j)
−1(xqM5 + (x′k)

cM6),
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where M1, . . . ,M6 are monomials in the xi’s, with i /∈ {j, k, q, r}. We see
that x′j is linear in xq and hence irreducible (as a Laurent polynomial in x̃),
i.e., it cannot be written as a product of two non-monomial factors. Since
x′j does not depend on xr, we conclude that x′k is linear in xr and hence

irreducible, and moreover coprime with x′j .

It remains to show that x′j and x′′j are coprime. Note that x′k and x′′j
can be regarded as polynomials in xr; we denote by x′k(0) and x′′j (0) their

specializations at xr = 0. If we show that x′′j (0) is coprime to x′j = x′j(0),

then we’ll be done. To this end, note that x′k(0) = x−1
k M4. Therefore

x′′j (0) = xj
xqM5 + (x−1

k M4)
cM6

xck xqM1 +M2
.

Here both the numerator and denominator are linear in xq, and therefore
the denominator (essentially, x′j) cannot divide the numerator more than

once. Also, x′j is irreducible. This means that, in order for x′′j (0) and x′j to

fail to be coprime, we would need the denominator of x′′j (0) to divide the

numerator at least twice. Hence x′′j (0) and x′j are coprime, as desired. �

We are now ready to complete the proof of Case 2 of Theorem 3.3.1.
We begin by augmenting the initial extended exchange matrix B̃◦ by two
additional rows corresponding to two new frozen variables xq and xr. We set

b0qi =

{

1 if i = j,

0 if i 6= j;
b0ri =

{

1 if i = k,

0 if i 6= k,

so as to satisfy the conditions of Lemma 3.3.5.

By the induction assumption, the cluster variable x is expressed as a
Laurent polynomial in terms of each of the extended clusters x̃(t1) and x̃(t3).
The only elements of these clusters which do not appear in x̃◦ are x′j , x

′
k,

and x′′j , so

x =
Laurent polynomial in x̃◦

(x′j)
a

=
Laurent polynomial in x̃◦

(x′k)
b(x′′j )

c
,

for a, b, c∈Z. By Lemma 3.3.4, x′j , x
′
k, and x′′j are Laurent polynomials in x̃◦.

By Lemma 3.3.5, x′j is coprime to both x′k and x′′j . The theorem now follows

by the same argument (based on Lemma 3.3.2) that we used in Case 1. �

Theorem 3.3.1 can be sharpened as follows.

Theorem 3.3.6. In a cluster algebra of geometric type, frozen variables
do not appear in the denominators of the Laurent polynomials expressing
cluster variables in terms of an initial extended cluster.
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Stated in our standard notation, Theorem 3.3.6 asserts that each cluster
variable is a Laurent polynomial in the initial cluster variables x1, . . . , xn,
with coefficients in Z[xn+1, . . . , xm].

Proof. We borrow the notation from the proof of Theorem 3.3.1 above.
Let x be a cluster variable from a distant seed, and xr a frozen variable
(n < r ≤ m). We will think of x as a Laurent polynomial x(xr) whose
coefficients are integral Laurent polynomials in the variables xi, with i 6= r.
We want to show that x is in fact a polynomial in xr; Theorem 3.3.6 will
then follow by varying r.

We will make use of the following trivial lemma.

Lemma 3.3.7. Let P and Q be two polynomials (in any number of vari-
ables) with coefficients in a domain S, and with nonzero constant terms a
and b, respectively. If the ratio P/Q is a Laurent polynomial over S, then
it is in fact a polynomial over S with the constant term a/b.

Our proof of Theorem 3.3.6 proceeds by induction on d, the smallest
distance in Tn between the initial seed and a seed containing x. We will
inductively prove the following strengthening of the desired statement:

x(xr) is a polynomial in xr whose constant term x(0) can be written
as a subtraction-free rational expression in the elements of x̃◦−{xr};
in particular, x(0) 6= 0.

If d = 0, then x ∈ x̃◦, and there is nothing to prove. If d > 0, then x appears
on the left-hand side of an exchange relation (3.1.1) xx′ = M1 +M2, where
M1 and M2 denote the monomials in the exchange relation, and where x′

and the cluster variables in M1 and M2 come from a seed located at distance
d− 1 from x̃◦. By definition of the exchange relation, the frozen variable xr
will appear in at most one of M1 and M2. Therefore if we express x′,M1,
and M2 in terms of x̃◦, viewing them as Laurent polynomials in xr (whose
coefficients are integral Laurent polynomials in the variables xi with i 6= r),
the inductive assumption implies that M1 +M2 is a polynomial in xr with
nonzero constant term. It now follows from Lemma 3.3.7 that x = M1+M2

x′

is a polynomial in xr with nonzero constant term. �



50 3. Clusters and seeds

3.4. Connections to number theory

Example 3.4.1 (Markov triples). Consider the cluster algebra defined by
the Markov quiver given in Figure 2.10. Since the quiver is invariant under
mutations, exchange relations for any cluster (x1, x2, x3) will look the same:

x′1 x1 = x22 + x23,

x′2 x2 = x21 + x23,

x′3 x3 = x21 + x22.

If we start with the triple (1, 1, 1) and mutate in all possible directions, we
will get an infinite set of triples in Z3, including those shown in Figure 3.5.

(1, 1, 1) (1, 1, 2) (1, 5, 2)

(29, 5, 2)

(1, 5, 13)

(29, 169, 2)

(29, 5, 433)

(194, 5, 13)

(1, 34, 13)

(985,169,2)

(29,169,14701)

(29,37666,433)

(6466,5,433)

(194,5,2897)

(194,7561,13)

(1325,34,13)

(1, 34, 89)

Figure 3.5. Markov triples.

We next observe that all these triples satisfy the diophantine Markov
equation

x21 + x22 + x23 = 3x1x2x3.

To see this, verify that each mutation in our cluster algebra transforms a
solution of this equation (a Markov triple) into another solution. (This is an
instance of Vieta jumping, which replaces one root of a quadratic equation
by another root.) Starting with the solution (1, 1, 1), we get the tree of
Markov triples above. In fact, every Markov triple appears in this tree.
The celebrated (still open) Uniqueness Conjecture asserts that the maximal
elements of Markov triples are all distinct. See [1] for a detailed account.
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Returning to the cluster-algebraic interpretation of this example, we
note that more generally, the quantity

x21 + x22 + x23
x1x2x3

is invariant under mutations in this seed pattern. This is closely related to
integrability of the Markov recurrence; cf. Chapter 11.

Example 3.4.2 (Fermat numbers). Sometime in the 1640’s, Pierre Fermat
conjectured that for every positive integer n, the number Fn = 22

n
+ 1 is

prime. This was disproved in 1732 by Leonhard Euler, who discovered that

F5 = 232 + 1 = 641 · 6700417.

Curiously, this factorization can be obtained by observing cluster mutations.

Consider the rank 2 cluster algebra with the initial seed (x̃, B̃) where

x̃ = (x1, x2, x3), B̃ =





0 4
−1 0
1 −3



 .

The mutation µ1 produces a new extended cluster x̃′ = (x′1, x2, x3) where

x′1 x1 = x2 + x3 .

Taking the specialization

(x1, x2, x3) = (3,−1, 16),

we see that the mutated extended cluster specializes to

(x′1, x2, x3) = (5,−1, 16).

Applying the sharp version of the Laurent phenomenon (Theorems 3.3.1
and 3.3.6) to the initial extended cluster x̃, we see that every cluster variable
specializes to an integer (possibly) divided by a power of 3; applying the
same result to x̃′, we conclude that every cluster variable is an integer
(possibly) divided by a power of 5. Thus, every cluster variable specializes
to an integer! Now let us see which integers we get. Alternately applying
the mutations µ1 and µ2, we obtain the following sequence, with specialized
cluster variables written on top of the extended exchange matrices:

3 −1
0 4
−1 0
1 −3

µ1−→

5 −1
0 −4
1 0
−1 1

µ2−→

5 −641
0 4
−1 0
0 −1

µ1−→

−128 −641
0 −4
1 0
0 −1

µ2−→
−128 −F5

641

0 4
−1 0
0 1

This shows that F5/641 is an integer, reproducing Euler’s discovery.
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Example 3.4.3. The Somos-4 sequence z0, z1, z2, . . . is defined by the ini-
tial conditions z0 = z1 = z2 = z3 = 1 and the recurrence

zm+2zm−2 = zm+1zm−1 + z2m .

This sequence is named after M. Somos who discovered it (and its various
generalizations) sometime in the 1980s; see, e.g., [6, 31] and references
therein.

The first several terms of the Somos-4 sequence are

1, 1, 1, 1, 2, 3, 7, 23, 59, 314, 1529, 8209, 83313, 620297, 7869898, . . .

—all integers! An explanation of the integrality of this sequence can be
given using cluster algebras.

Consider the quiver

1 2

34

(all four vertices are mutable). It is easy to check that mutating at the
vertex labeled 1 produces a quiver that differs from the original one by
clockwise rotation by π/2. It follows that subsequent quiver mutations at
2, 3, 4, 1, 2, 3, 4, 1, . . . will generate a sequence of cluster variables satisfying
the Somos-4 recurrence above. In view of the Laurent phenomenon, the
initial conditions z0 = z1 = z2 = z3 = 1 will result in a sequence of integers.

Remark 3.4.4. An alternative approach to establishing integrality of the
Somos-4 and other related sequences is based on explicit combinatorial in-
terpretations of their terms. In particular, the numbers zm defined above
can be shown to count perfect matchings in certain planar bipartite graphs,
see [49] and Figure 3.6.

Remark 3.4.5. Somos sequences and their various generalizations are in-
timately related to the arithmetic of elliptic curves; see, e.g., [32] and ref-
erences therein. Here is a typical result, stated here without proof (this
version is due to D. Speyer). Consider the elliptic curve

y2 = 1− 8x+ 12x2 − 4x3,

and let xm be the x-coordinate of the point P + mQ where P = (0, 1),
Q = (1,−1), and we are using the standard group law of the elliptic curve.
Then

xm =
zm−1zm+1

z2m

where (zm) is the Somos-4 sequence above.
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Figure 3.6. The number of perfect matchings in each of these bipartite
graphs is 2, 3, 7, 23, respectively (cf. the Somos-4 sequence).

Exercise 3.4.6. Use the Laurent phenomenon to show that the sequence
z0, z1, z2, . . . defined by the initial conditions z0 = z1 = z2 = 1 and the
recurrence

zm+3zm = zm+2zm+1 + 1

consists entirely of integers.

Exercise 3.4.7. Show that all elements of the sequence z0, z1, z2, . . . defined
by the generalized Somos-4 recurrence

zm+2zm−2 = azm+1zm−1 + bz2m

are Laurent polynomials in z0, z1, z2, z3, with coefficients in Z[a, b].

Example 3.4.8. The Somos-5 sequence

1, 1, 1, 1, 1, 2, 3, 5, 11, 37, 83, 274, 1217, 6161, 22833, 165713, . . .

is defined by the recurrence relation

(3.4.1) zmzm+5 = zm+1zm+4 + zm+2zm+3 (m = 1, 2, . . . )

with the initial conditions z1 = · · · = z5 = 1. A priori, one expects the num-
bers zm to be rational—but in fact, all of them are integers. Once again, this
is a consequence of a stronger statement: viewed as a function of z1, . . . , z5,
every zm is a Laurent polynomial with integer coefficients. To prove this, we
need to find a cluster algebra with an initial cluster (z1, . . . , z5) (no frozen
variables) which has all relations (3.4.1) among its exchange relations, so
that all the zm are among its cluster variables.

Exercise 3.4.9. Establish the integrality of all terms of the Somos-5 se-
quence by examining the sequence of mutations

µ1, µ2, µ3, µ4, µ5, µ1, µ2, µ3, µ4, µ5, . . . ,
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in the cluster algebra whose initial exchange matrix (and the corresponding
quiver) are shown below.

B = B̃ =













0 −1 1 1 −1
1 0 −2 0 1
−1 2 0 −2 1
−1 0 2 0 −1
1 −1 −1 1 0













5 2

34

1

Example 3.4.10 (see [26]). Fix a positive integer n, and let (a1, . . . , an−1)
be a palindromic integer vector, that is, ai = an−i for i = 1, . . . , n − 1.
Consider the sequence z1, z2, . . . given by the recurrence

(3.4.2) zmzm+n =

n−1
∏

i=1

z
[ai]+
m+i +

n−1
∏

i=1

z
[−ai]+
m+i (m = 1, 2, . . . )

with indeterminates z1, . . . , zn as the initial terms; here we use the notation

(3.4.3) [a]+ = max(a, 0).

(The recurrence (3.4.1) is a special case with n = 5 and (a1, . . . , an−1) =
(1,−1,−1, 1).) Then all the terms zm are integer Laurent polynomials in
z1, . . . , zn.

To show this, we find an n×n skew-symmetric integer matrix B = (bij)
such that µ1(B) is obtained from B by the cyclic permutation of its rows
and columns, and such that its first column is given by bi1 = ai−1 for
i = 2, . . . , n. If we can do so, then the sequence of mutations

µ1, µ2, µ3, . . . , µn, µ1, µ2, . . . ,

will produce the recurrence (3.4.2). It is not hard to see that setting

−bji = bij = ai−j +

j−1
∑

k=1

([−ai−k]+[aj−k]+ − [ai−k]+[−aj−k]+)

for 1 ≤ j < i ≤ n produces a matrix B with the requisite properties.

3.5. Y -patterns

We keep the notational conventions used in Section 3.3.

One of our goals is to show that many structural properties of a seed
pattern are determined by (the mutation class formed by) its n×n exchange

matrices B(t), and do not depend on the bottom parts of the matrices B̃(t).
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Theorem 3.5.1 below concerns certain Laurent monomials in the ele-
ments of a given seed; each of these Laurent monomials is simply a ratio
of the two terms appearing on the right-hand side of an exchange rela-
tion (3.1.1). Surprisingly, the evolution of these ratios is completely con-
trolled by the matrices B(t). That is, the laws governing this evolution do

not depend on the bottom parts of the matrices B̃(t).

Theorem 3.5.1. Let (x̃, B̃) and (x̃′, B̃′) be two labeled seeds related by
mutation at k, with extended clusters

x̃ = (x1, . . . , xm), x̃′ = (x′1, . . . , x
′
m)

and m× n extended exchange matrices

B̃ = (bij), B̃′ = (b′ij).

Define the n-tuples ŷ = (ŷ1, . . . , ŷn) and ŷ′ = (ŷ′1, . . . , ŷ
′
n) by

(3.5.1) ŷj =
m
∏

i=1

x
bij
i , ŷ′j =

m
∏

i=1

(x′i)
b′ij .

Then

(3.5.2) ŷ′j =















ŷ−1
k if j = k;

ŷj (ŷk + 1)−bkj if j 6= k and bkj ≤ 0;

ŷj (ŷ
−1
k + 1)−bkj if j 6= k and bkj ≥ 0.

Proof. We check (3.5.2) case by case. The case j = k is easy:

ŷ′k =
∏

i

(x′i)
b′
ik =

∏

i 6=k

x
b′
ik

i =
∏

i 6=k

x−bik
i = ŷ−1

k .

If j 6= k and bkj ≤ 0, then

ŷ′j =(x′k)
b′
kj

∏

i 6=k

x
b′ij
i = (x′k)

−bkj
∏

i 6=k

x
bij
i

∏

bik<0

x
−bikbkj
i

=x
bkj
k





∏

bik>0

xbiki +
∏

bik<0

x−bik
i





−bkj
∏

i 6=k

x
bij
i

∏

bik<0

x
−bikbkj
i

=ŷj(ŷk + 1)−bkj .

If j 6= k and bkj ≥ 0, then we can check (3.5.2) directly as before; alterna-
tively, it follows from the previous case, using the fact that mutation is an
involution and switching the roles of the two seeds.

Theorem 3.5.1 suggests the following definitions.
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Definition 3.5.2. A Y -seed of rank n in a field F is a pair (Y,B) where

• Y is an n-tuple of elements of F ;
• B is a skew-symmetrizable n× n integer matrix.

We say that two Y -seeds (Y,B) and (Y ′, B′) of rank n are related by a
Y -seed mutation µk in direction k (here 1 ≤ k ≤ n) if

• the matrices B = (bij) and B′ = (b′ij) are related via mutation at k;

• the n-tuple Y ′=(Y ′
1 , . . . , Y

′
n) is obtained from Y =(Y1, . . . , Yn) by

(3.5.3) Y ′
j =















Y −1
k if j = k;

Yj (Yk + 1)−bkj if j 6= k and bkj ≤ 0;

Yj (Y
−1
k + 1)−bkj if j 6= k and bkj ≥ 0.

It is easy to check that mutating (Y ′, B′) at k recovers (Y,B).

A Y -pattern of rank n is a collection of Y -seeds (Y (t), B(t))t∈Tn labeled

by the vertices of the n-regular tree Tn, such that for any edge t
k−−− t′

in Tn, the Y -seeds (Y (t), B(t)) and (Y (t′), B(t′)) are related to each other
by the Y -seed mutation in direction k.

Remark 3.5.3. In Definition 3.5.2, we do not require the elements Yi to
be algebraically independent, one reason being that this condition does not
always hold for the monomials ŷj in Theorem 3.5.1. Consequently, one
can not a priori guarantee that the mutation process can propagate to all
vertices in Tn (what if Yk = 0 in (3.5.3)?). To ensure the existence of a
Y -pattern with a given initial seed (Y,B), one can for example require all
elements of Y to be given by subtraction-free expressions in some set of vari-
ables, or alternatively take positive values under a particular specialization
of these variables. As each of these conditions reproduces under mutations
of Y -seeds, the mutation process can then proceed without hindrance.

Example 3.5.4 (Y -pattern of type A2). Consider the Y -pattern of rank 2

· · · 2−−− (Y (0), B(0))
1−−− (Y (1), B(1))

2−−− (Y (2), B(2))
1−−− · · ·

with the exchange matrices

(3.5.4) B(t) = (−1)t
[

0 1
−1 0

]

.

Note that the corresponding quivers are orientations of the type A2 Dynkin
diagram.
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The rule (3.5.3) of Y -seed mutation gives the following recurrence for
the Y -seeds Y (t) = (Y1;t, Y2;t). For t even, we have

Y (t+ 1) = µ1(Y (t)), Y1;t+1 = Y −1
1;t , Y2;t+1 = Y2;t (Y

−1
1;t + 1)−1,

whereas for t odd, we have

Y (t+ 1) = µ2(Y (t)), Y1;t+1 = Y1;t (Y
−1
2;t + 1)−1, Y2;t+1 = Y −1

2;t .

We then recursively obtain the pairs Y (t) = (Y1;t, Y2;t) listed in Figure 3.7.

t Y1;t Y2;t

0 y1 y2

1 y−1
1 y1 y2(y1 + 1)−1

2 y2(y1y2 + y1 + 1)−1 (y1 + 1) y−1
1 y−1

2

3 (y1y2 + y1 + 1) y−1
2 y−1

1 (y2 + 1)−1

4 y−1
2 y1(y2 + 1)

5 y2 y1

6 y1y2(y1 + 1)−1 y−1
1

7 (y1 + 1) y−1
1 y−1

2 y2(y1y2 + y1 + 1)−1

8 y−1
1 (y2 + 1)−1 (y1y2 + y1 + 1) y−1

2

9 y1(y2 + 1) y−1
2

10 y1 y2

Figure 3.7. The Y -seeds (Y (t), B(t)) = ((Y1;t, Y2;t), B(t)) in type A2.
The exchange matrices B(t) are given by (3.5.4). The initial Y -seed
is (Y (0), B(0)), with Y (0) = (Y1;0, Y2;0) = (y1, y2). This sequence of
Y -seeds is 10-periodic: Y (t+ 10) = Y (t).

Using the terminology introduced in Definition 3.5.2, we can state the
following direct corollary of Theorem 3.5.1.

Corollary 3.5.5. Let (x̃(t), B̃(t))t∈Tn be a seed pattern in F , with
x̃(t) = (x1;t, . . . , xm;t), B̃(t) = (btij).

Let B(t) = (btij)i,j≤n denote the exchange matrix at a vertex t ∈ Tn, and let

ŷ(t) = (ŷ1;t, . . . , ŷn;t) be the n-tuple of elements in F given by

(3.5.5) ŷk;t =

m
∏

i=1

x
bt
ik

i;t .

Then (ŷ(t), B(t))t∈Tn is a Y -pattern in F .
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Remark 3.5.6. The rules governing the evolution of Y -seeds may seem
simpler than the corresponding rules of seed mutation:

• Y -seed mutations are driven by the n × n matrices B whereas ordinary
seed mutations require the extended m× n matrices B̃;

• in the Y -seed setting, there are no frozen variables;

• each recurrence (3.5.3) only involves two variables Yj and Yk whereas the
exchange relation (3.1.1) potentially involves all cluster variables of the
current seed.

On the other hand,

• a seed mutation only changes one cluster variable whereas a Y -seed mu-
tation may potentially change all the variables Y1, . . . , Yn;

• consequently, we end up getting “more” Y -variables than cluster vari-
ables (if the number of seeds is finite, then this is a precise statement);

• the Y -pattern recurrences do not, generally speaking, exhibit the Laurent
phenomenon.

Remark 3.5.7. In various examples, including many cluster algebras aris-
ing as coordinate rings of algebraic varieties, the cluster algebra under in-
vestigation has a distinguished (multi-)grading, and its exchange relations
are all (multi-)homogeneous. It follows that the rational expressions ŷk;t
defined by (3.5.5) have (multi-)degree 0. It is not surprising, then, that
Y -patterns naturally arise in the study of configurations (of points, lines,
flags, etc.) in projective spaces. See Examples 3.5.8 and 3.5.10 below.

Example 3.5.8 (Configurations of points on the projective line). The cross-
ratio is a quantity associated with an ordered quadruple of collinear points,
particularly points on the projective line P1 (say over C). For our purposes,
it will be convenient to use the following version of the cross-ratio. Let
P1, P2, P3, P4 ∈ P1 be four distinct points on the projective line, with pro-
jective coordinates (a1 : b1), (a2 : b2), (a3 : b3), and (a4 : b4), respectively.
We then define

(3.5.6) Y (P1, P2, P3, P4) =
P14 P23

P12 P34
,

where we use the notation

(3.5.7) Pij = det

(

ai aj
bi bj

)

= aibj − ajbi .

This quantity is related to the conventional cross-ratio via the formula

Y (P1, P2, P3, P4) = −(P1, P3;P4, P2).
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The symmetric group S4 acts on quadruples of collinear points by per-
muting the points in a quadruple. The permutations in S4 which preserve
the cross-ratio form a subgroup isomorphic to the Klein four-group. There
are therefore six different versions of the cross-ratio. All of them are uniquely
determined by any one of them.

The cross-ratio is essentially the only projective invariant of a quadruple
of collinear points. More generally (see, e.g., [43, Section 7.4]), any rational
function of an ordered m-tuple of points on the projective line which is
invariant under projective transformations can be expressed in terms of
cross-ratios associated to various quadruples of points. In fact, one only
needs cross-ratios associated with m− 3 quadruples to get all

(

m
4

)

of them.
One way to make this explicit is by using the machinery of Y -patterns.
A configuration ofm distinct ordered points P1, . . . , Pm ∈ P1 with projective
coordinates (a1 : b1), . . . , (am : bm) can be encoded by a 2×m matrix

z =

[

a1 a2 . . . am
b1 b2 . . . bm

]

.

Recall that the Plücker coordinates Pij = Pij(z) are defined by the for-
mula (3.5.7), for 1 ≤ i < j ≤ m.

We now associate a Y -seed to an arbitrary triangulation T of a convex
m-gon Pm (cf. Sections 1.2 and 2.2) bym−3 pairwise noncrossing diagonals.
Recall that Pm has m vertices labeled 1, . . . ,m, in clockwise order. We label
the diagonals of T by the numbers 1, . . . ,m − 3, and define the exchange
matrix BT to be the (m − 3) × (m − 3) matrix associated to the mutable
part of the quiver Q(T ), see Definition 2.2.1. (Ignore the frozen vertices
associated with the sides of the polygon.) Consider a diagonal of T labeled d.
This diagonal triangulates a quadrilateral with vertices labeled i, j, k, ℓ in
clockwise order, connecting vertices i and k, cf. Figure 1.2. Define

Yd = Y (Pi, Pj , Pk, Pℓ),

cf. (3.5.6). Note that since Y (Pi, Pj , Pk, Pℓ) = Y (Pk, Pℓ, Pi, Pj), there is no
ambiguity in this definition. Finally, define the Y -seed associated with T to
be the pair (YT , BT ), where YT = (Y1, . . . , Ym−3).

It is now an exercise to verify that these Y -seeds transform under flips
by the Y -seed mutation rule (3.5.3). Note that this example is nothing but
the application of the construction in Theorem 3.5.1 to the seed pattern
associated to the Gr2,m example (cf. Section 2.2).

Exercise 3.5.9. Given six points P1, . . . , P6 on the projective line, express
the cross-ratios for the quadruples {Pi, P4, P5, P6} in terms of the cross-
ratios for the quadruples {Pi, P1, P2, P3}.
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Example 3.5.10 (The pentagram map). The pentagram map, introduced
in [46], is a transformation of generic projective polygons (i.e., cyclically
ordered tuples of points on the projective plane P2) defined by the follow-
ing construction: given a polygon A as input, draw all of its “shortest”
diagonals, and output the “smaller” polygon A′ which they cut out. See
Figure 3.8.

A7

A0=A8 A1

A2

A3

A4A5

A6

A′
1
2

A′
11
2

A′
21
2

A′
31
2

A′
41
2

A′
51
2

A′
61
2

A′
71
2

Figure 3.8. The pentagram map.

As shown in [29], the pentagram map is related to Y -seed mutation.
To explain the connection, one needs to describe the pentagram map in
properly chosen coordinates. We shall view a polygon with n vertices as
an n-periodic sequence A = (Ai)i∈Z of points in P2. Given two polygons
related by the pentagram map, it is convenient to index the points of one
of them by the integers Z and the points of the other by the half-integers
Z+ 1

2 , as shown at the right in Figure 3.8.

Recall the definition (3.5.6) of the projective invariant Y (P1, P2, P3, P4)
(a negative cross-ratio) associated with a quadruple of distinct collinear
points P1, P2, P3, P4. One can associate a similar invariant to a quadruple
of distinct concurrent lines L1, L2, L3, L4 in P2 passing through a point Q:
any line L not passing through Q intersects these lines in four distinct
points P1, P2, P3, P4, and the number Y (L1, L2, L3, L4) := Y (P1, P2, P3, P4)
does not depend on the choice of the line L.

Definition 3.5.11. Let A be a polygon with n vertices indexed as above
by either Z or Z + 1

2 . The y-parameters of A are the numbers yj(A) (for
1 ≤ j ≤ 2n) defined by

y2k(A) = Y (
←−−−→
AkAk−1,

←−−−→
AkAk+2,

←−−−→
AkAk+1,

←−−−→
AkAk−2)

−1,(3.5.8)

y2k+1(A) = Y (Ak,
←−−−−−→
Ak+2Ak+3 ∩ L,Ak+1,

←−−−−−→
Ak−2Ak−1 ∩ L),
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where L=
←−−−→
AkAk+1. (Here

←−→
AiAj denotes the line passing through Ai and Aj .)

See Figure 3.9.

Ak−2 Ak−1

Ak

Ak+1

Ak+2Ak+3

Ak−2 Ak−1

Ak

Ak+1

Ak+2Ak+3

L

Figure 3.9. The y-parameters of a polygon.

We next define the 2n× 2n exchange matrix B = (bij) by

(3.5.9) bij =











(−1)j if i− j ≡ ±1 mod 2n;

(−1)j+1 if i− j ≡ ±3 mod 2n;

0 otherwise.

We set Y (A) = (y1(A), . . . , y2n(A)). Thus (Y (A), B) is a Y -seed of rank 2n.

The following result, obtained in [29], is included without proof.

Proposition 3.5.12. Let A be an n-gon indexed by Z, and let A′ be the
n-gon (indexed by Z + 1

2) obtained from A via the pentagram map. Then
applying the composition of Y -seed mutations

µeven = µ2 ◦ µ4 ◦ · · · ◦ µ2n

to the Y -seed (Y (A), B) (cf. (3.5.8)–(3.5.9)) produces the Y -seed (Y (A′),−B).

Similarly, let A′ be an n-gon indexed by Z+ 1
2 . Then applying

µodd = µ1 ◦ µ3 ◦ · · · ◦ µ2n−1

to the Y -seed (Y (A′),−B) produces the Y -seed (Y (A′′), B) associated with
the n-gon A′′ obtained from A′ via the pentagram map.

(Note that the individual mutations in each of µeven and µodd commute.)
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Y -patterns have arisen in many other mathematical contexts. An in-
complete list includes:

• Thurston’s shear coordinates in Teichmüller spaces and their generaliza-
tions (see, e.g., [17] and references therein);

• recursively defined sequences of points on elliptic curves, and associated
Somos-like sequences, cf. Example 3.4.3 and Remark 3.4.5;

• wall-crossing formulas for motivic Donaldson-Thomas invariants intro-
duced by M. Kontsevich and Y. Soibelman (see, e.g., [34]), and related
wall-crossing phenomena for BPS states in theoretical physics;

• Fock-Goncharov varieties [16], including moduli spaces of point configu-
rations in basic affine spaces;

• Zamolodchikov’s Y -systems [25, 53] in the theory of the Thermodynamic
Bethe Ansatz.

We will return to some of the aforementioned applications in the subsequent
chapters.

3.6. Tropical semifields

In this section, we re-examine the combinatorics of matrix mutations, relat-
ing it to the concept of Y -seeds and their mutations discussed in Section 3.5.
We begin by introducing the notion of semifield, and in particular, the trop-
ical semifield, which will give us an important alternative way to encode the
bottom part of an extended exchange matrix B̃.

Definition 3.6.1. A semifield is an abelian group P , written multiplica-
tively, endowed with an operation of “auxiliary addition” ⊕ which is re-
quired to be commutative and associative, and satisfy the distributive law
with respect to the multiplication in P .

We emphasize that (P,⊕) does not have to be a group, just a semigroup.
Since every element of P has a multiplicative inverse, it does not contain an
additive identity (or “zero”) element (unless P is trivial).

Definition 3.6.2. Let Trop(q1, . . . , qℓ) denote the multiplicative group of
Laurent monomials in the variables q1, . . . , qℓ. We equip Trop(q1, . . . , qℓ)
with the binary operation of tropical addition ⊕ defined by

(3.6.1)

ℓ
∏

i=1

qaii ⊕
ℓ
∏

i=1

qbii =

ℓ
∏

i=1

q
min(ai,bi)
i .

Lemma 3.6.3. Tropical addition is commutative and associative, and it
satisfies the distributive law with respect to the ordinary multiplication:

(p⊕ q)r = pr ⊕ qr.
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Thus Trop(q1, . . . , qℓ) is a semifield, which we call the tropical semifield
generated by q1, . . . , qℓ.

Remark 3.6.4. The above terminology differs from the one used in tropical
geometry by what is essentially a notational convention: replacing Laurent
monomials by the corresponding vectors of exponents, one gets a semi-
field in which multiplication is the ordinary addition, and auxiliary addition
amounts to taking the minimum.

The formalism of the tropical semifield and its auxiliary addition allows
us to restate the rules of matrix mutation in the following way.

Let B̃ be an m× n extended exchange matrix. As before, xn+1, . . . , xm
are the frozen variables. We encode the bottom (m−n)×n submatrix of B̃
by the coefficient tuple y = (y1, . . . , yn) ∈ Trop(xn+1, . . . , xm)n defined by

(3.6.2) yj =

m
∏

i=n+1

x
bij
i (j ∈ {1, . . . , n}) .

Thus the matrix B̃ contains the same information as its top n × n subma-
trix B together with the coefficient tuple y.

Proposition 3.6.5. Let B̃ = (bij) and B̃′ be two extended skew-symmetri-
zable matrices related by a mutation µk, and let y = (y1, . . . , yn) and y′ =
(y′1, . . . , y

′
n) be the corresponding coefficient tuples (cf. (3.6.2)). Then

(3.6.3) y′j =















y−1
k if j = k;

yj(yk ⊕ 1)−bkj if j 6= k and bkj ≤ 0;

yj(y
−1
k ⊕ 1)−bkj if j 6= k and bkj ≥ 0.

Comparing (3.6.3) with (3.5.3), we can informally say that the coefficient
tuple y undergoes a “tropical Y -seed mutation” at k.

Proposition 3.6.5 can be proved by translating the rules of matrix mu-
tation into the language of the tropical semifield. We outline a different
proof which explains the connection between the formulas (3.5.2)–(3.5.3)
and (3.6.3), and introduces some notions that will be useful in the sequel.

Definition 3.6.6. Let Q sf(x1, . . . , xm) denote the set of nonzero rational
functions in x1, . . . , xm which can be written as subtraction-free rational ex-
pressions in these variables, with positive rational coefficients. Thus, each

element of Q sf(x1, . . . , xm) can be written in the form P (x1,...,xm)
Q(x1,...,xm) , where P

and Q are polynomials with positive coefficients. The set Q sf(x1, . . . , xm)
is a semifield with respect to the ordinary operations of addition and mul-
tiplication. We call it the universal semifield generated by x1, . . . , xm.
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This terminology is justified by the following easy lemma, whose proof
we omit (see [3, Lemma 2.1.6]). Informally speaking, this lemma says that
the generators x1, . . . , xm of the semifield Q sf(x1, . . . , xm) do not satisfy any
relations, save for those which are implied by the axioms of a semifield.

Lemma 3.6.7. For any semifield S, any map f : {x1, . . . , xm} → S extends
uniquely to a semifield homomorphism Q sf(x1, . . . , xm)→ S.

Proof of Proposition 3.6.5. Let x̃ = (x1, . . . , xm) be a collection of in-
determinates. Define the semifield homomorphism

f : Q sf(x1, . . . , xm)→ Trop(xn+1, . . . , xm)

by setting (cf. Lemma 3.6.7)

f(xi) =

{

1 if i ≤ n;

xi if i > n.

Applying mutation at k to the seed (x̃, B̃), we get a new seed (x̃′, B̃′),
in which the only new cluster variable x′k satisfies an exchange relation of
the form xkx

′
k = M1 +M2. The two monomials M1 and M2 are coprime,

and in particular do not share a frozen variable xi. Applying the semifield
homomorphism f , we obtain 1 · f(x′k) = f(M1)⊕ f(M2) = 1, so f(x′k) = 1.

Now let ŷ and ŷ′ (resp., y and y′) be defined by (3.5.1) (resp., (3.6.2)).
Since all cluster variables in x̃ and x̃′ are sent to 1 by f , we conclude that
f(ŷ) = y and f(ŷ′) = y′. Therefore applying f to (3.5.2) yields (3.6.3). �

Let (x̃, B̃) be a labeled seed as before. Since the extended exchange

matrix B̃ contains the same information as the exchange matrix B together
with the coefficient tuple y defined by (3.6.2), we can identify the seed (x̃, B̃)
with the triple (x,y, B). Abusing notation, we will also refer to such triples
as (labeled) seeds:

Definition 3.6.8. Let F be a field of rational functions (say over C) in some
m variables which include the frozen variables xn+1, . . . , xm. A labeled seed
(of geometric type) of rank n is a triple Σ = (x,y, B) consisting of

• a cluster x, an n-tuple of elements of F such that the extended cluster
x ∪ {xn+1, . . . , xm} freely generates F ;
• an exchange matrix B, a skew-symmetrizable integer matrix;

• a coefficient tuple y, an n-tuple of Laurent monomials in the tropical
semifield Trop(xn+1, . . . , xm).

We can now restate the rules of seed mutation in this language.
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Proposition 3.6.9. Let (x,y, B), with B = (bij) and y = (y1, . . . , yn),
and (x′,y′, B′), with y′ = (y′1, . . . , y

′
n), be two labeled seeds related by a

mutation µk. Then (x′,y′, B′) is obtained from (x,y, B) as follows:

• B′ = µk(B);

• y′ is given by the “tropical Y -seed mutation rule” (3.6.3);

• x′ = (x− {xk}) ∪ {x′k}, where x′k is defined by the exchange relation

(3.6.4) xk x
′
k =

yk
yk ⊕ 1

∏

bik>0

xbiki +
1

yk ⊕ 1

∏

bik<0

x−bik
i ;

Proof. The only statement requiring proof is (3.6.4), which can be easily
seen to be a rewriting of (3.1.1). �

We will use Equation (3.6.4) in Chapter 12 to define cluster algebras
over an arbitrary semifield.

We can now re-define the notion of a labeled seed pattern.

Definition 3.6.10. A labeled seed pattern of rank n is obtained by assigning
a triple Σ(t) = (x(t),y(t), B(t)) as above to every vertex t in the n-regular
tree Tn, and requiring that the triples assigned to adjacent vertices of the
tree are related by the corresponding mutation, as described in Proposi-
tion 3.6.9.

The advantage of the latest version of the definition of seed pattern
is that it enables us to perform calculations for arbitrary extensions of a
given exchange matrix to an extended exchange matrix; see (3.6.2) and the
surrounding discussion.

Example 3.6.11 (Type A2). Consider the seed pattern of rank 2

· · · 2−−− Σ(0)
1−−− Σ(1)

2−−− Σ(2)
1−−− Σ(3)

2−−− Σ(4)
1−−− Σ(5)

2−−− · · ·

formed by the seeds Σ(t) = (x(t),y(t), B(t)), for t ∈ T2
∼= Z, with the

exchange matrices

(3.6.5) B(t) = (−1)t
[

0 1
−1 0

]

(cf. Example 3.5.4). Note that we do not specify the bottom part of the
initial exchange matrix, nor even the number of frozen variables. Still, we
can express all the seeds in terms of the initial one using the language of the
tropical semifield, and following the recipe formulated in Proposition 3.6.9.
The results of the computation are shown in Figure 3.10.
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t y(t) x(t)

0 y1 y2 x1 x2

1
1

y1

y1y2
y1 ⊕ 1

y1 + x2

x1(y1 ⊕ 1)
x2

2
y2

y1y2 ⊕ y1 ⊕ 1

y1 ⊕ 1

y1y2

y1 + x2

x1(y1 ⊕ 1)

x1y1y2 + y1 + x2

(y1y2 ⊕ y1 ⊕ 1)x1x2

3
y1y2 ⊕ y1 ⊕ 1

y2

1

y1(y2 ⊕ 1)

x1y2 + 1

x2(y2 ⊕ 1)

x1y1y2 + y1 + x2

(y1y2 ⊕ y1 ⊕ 1)x1x2

4
1

y2
y1(y2 ⊕ 1)

x1y2 + 1

x2(y2 ⊕ 1)
x1

5 y2 y1 x2 x1

Figure 3.10. Seeds in type A2. The exchange matrices are given
by (3.6.5). We denote the initial cluster by x◦ = (x1, x2), and the
initial coefficient tuple by y◦ = (y1, y2). The formulas for the coefficient
tuples y(t) are the tropical versions of the formulas in Figure 3.7. Note
that the labeled seed Σ(5) is obtained from Σ(0) by interchanging the
indices 1 and 2; the sequence then continues by obvious periodicity (so
that Σ(10) is identical to Σ(0), etc.).
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of Progr. Math. Birkhäuser Boston, Boston, MA, 1994, pp. 531–568.

[38] Lusztig, G. Introduction to total positivity. In Positivity in Lie theory: open prob-
lems, vol. 26 of de Gruyter Exp. Math. de Gruyter, Berlin, 1998, pp. 133–145.

[39] Muir, T. A treatise on the theory of determinants. Revised and enlarged by William
H. Metzler. Dover Publications, Inc., New York, 1960.

[40] Newman, M. Integral matrices. Academic Press, New York-London, 1972. Pure and
Applied Mathematics, Vol. 45.

[41] Penner, R. C. The decorated Teichmüller space of punctured surfaces. Comm.
Math. Phys. 113, 2 (1987), 299–339.

[42] Postnikov, A. Total positivity, grassmannians, and networks,
arXiv:math/0609764.

[43] Richter-Gebert, J. Perspectives on projective geometry. Springer, Heidelberg,
2011.

[44] Ringel, G. Teilungen der Ebene durch Geraden oder topologische Geraden. Math.
Z. 64 (1955), 79–102 (1956).
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Chapter 4

New patterns from old

This chapter provides several methods for obtaining new seed patterns (or
new cluster algebras) from existing ones.

4.1. Restrictions and embeddings of quivers and matrices

We begin by discussing some purely combinatorial constructions involving
mutations of quivers or matrices—but not clusters or seeds.

Definition 4.1.1. Let B̃ be an m × n extended skew-symmetrizable ma-
trix. For a subset I ⊂ [1,m], consider the matrix B̃I obtained from B̃ by
restricting to the row set I and to the column set I ∩ [1, n]. It is easy to see

that B̃I is again an extended skew-symmetrizable matrix. We say that B̃I
is obtained from B̃ by restriction to I. More generally, we say that a matrix
B̃′ is obtained from B̃ by restriction if B̃′ can be identified with a matrix B̃I
as above. (Note that we will use the convention that the rows and columns

of B̃I are labeled by I rather than by {1, 2, . . . , |I|}.)
If B̃ = B̃(Q) is the extended exchange matrix of a quiver Q, then

B̃I = B̃(QI) is the extended exchange matrix of the quiver QI , where QI is
obtained from Q by taking the subset of vertices of Q indexed by I along
with all the arrows in Q that connect the vertices in I. Such a quiver QI
is called a full (or induced) subquiver of Q. The vertices in QI inherit the
property of being frozen or mutable from the ambient quiver Q.

The following property is easy to check.

Lemma 4.1.2. Mutation of matrices/quivers commutes with restriction.

More precisely, if B̃I is the restriction of an extended skew-symmetrizable
matrix B̃ to a subset I, and k ∈ I is mutable, then µk(B̃I) = (µk(B̃))I .

1
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Definition 4.1.3. We say that a property of extended skew-symmetrizable
matrices is hereditary if it is preserved under restriction: for any matrix B̃
which has this property, the same holds true for all its submatrices B̃I . For
quivers, a property is hereditary if it is inherited by the full subquivers of
any quiver which has that property.

We are interested in hereditary properties that are preserved under mu-
tations. The first example of this kind concerns the notion of finite mutation
type, cf. Definition 2.6.11; this definition can be generalized in a straight-
forward manner to extended exchange matrices. Using Lemma 4.1.2, we
obtain the following.

Proposition 4.1.4. Finite mutation type is a hereditary property.

In other words, an extended exchange matrix obtained by restriction
from an extended exchange matrix of finite mutation type will again have
finite mutation type.

We will show later that the property of being mutation-equivalent to
an orientation of a (possibly disconnected, simply laced) Dynkin diagram is
hereditary, see Remark 5.10.9. See also Theorem 10.4.1 for a version of this
statement that includes extended Dynkin diagrams.

Example 4.1.5. Recall that an acyclic quiver is one containing no oriented
cycles. A quiver with no frozen vertices is called mutation-acyclic if it is
mutation equivalent to an acyclic quiver. It was shown in [3], using the
machinery of quiver representations, that the property of being mutation-
acyclic is hereditary. It would be interesting to find an elementary proof.

In light of Example 4.1.5, it is natural to consider the unoriented ana-
logue of the notion of mutation-acyclicity.

Remark 4.1.6. A quiver is called arborizable if it is mutation-equivalent to
an orientation of a forest (i.e., an undirected simple graph with no cycles).

Unfortunately, arborizability is not a hereditary property. A counterex-
ample is given in Figure 4.1.

Lemma 4.1.7. For mutation classes Q and Q′, the following are equivalent:

(i) there exist B̃ ∈ Q and B̃′ ∈ Q′ such that B̃ is obtained from B̃′ by
restriction;

(ii) for any B̃ ∈ Q, there exists B̃′ ∈ Q′ such that B̃ is obtained from B̃′

by restriction.

Proof. The equivalence of (i) and (ii) follows from Lemma 4.1.2. �

The notion of restriction descends to a partial order on the set of muta-
tion classes of extended exchange matrices, as follows.
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1

2

5

4

3

µ5◦µ3◦µ4

1

2

5

4

3

Figure 4.1. The quiver Q shown on the left is arborizable since it is
mutation equivalent to the quiver Q′ on the right. On the other hand,
the full subquiver QI on the vertex set I = {1, 2, 3} is not arborizable:
QI is of finite mutation type, and its mutation class [QI ] consists of two
quivers (up to isomorphism) neither of which is an orientation of a tree.

Definition 4.1.8. Let Q and Q′ be mutation classes. We say that Q

is embeddable into Q′, and write Q ≤ Q′, if either of the two equivalent
conditions (i)–(ii) in Lemma 4.1.7 holds. In particular, when Q and Q′ are
mutation classes of quivers, we say that Q is embeddable into Q′, if there
exist quivers Q ∈ Q and Q′ ∈ Q′ such that Q is a full subquiver of Q′.

Example 4.1.9. In Figure 2.12, the mutation class of each quiver (including
any orientation of each of the Dynkin diagrams shown) is embeddable into
the mutation class of every quiver appearing in the rows below. We revisit
(and extend) this example in Remark 5.2.13.

Recall that [B̃] denotes the mutation class of an extended exchange

matrix B̃.

Remark 4.1.10. Fix a mutation class R. Then embeddability into R is
a hereditary property. More precisely, if [B̃] ≤ R, then [B̃I ] ≤ R for any

matrix B̃I obtained by restriction from B̃.

Remark 4.1.11. The equivalent conditions (i)–(ii) in Lemma 4.1.7 do not
imply the condition

(iii) for any B̃′ ∈ Q′, there exists B̃ ∈ Q such that B̃ is obtained from B̃′

by restriction.

To see this, consider the quivers Q and Q′ shown in Figure 4.1. Let Q = [QI ]
with I = {1, 2, 3} and Q′ = [Q′]. Then (i)–(ii) hold while (iii) fails. (Note
that that the mutation sequence relating the two quivers in Figure 4.1 uses
mutations at vertices outside of I.)

Problem 4.1.12. Let T and T ′ be finite trees, and let T and T′ denote the
mutation classes containing their respective orientations. Is it true that T is
embeddable into T′ if and only if T can be obtained from T ′ by contracting
some edges?
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Remark 4.1.13. Given mutation classes Q and R, the problem of deciding
whether Q is embeddable into R is generally very hard (unless R is finite).
For example, for any positive integer k, there is no known algorithm to
determine whether the two-vertex Kronecker quiver

(4.1.1) • −→· · · ·−→ •

with k arrows is embeddable into the mutation class of a given quiver R.
That is, for any k, there is no known general method to determine whether
R can be mutated to a quiver containing two vertices connected by k arrows.

4.2. Seed subpatterns and cluster subalgebras

Definition 4.2.1. Let (x̃, B̃) be a seed of rank n, and let xi ∈ x̃ be a cluster
variable. Freezing at the index i (or, of the variable xi) is a transformation
of the seed that reclassifies i and xi as frozen, and accordingly removes the
ith column from the exchange matrix B̃. (In addition, this would typically
require a change of indexing, provided we want to keep using the smaller
indices 1, . . . , n−1 for the mutable variables.) More generally, we can freeze
any subset of cluster variables. The order of freezing does not matter.

In the quiver case, freezing at a subset of mutable vertices amounts to
reclassifying all these vertices, and the corresponding cluster variables, as
frozen; and then removing all arrows connecting frozen vertices to each
other.

Lemma 4.2.2. Freezing commutes with seed mutation.

Proof. This property is straightforward from the definitions. �

It is natural to try to extend the operation of restriction (to a full sub-
quiver, or more generally to a submatrix of the exchange matrix) to the
level of seeds. Note however that the naive notion of restriction does not,
generally speaking, commute with seed mutation—because an exchange re-
lation for a cluster variable associated with a vertex in a subquiver may
well involve variables coming from outside the subquiver. This observation
explains the additional constraints appearing in Definition 4.2.3 below.

Definition 4.2.3. Let (x̃, B̃) be a seed, and let I ⊔ J be a partition of
[1,m] such that bjk = 0 for any j ∈ J and k ∈ I ∩ [1, n]. (In other words,
none of the variables xj , for j ∈ J , appears on the right-hand side of an
exchange relation xk x

′
k = · · · , for k ∈ I.) We then define the restricted seed

(x̃I , B̃I) with the extended cluster x̃I = (xi)i∈I and the extended exchange

(sub)matrix B̃I , cf. Definition 4.1.1. In the case where B̃ comes from a
quiver Q, this is equivalent to requiring that there are no arrows between
I ∩ [1, n] and J .



4.2. Seed subpatterns and cluster subalgebras 5

Example 4.2.4. Let Q and Q′ = µk(Q) be the quivers shown in Figure 2.1
on the left and on the right, respectively. The subset I = {a, q, k} does not
satisfy the conditions in Definition 4.2.3 (neither for Q, nor for Q′) since
the vertex k ∈ I is connected by arrows to vertices not in I. On the other
hand, if we first freeze k, then we can restrict to I in Q′ (but not in Q).

Lemma 4.2.5. Passing to a restricted seed commutes with seed mutation.

It is easy to see that repeated applications of freezing and restriction
produce an outcome that can be achieved by a single application of freezing
followed by restriction.

Definition 4.2.6. Let Σ be a seed. Freeze some subset of cluster variables,
as in Definition 4.2.1, to obtain a seed Σ′. After that, apply the construction
in Definition 4.2.3 to the seed Σ′ to obtain a restricted seed Σ′′. We then
say that the seed pattern defined by Σ′′ is a seed subpattern of the seed
pattern defined by Σ; and the cluster algebra associated to Σ′′ is a cluster
subalgebra of the cluster algebra associated to Σ.

Put simply, a cluster subpattern can be viewed as a part of the original
pattern in which we are only allowed to exchange cluster variables labeled
by a particular subset of indices, and in which we discard (some of) the
coefficient variables that do not appear at all in the resulting exchange
relations.

Note that if passing to a seed subpattern (resp., cluster subalgebra)
involves freezing at least one cluster variable, then its rank is smaller than
the rank of the original pattern (resp., cluster algebra).

Example 4.2.7. Let Pn+3 be a convex polygon whose vertices are labeled
{1, 2, . . . , n+3} in clockwise order. As explained in Section 2.2, each trian-
gulation T of Pn+3 gives rise to a seed (x̃(T ), Q(T )) whose mutable variables
are the Plücker coordinates Pij labeled by the diagonals of T , and whose
frozen variables are the Plücker coordinates labeled by the sides of Pn+3.
We thus obtain a seed pattern and a cluster algebra R2,n+3 of rank n.

Let S = {s1 < · · · < sℓ} be a subset of {1, 2, . . . , n}, with ℓ ≥ 4, and
let PS be the convex polygon on the vertex set S. Let T be a triangulation of
Pn+3 that includes the sides of the polygon PS , and consequently contains a
triangulation TS ofPS . Take the seed (x̃(T ), Q(T )), and freeze all the cluster
variables in x̃(T ) corresponding to the sides of PS . We can now restrict from
x̃(T ) to the subset x̃(TS) consisting of the elements labeled by diagonals and
sides of PS . The resulting seed (x̃(TS), Q(TS)) defines a rank ℓ− 3 cluster
subalgebra (isomorphic to R2,ℓ) of the cluster algebra R2,n+3.

The following properties of seed subpatterns and cluster subalgebras
follow immediately from the definitions.
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Lemma 4.2.8.

• Let Σ be a seed pattern. A seed subpattern of a seed subpattern of Σ is
again a seed subpattern of Σ.

• If a cluster algebra has finitely many cluster variables, then so does any
of its cluster subalgebras.

• A connected component of a quiver gives rise to a seed subpattern.

4.3. Changing the coefficients

In this section we will establish a connection between seed patterns utilizing
the same exchange matrices but different coefficient tuples. For a more
thorough and comprehensive treatment, see [14].

We begin by a brief discussion of a couple of very simple special instances
of coefficient change.

Definition 4.3.1. Let (x̃, B̃) be a seed with an m-element extended clus-
ter x̃, and let xi ∈ x̃ be a coefficient (or frozen) variable. Trivialization
at the index i (or, of the variable xi) is a transformation of the seed that
removes xi from x̃, and accordingly removes i from the set of indices, and
the ith row from the exchange matrix B̃. (As in the case of freezing, cf.
Definition 4.2.1, a renumbering may be required if we want to use the in-
dices 1, . . . ,m− 1 after the trivialization.) More generally, we can trivialize
any subset of coefficient variables; the order of operations does not matter.

In the quiver case, trivialization amounts to a removal of a subset of
frozen vertices, together with all arrows incident to them; and the removal
of the corresponding coefficient variables.

Lemma 4.3.2. Trivialization of coefficients commutes with seed mutation.

Proof. The key observation is that trivialization of a coefficient variable xi
can be interpreted as setting xi = 1. �

It is also easy to see that trivializing coefficients commutes with taking
a seed subpattern.

Remark 4.3.3. Here is another simple way of transforming a seed pattern
into a new one: introduce (any number of) additional “dummy” coefficient
variables that do not appear in any exchange relations. That is, enlarge the
extended exchange matrices by adding rows consisting entirely of zeroes;
in the quiver case, just add isolated frozen vertices. This transformation
changes the associated cluster algebra by tensoring it with the polynomial
ring generated by the dummy variables.

We next describe a large class of “rescaling” transformations of seed pat-
terns. Roughly, the idea is to multiply each cluster variable by a Laurent
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monomial in the coefficient variables, and then rewrite the exchange rela-
tions in terms of the “rescaled” variables. (We use quotation marks since we
are not simply rescaling our variables, but also sending them to a different
ambient field of rational functions.) The key property of this construction,
formalized in Theorem 4.3.4 below, is that the resulting “rescaled” seeds
are again related by (the same) mutations, yielding a seed pattern.

Theorem 4.3.4. Let n, m, m̄ be positive integers, with n ≤ m and n ≤ m̄.
Let F and F̄ be the fields of rational functions in the variables x1, . . . , xm
and x̄1, . . . , x̄m̄, respectively. Let

ϕ : Q sf(x1, . . . , xm)→ Trop(x̄n+1, . . . , x̄m̄)

be a semifield homomorphism (determined by an arbitrary choice of Laurent
monomials ϕ(xi)∈Trop(x̄n+1, . . . , x̄m̄)). Define the semifield map

ψ : Q sf(x1, . . . , xm)→ Q sf(x̄1, . . . , x̄m̄)

by setting

(4.3.1) ψ(xi) =

{

x̄i ϕ(xi) if i ≤ n;
ϕ(xi) if i > n.

Let (x(t),y(t), B(t))t∈Tn be a seed pattern in F (cf. Definition 3.6.10), with

x(t) = (x1;t, . . . , xn;t) ∈ Fn,
y(t) = (y1;t, . . . , yn;t) ∈ Trop(xn+1, . . . , xm)

n,

B(t) = (btij),

with the initial cluster x(t◦) = (x1, . . . , xn), and with the frozen variables
xn+1, . . . , xm. Define x̄(t) = (x̄1;t, . . . , x̄n;t) and ȳ(t) = (ȳ1;t, . . . , ȳn;t) by

x̄i;t =
ψ(xi;t)

ϕ(xi;t)
,(4.3.2)

ȳk;t = ϕ(ŷk;t) = ϕ(yk;t)

n
∏

i=1

ϕ(xi;t)
bt
ik .(4.3.3)

Then (x̄(t), ȳ(t), B(t))t∈Tn is a seed pattern in F̄ , with the same exchange
matrices B(t) and with the frozen variables x̄n+1, . . . , x̄m̄.

Proof. By Corollary 3.5.5, the elements ŷi;t satisfy the Y -pattern recur-
rences. It follows that their images under the semifield homomorphism ϕ,
cf. (4.3.3), satisfy (3.6.3), the tropical version of these recurrences. It re-
mains to check that the elements x̄i;t and ȳj;t satisfy the exchange relations

(4.3.4) x̄k;t x̄k;t′ =
ȳk;t

ȳk;t ⊕ 1

∏

bt
ik
>0

x̄
bt
ik

i;t +
1

ȳk;t ⊕ 1

∏

bt
ik
<0

x̄
−bt

ik

i;t ,
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for t
k−−− t′ (cf. (3.6.4)).

First note that by (4.3.3) and the distributive property for the tropical
semifield (Lemma 3.6.3), we have that

(4.3.5)
(

ȳk;t⊕1
)

∏

bt
ik
<0

ϕ(xi;t)
−bt

ik = ϕ(yk;t)
∏

bt
ik
>0

ϕ(xi;t)
bt
ik⊕

∏

bt
ik
<0

ϕ(xi;t)
−bt

ik .

We shall deduce (4.3.4) from the exchange relation

(4.3.6) xk;t xk;t′ =
1

yk;t ⊕ 1

(

yk;t
∏

bt
ik
>0

x
bt
ik

i;t +
∏

bt
ik
<0

x
−bt

ik

i;t

)

.

Applying the semifield homomorphism ψ (resp., ϕ) to both sides of (4.3.6),
dividing respective images by each other, using the fact that ψ and ϕ agree
on the frozen variables xn+1, . . . , xm, and using (4.3.2) and (4.3.5), we get:

x̄k;t x̄k;t′ =
ψ(xk;t)ψ(xk;t′)

ϕ(xk;t)ϕ(xk;t′)

=
ϕ(yk;t ⊕ 1)

ψ(yk;t ⊕ 1)
·
ψ(yk;t)

∏

bt
ik
>0 ψ(xi;t)

bt
ik +

∏

bt
ik
<0 ψ(xi;t)

−bt
ik

ϕ(yk;t)
∏

bt
ik
>0 ϕ(xi;t)

bt
ik ⊕∏

bt
ik
<0 ϕ(xi;t)

−bt
ik

=
1

ȳk;t ⊕ 1
·
ϕ(yk;t)

∏

bt
ik
>0 ψ(xi;t)

bt
ik +

∏

bt
ik
<0 ψ(xi;t)

−bt
ik

∏

bt
ik
<0 ϕ(xi;t)

−bt
ik

=
1

ȳk;t ⊕ 1

(

ϕ(yk;t)
∏

bt
ik
>0

ψ(xi;t)
bt
ik

∏

bt
ik
<0

ϕ(xi;t)
bt
ik +

∏

bt
ik
<0

x̄
−bt

ik

i;t

)

=
1

ȳk;t ⊕ 1

(

ȳk;t
∏

bt
ik
>0

x̄
bt
ik

i;t +
∏

bt
ik
<0

x̄
−bt

ik

i;t

)

. �

We next restate Theorem 4.3.4 in terms of extended exchange matrices.

Proposition 4.3.5. Keep the assumptions and notation of Theorem 4.3.4.
Let B̃◦ = B̃(t◦) be the initial extended exchange matrix of the original
exchange pattern. Then the new initial seed (x̄(t◦), ȳ(t◦), B(t◦)) has the

extended exchange matrix B̃◦ = ΨB̃◦ where Ψ = (ψij) is the m̄×m matrix
whose entries ψij are defined by

(4.3.7) ψ(xj) =
m̄
∏

i=1

x̄
ψij

i .

(Note that (4.3.1) implies that ψ(xj) is a Laurent monomial in x̄1, . . . , x̄m̄.)
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Proof. We use the notation B̃◦ = (b̄ik) and B̃◦ = (bik). Recall that b̄ik = bik
for i ≤ n. We have:

∏

i≤m̄

x̄b̄iki = ȳk;t◦
∏

j≤n

x̄
b̄jk
j = ϕ(yk;t◦)

∏

j≤n

ϕ(xj)
bjk

∏

j≤n

x̄
bjk
j

=
∏

j≤m

ϕ(xj)
bjk

∏

j≤n

x̄
bjk
j =

∏

j≤m

ψ(xj)
bjk =

∏

i≤m̄

∏

j≤m

x̄
ψijbjk
i ,

establishing that B̃◦ = ΨB̃◦. (Here we used (3.6.2) and (4.3.7).) �

The following corollary will be particularly useful in the sequel; see the
overview of Chapter 5 which follows Theorem 5.2.12.

Corollary 4.3.6. Consider two seed patterns

(Σ(t))t∈Tn = (x(t),y(t), B(t))t∈Tn ,

(Σ̄(t))t∈Tn = (x̄(t), ȳ(t), B̄(t))t∈Tn

with the same exchange matrices B(t) = B̄(t), for t ∈ Tn. Suppose that all

rows of the initial extended exchange matrix B̃◦ for the second seed pattern
lie in the Z-span of the rows of the initial extended exchange matrix B̃◦ for
the first seed pattern. If two labeled (resp., unlabeled) seeds Σ(t) = Σ(t′)
coincide in the first pattern, then the corresponding seeds Σ̄(t) = Σ̄(t′) in
the second pattern coincide as well.

Proof. We use the notation of Proposition 4.3.5. In particular, we have ini-
tial clusters x(t◦) = (x1, . . . , xn) and x̄(t◦) = (x̄1, . . . , x̄n), with frozen vari-
ables xn+1, . . . , xm and x̄n+1, . . . , x̄m̄ respectively. We also have exchange

matrices B̃◦ and B̃◦, which are m× n and m̄× n matrices whose top n× n
submatrices equal B(t◦). Recall from the discussion surrounding (3.6.2)
that an extended exchange matrix contains the same information as its top
n× n submatrix together with the coefficient tuple y.

The Z-span condition in our hypothesis means that B̃◦ = ΨB̃◦ where
Ψ = (ψij) is an integer m̄×m matrix. Since the top n × n submatrices of

B̃◦ and B̃◦ coincide, we may assume that Ψ is a block matrix of the form

Ψ =

[

I 0
Ψ1 Ψ2

]

where I is the n× n identity matrix.

We then define the maps ψ and ϕ by

ψ(xj) =

m̄
∏

i=1

x̄
ψij

i , ϕ(xj) =

m̄
∏

i=n+1

x̄
ψij

i ,
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for 1 ≤ j ≤ m (cf. (4.3.7)), so as to agree with (4.3.1) and (4.3.7).

We claim that initial seeds (x̄(t◦), ȳ(t◦), B̄(t◦)) and (x(t◦),y(t◦), B(t◦))
are related via formulas (4.3.2)–(4.3.3); once we know the claim, it follows
from Theorem 4.3.4 that each seed (x̄(t), ȳ(t), B̄(t)) of the second seed pat-
tern is related to the corresponding seed (x(t),y(t), B(t)) of the first seed
pattern via (4.3.2)–(4.3.3). And this implies the corollary.

To verify that our initial seeds satisfy (4.3.2), note that for 1 ≤ j ≤ n, we
have

ψ(xj)
ϕ(xj)

=
∏n
i=1 x̄

ψij

i , which is equal to x̄j , since Ψ restricts to the identity

matrix on the first n rows and columns. To verify that our initial seeds
also satisfy (4.3.3), we need to use (3.6.2) to relate the y-variables to the
extended cluster variables. We find that the left-hand side of (4.3.3) becomes

ȳk =
∏m̄
ℓ=n+1 x̄

b̄ℓk
ℓ , while the right-hand side becomes ϕ(yk)

∏n
i=1 ϕ(xi)

bik =

ϕ(
∏m
i=n+1 x

bik
i )

∏n
i=1 ϕ(xi)

bik =
∏m
i=1

∏m̄
ℓ=n+1 x̄

ψℓibik
ℓ . We can see that the

two sides are equal by using the fact that B̃◦ = ΨB̃◦, or equivalently, that
b̄ℓk =

∑m
i=1 ψℓibik. �

Remark 4.3.7. The Z-span condition in Corollary 4.3.6 is in particular
satisfied if the initial extended exchange matrix B̃◦ = B̃(t◦) has full Z-rank,
i.e., the Z-span of its rows is the entire lattice Zn of integer row-vectors.

This condition is also satisfied if the second seed pattern has trivial
coefficients, i.e., if it has no frozen variables.

Exercise 4.3.8. Use Corollary 4.3.6 to show that any seed pattern with
exchange matrices

(4.3.8) B(t) = (−1)t
[

0 1
−c 0

]

,

with c ∈ {1, 2, 3}, has finitely many distinct seeds. To this end, consider the
seed with the initial extended exchange matrix

B̃◦ =





0 1
−c 0
1 0



 .

Note that the rows of B̃◦ span Z2 over Z, so by Remark 4.3.7, it suffices to
check that the seed pattern defined by B̃◦ has finitely many seeds. (In fact,
it has five seeds for c = 1, six seeds for c = 2, and eight seeds for c = 3.)

Remark 4.3.9. In Corollary 4.3.6, the Z-span condition can be replaced by
one involving a Q-span. The proof remains essentially the same but requires
allowing rational powers of the variables. This can be handled in two alter-
native ways: algebraically, by working in the semifield of “subtraction-free
Puiseux expressions;” or analytically, by always choosing the branch of a
fractional power that takes positive values at positive arguments.
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4.4. Folding

Folding is a procedure that, under certain conditions, produces new seed
patterns from existing ones. The basic idea is to exploit symmetries of a
quiver to construct a quotient object (a folded extended exchange matrix),
then design an equivariant mutation dynamics that would drive the algebraic
dynamics of “folded seeds.”

In this text, we discuss folding in a somewhat limited generality; see [6]
for a more elaborate treatment. Our main application of folding will occur
in Chapter 5, where we use it to construct cluster algebras of finite types
BCFG from those of “simply-laced” types ADE. Folding has also been used
in [7] to classify the cluster algebras of finite mutation type; see Section 10.2.

We begin with a motivating example. Consider the quiver

1←− 2 −→ 3

of type A3, with three mutable vertices. We notice the Z/2Z symmetry of
the quiver, and place only two distinct variables at its vertices, as follows:

x0 ←− x1 −→ x0 .

The exchange relations then become:

x0x
′
0 = x1 + 1,

x1x
′
1 = x20 + 1.

If we want to preserve the symmetry, we can now mutate either at vertex 2,
or simultaneously at 1 and 3. Continuing in this fashion, we recover the
seed pattern from Example 3.2.7.

Definition 4.4.1. Let Q be a labeled quiver, as in Definition 2.7.1. More
explicitly, we assume that Q has m vertices labeled 1, . . . ,m; the vertices
labeled 1, . . . , n are mutable; the vertices labeled n+1, . . . ,m are frozen. Let
G be a group acting on the vertex set of Q, or equivalently on {1, . . . ,m}.
(For all practical purposes, it is safe to assume that the group G is finite.)
The notation i ∼ i′ will mean that i and i′ lie in the same G-orbit. We say
that the quiver Q (or the corresponding m × n extended exchange matrix

B̃ = B̃(Q) = (bij)) is G-admissible if

(1) for any i ∼ i′, index i is mutable (i.e., i ≤ n) if and only if i′ is;

(2) for any indices i and j, and any g ∈ G, we have bij = bg(i),g(j) ;

(3) for mutable indices i ∼ i′, we have bii′ = 0;

(4) for any i ∼ i′, and any mutable j, we have bijbi′j ≥ 0.
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Assume that Q is G-admissible. We call a G-orbit mutable (resp., frozen)
if it consists of mutable (resp., frozen) vertices, cf. condition (1) above. Let

B̃G = B̃(Q)G = (bGIJ) be the matrix whose rows (resp., columns) are labeled
by the G-orbits (resp., mutable G-orbits), and whose entries are given by

(4.4.1) bGIJ =
∑

i∈I

bij ,

where j is an arbitrary index in J . (By condition (2), the right-hand side

of (4.4.1) does not depend on the choice of j.) We then say that B̃G is

obtained from B̃ (or from the quiver Q) by folding with respect to the given
G-action.

An example of folding is shown in Figure 4.2.

x3

x2

x2

x3

x1 B̃G =





0 −1 −1
2 0 0
2 0 0





x1 x
′
1 = x22 x

2
3 + 1

x2 x
′
2 = 1 + x1

x3 x
′
3 = 1 + x1

Figure 4.2. The quiver Q shown on the left is G-admissible with re-
spect to the action of the group G = Z/2Z wherein the generator of G
acts on the vertices of Q by a 180◦ rotation. All 5 vertices are mutable.

Remark 4.4.2. Condition (3) can be restated as saying that each G-orbit
I is totally disconnected ; that is, there is no arrow between two vertices in I.
Condition (4) means that there is no oriented path of length 2 through a
mutable vertex that connects two vertices belonging to the same G-orbit.
These conditions are dictated by the following considerations. If i and i′

are in the same G-orbit I, then in the folded seed (to be defined below
in this section), the same variable xI will be associated with both i and i′.
We do not want xI to appear on the right-hand side of the exchange relation
for xI (hence (3)), nor do we want xI to appear in both monomials on the
right-hand side of the exchange relation for some variable xJ (hence (4)).

Lemma 4.4.3. Let Q be a G-admissible quiver. Then B̃(Q)G is an extended
skew-symmetrizable matrix.

Proof. As above, we use the notation B̃ = B̃(Q) = (bij). Formula (4.4.1)
implies that, for I and J mutable,

(4.4.2) |J | bGIJ =
∑

i∈I

∑

j∈J

bij = −
∑

j∈J

∑

i∈I

bji = −|I| bGJI ,

so the square matrix (|J | bGIJ ) is skew-symmetric, and hence B̃(Q)G = (bGIJ)
is skew-symmetrizable. �
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Lemma 4.4.4. Let Q be a G-admissible quiver, with B̃(Q) = (bij). Let
I and J be two G-orbits, with J mutable. Then either all entries bij , for
i ∈ I and j ∈ J , are nonnegative, or all are nonpositive. Consequently the
following are equivalent:

• bGIJ > 0;

• there exist i ∈ I and j ∈ J such that bij > 0;

• for every i ∈ I, there exists j ∈ J such that bij > 0.

Similar equivalences hold with all inequality signs reversed.

Proof. Let i, i′ ∈ I and j, j′ ∈ J . Let g ∈ G be such that g(j′) = j. Using
conditions (2) and (4) of Definition 4.4.1, we get bijbi′j′ = bijbg(i′),j ≥ 0, as
desired. The equivalence statements in the lemma follow by (4.4.1) together
with condition (2). �

For Q a G-admissible quiver, condition (3) of Definition 4.4.1 ensures (cf.
Exercise 2.1.4(3)) that the result of mutating Q at the set of all vertices in
a mutable G-orbit K does not depend on the order of mutations. We will
denote this composition of mutations by

(4.4.3) µK =
∏

k∈K

µk ,

making sure to only use this notation when it is well defined.

Lemma 4.4.5. Let Q be a G-admissible quiver, with B̃ = B̃(Q). Let K be
a mutable G-orbit such that µK(Q) is also G-admissible. Then

(µK(B̃))G=µK(B̃
G).

Note the abuse of notation in the last equality: on the left, µK is a
composition of mutations defined by (4.4.3); on the right, µK is a single

mutation at the mutable index K of the folded matrix B̃G.

Proof. Using the definition of matrix mutation (2.7.1) in combination with
Lemma 4.4.4, we obtain:
(4.4.4)

µK(B̃
G)IJ =















































−bGIJ if K∈{I, J};
bGIJ+b

G
IKb

G
KJ if K /∈{I, J} and bik > 0 and bkj > 0

for some i ∈ I, j ∈ J, k ∈ K;

bGIJ−bGIKbGKJ if K /∈{I, J} and bik < 0 and bkj < 0

for some i ∈ I, j ∈ J, k ∈ K;

bGIJ otherwise.
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On the other hand, mutating B̃ at each k ∈ K (recall that K is totally
disconnected), we get:
(4.4.5)

µK(B̃)ij =















































−bij if i ∈ K or j ∈ K (i.e., K∈{I, J});
bij +

∑

k∈K

bikbkj if i /∈ K, j /∈ K (i.e., K /∈{I, J}), and
bik > 0 and bkj > 0 for some k ∈ K;

bij −
∑

k∈K

bikbkj if i /∈ K, j /∈ K (i.e., K /∈{I, J}), and
bik < 0 and bkj < 0 for some k ∈ K;

bij otherwise.

By (4.4.1) (recall that µK(B̃) is G-admissible), we have, for any j ∈ J :

((µK(B̃))G)IJ =
∑

i∈I

(µK(B̃))ij .

We note furthermore that all terms in the last sum will fall into the same
case in (4.4.5). It is now easy to check that (µK(B̃

G))IJ = ((µK(B̃))G)IJ .
For example, in the second case of (4.4.5), we have:

((µK(B̃))G)IJ =
∑

i∈I

(

bij +
∑

k∈K

bikbkj
)

= bGIJ +
∑

k∈K

bkj
∑

i∈I

bik

= bGIJ + bGIKb
G
KJ

= µK(B̃
G)IJ . �

The “mutation commutes with folding” statement in Lemma 4.4.5 comes
with a caveat: it requires admissibility of both quivers Q and µK(Q) with
respect to the group action at hand. Unfortunately, admissibility does not
propagate via mutations: Q may be G-admissible while µK(Q) is not.

Example 4.4.6. Let Q be an oriented 6-cycle with six mutable vertices
labeled 0 through 5 in clockwise order. Let the generator of G = Z/2Z act
by sending each vertex i to the vertex (i+3) mod 6. Then Q is G-admissible
but for any mutable Z/2Z-orbit K, the quiver µK(Q) is not.

We next proceed to the folding of seeds. This will require, in addition to
an action of a group G, a choice of a semifield homomorphism that “bundles
together” the variables associated with the vertices in the same G-orbit.

Definition 4.4.7. Let G be a group acting on the set of indices {1, . . . ,m}
so that every g ∈ G maps the subset {1, . . . , n} to itself. Let mG denote the
number of orbits of this action. Let F (resp., FG) be a field isomorphic to the
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field of rational functions inm (resp.,mG) independent variables, and let Fsf

(resp., FGsf ) denote the corresponding semifields of subtraction-free rational

expressions. Let ψ : Fsf → FGsf be a surjective semifield homomorphism.

Let Q be a quiver as above. A seed Σ = (x̃, B̃(Q)) in F , with the
extended cluster x̃ = (xi), is called (G,ψ)-admissible if

• Q is a G-admissible quiver;

• for any i ∼ i′, we have ψ(xi) = ψ(xi′).

In this situation, we define a new “folded” seed ΣG = (x̃G, B̃G) in FGsf ⊂ FG
whose extended exchange matrix B̃G is given by (4.4.1), and whose extended
cluster x̃G = (xI) has m

G elements xI indexed by the G-orbits and defined
by xI = ψ(xi), for i ∈ I. Note that since ψ is a surjective homomorphism,
the elements xI generate FG, hence are algebraically independent.

We can now extend Lemma 4.4.5 to the folding of seeds.

Lemma 4.4.8. Let Σ = (x̃, B̃(Q)) be a (G,ψ)-admissible seed as above. Let
K be a mutable G-orbit. If the quiver µK(Q) is G-admissible, then the seed
µK(Σ) is (G,ψ)-admissible, and moreover (µK(Σ))

G = µK(Σ
G).

Proof. Let O denote the set of G-orbits. As above, we use the notation

Σ = (x̃, B̃), x̃ = (xi), B̃ = B̃(Q) = (bij),

ΣG = (x̃G, B̃G), x̃G = (xI)I∈O, B̃G = (bGIJ)

By Lemma 4.4.5, all we need to show is that the extended clusters in µK(Σ
G)

and in (µK(Σ))G are the same. The extended cluster in µK(Σ
G) is obtained

from x̃G by replacing xK by the element x′K defined by

xKx
′
K =

∏

bG
IK
>0

x
bG
IK

I +
∏

bG
IK
<0

x
−bG

IK

I .(4.4.6)

The extended cluster in µK(Σ) is obtained from x̃ by replacing each xk,
for k ∈ K, by the element x′k defined by

(4.4.7) xkx
′
k =

∏

bik>0

xbiki +
∏

bik<0

x−biki .

The extended cluster in (µK(Σ))G is then obtained by applying the ho-
momorphism ψ; as we know, ψ sends each xi to x[i] where [i] denotes the
G-orbit containing i. As a result, the cluster contains the variables xI for
I ∈ O−{K}, together with ψ(x′k); here k is an arbitrary element of K. We
need to show that ψ(x′k) = x′K where x′K is defined by (4.4.6).
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Applying ψ to (4.4.7), we get

(4.4.8) xKψ(x
′
k) =

∏

bik>0

xbik[i] +
∏

bik<0

x−bik[i] .

Note that in the first monomial on the right-hand side of (4.4.8), the ex-
ponent of a given xI will be nonzero if and only if there exists i ∈ I such
that bik > 0, in which case the exponent will be

∑

i∈I bik = bGIK . But
by Lemma 4.4.4, the existence of such an index i ∈ I is equivalent to the
inequality bGIK > 0. It follows that the first monomials in the right-hand
sides of (4.4.8) and (4.4.6) agree. A similar argument shows that the second
monomials agree, and we are done. �

Definition 4.4.9. Let G be a group acting on the vertex set of a quiver Q.
We say that Q is globally foldable with respect to G if Q is G-admissible
and moreover for any sequence of mutable G-orbits J1, . . . , Jk, the quiver
(µJk ◦ · · · ◦ µJ1)(Q) is G-admissible.

Exercise 4.4.10. For the quiver Q and the action of the group G = Z/2Z
described in Figure 4.2, show that Q is globally foldable with respect to G.

Lemma 4.4.8 implies that if Q is globally foldable, then we can fold all
the seeds in the corresponding seed pattern.

Corollary 4.4.11. Let Q be a quiver which is globally foldable with respect
to a group G acting on the set of its vertices. Let Σ = (x̃, B̃(Q)) be a
seed in the field F of rational functions freely generated by an extended
cluster x̃ = (xi). Let x̃G = (xI) be a collection of formal variables labeled
by the G-orbits I, and let FG denote the field of rational functions in these
variables. Define the surjective homomorphism

ψ : Fsf → FGsf
xi 7→ xI (i ∈ I)

of the corresponding semifields of subtraction-free rational expressions, so
that Σ is a (G,ψ)-admissible seed. Then for any mutable G-orbits J1, . . . , Jk,
the seed (µJk ◦ · · · ◦ µJ1)(Σ) is (G,ψ)-admissible, and moreover the folded
seeds ((µJk ◦ · · · ◦ µJ1)(Σ))G form a seed pattern in FG, with the initial

extended exchange matrix (B̃(Q))G.

In general, it may be very difficult to determine whether a quiver is
globally foldable. Fortunately, the cases that we will need in Chapter 5 for
the purposes of finite type classification will turn out to be easy to handle.
One of these cases is discussed in Exercise 4.4.12 below. We will revisit this
exercise in Section 5.7.
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Exercise 4.4.12. Let Q be the quiver at the left of Figure 4.3, with all
its vertices mutable. Let the generator of the group G = Z/2Z act on
the vertices of Q by fixing the vertices 1 and 2, exchanging the vertices
3 and 4, and exchanging the vertices 5 and 6. Then Q is G-admissible;
the folded skew-symmetrizable matrix B(Q)G is shown at the right in Fig-
ure 4.3. (The rows and columns of this matrix are labeled by the orbits
{1}, {2}, {3, 4}, {5, 6}.) Show that Q is globally foldable, by cataloguing all
quivers (up to G-equivariant isomorphism) which can be obtained from Q
by iterating the transformations µJ associated with G-orbits J .

5 3 2

1

4 6

B̃G =









0 −1 0 0
1 0 1 0
0 −2 0 −1
0 0 1 0









Figure 4.3. Folding a type E6 quiver.

Remark 4.4.13. There exist skew-symmetrizable square matrices which
cannot be obtained by folding a globally foldable quiver, see [22, Section 14].
Consequently the technique of folding (in the current state of the art) is
not powerful enough to reduce the study of general seed patterns, and the
associated cluster algebras, to the quiver case.





Chapter 5

Finite type classification

A seed pattern (or the corresponding cluster algebra) is said to be of finite
type if it has finitely many different seeds. To rephrase, a seed gives rise to a
pattern (or cluster algebra) of finite type if the process of iterated mutation
produces finitely many distinct seeds.

If a seed pattern has finite type, then it obviously has finitely many dis-
tinct cluster variables. In fact the converse is also true, see Proposition 5.9.4.

The main result of this chapter is the classification, originally obtained
in [11], of seed patterns (equivalently cluster algebras) of finite type. It turns
out that the property of a cluster algebra with an initial seed (x,y, B) to be
of finite type depends only on (the mutation class of) the exchange matrix B
but not on the choice of a coefficient tuple y. Even more remarkably, such
mutation classes are in one-to-one correspondence with Cartan matrices of
finite type, or equivalently with finite crystallographic root systems.

To show that a cluster algebra of finite type must come from a Cartan
matrix of finite type, we follow the approach of [11]. In particular we show
that a cluster algebra has finite type if and only if all its exchange matrices
B = (bij) have the property that |bijbji| ≤ 3 for any pair of indices i, j.

The fact that cluster algebras coming from finite-type Cartan matri-
ces are of finite type is established by a string of case-by-case arguments.
For each type, we construct a particular seed pattern that has finitely
many seeds, and whose initial extended exchange matrix has full Z-rank.
A generalization to arbitrary coefficients is then obtained via Remark 4.3.7.
We note that the original proof [11] of this direction of the classification
theorem used a different (root-theoretic) strategy relying on some rather
delicate properties of generalized associahedra, cf. Section 9.3.

We are not aware of a simple argument that would directly derive the
classification of cluster algebras of finite type from one of the instances of
the classical Cartan-Killing classification (see Theorem 5.2.6).

19
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5.1. Finite type classification in rank 2

Any seed pattern of rank 1 has two seeds, so is of finite type. In this section,
we determine which seed patterns of rank 2 are of finite type.

Recall that the seeds in any seed pattern of rank 2 can be labeled by
integers t ∈ Z. Without loss of generality, we may assume that the exchange
matrices B(t) are given by

(5.1.1) B(t) = (−1)t
[

0 b
−c 0

]

where the integers b and c are either both positive, or both equal to 0.

Theorem 5.1.1. A seed pattern of rank 2, with exchange matrices given
by (5.1.1), is of finite type if and only if bc ≤ 3.

The statement of Theorem 5.1.1 is very similar to the classification of
finite crystallographic reflection groups of rank 2, which we recall in Propo-
sition 5.1.2 below. (The proof of Theorem 5.1.1 will not depend on this
proposition.)

Proposition 5.1.2. Consider the subgroup W ⊂ GL2 generated by the
reflections

(5.1.2) s1 =

[

−1 b
0 1

]

, s2 =

[

1 0
c −1

]

.

(As above, b, c ∈ Z are either both positive, or both equal to 0.) Then W is
a finite group if and only if bc ≤ 3.

Proof. Since s21 = s22 = 1, the group W is finite if and only if the element

s1s2 =

[

bc− 1 −b
c −1

]

is of finite order. An eigenvalue λ of s1s2 satisfies the characteristic equation

(5.1.3) λ2 − (bc− 2)λ+ 1 = 0.

If bc ∈ {1, 2, 3}, then the roots of (5.1.3) are two distinct roots of unity, so
s1s2 has finite order (specifically, order 3, 4, or 6, respectively). If b = c = 0,
then (s1s2)

2 = 1 by inspection. If bc > 4, then the eigenvalues are real and
not equal to ±1, so W is infinite. For bc = 4, one checks that

(s1s2)
k =

[

2k + 1 −kb
kc −2k + 1

]

,

implying that W is infinite in this case as well. �
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Proof of Theorem 5.1.1. The case b = c = 0 is trivial. The cases bc ∈
{1, 2, 3} are handled by the calculation from Exercise 4.3.8. An alternative
(more conceptual) explanation of why the rank 2 cluster algebras with bc ≤ 3
are of finite type will be given later in this chapter.

Recall from Exercise 4.3.8 that any seed pattern with exchange matrices

(5.1.4) B(t) = (−1)t
[

0 1
−c 0

]

,

with c ∈ {1, 2, 3}, has finitely many distinct seeds.

Now suppose that bc ≥ 4. Let (x(t),y(t), B(t))t∈Z be a seed pattern
in an ambient field F whose exchange matrices are given by (5.1.1). We
denote the cluster variables in this pattern by zt (t ∈ Z), so that

. . . , x(0) = (z1, z2), x(1) = (z3, z2), x(2) = (z3, z4), x(3) = (z5, z4), . . .

Our goal is to show that the set {zt : t ∈ Z} ⊂ F is infinite. (In fact, all
cluster variables zt turn out to be distinct.)

Let u be a formal variable, and consider the semifield U = {ur : r ∈ R}
of formal monomials in u with real exponents, with the operations defined by

ur ⊕ us = umax(r,s),

ur · us = ur+s.

We shall prove that the set {zt} is infinite by constructing a semifield ho-
momorphism ψ : F → U such that the image {ψ(zt) : t ∈ Z} ⊂ U is infinite.
We consider the cases bc > 4 and bc = 4 separately.

Case 1: bc > 4. In this case, there is a real number λ > 1 satisfy-
ing (5.1.3). Let ψ be the map uniquely defined by setting the image of
every frozen variable to be 1, and setting

(5.1.5) ψ(z1) = uc, ψ(z2) = uλ+1.

The exchange relations imply that the images ψ(zt) satisfy

(5.1.6) ψ(zt−1)ψ(zt+1) =

{

ψ(zt)
c ⊕ 1 if t is even;

ψ(zt)
b ⊕ 1 if t is odd

(cf. (3.2.2)). We claim that, for k = 0, 1, 2, . . . , one has

(5.1.7) ψ(z2k+1) = uλ
kc, ψ(z2k+2) = uλ

k(λ+1).

The base case k = 0 holds in view of (5.1.5). Induction step:

ψ(z2k+3) =
ψ(z2k+2)

c ⊕ 1

ψ(z2k+1)
= uλ

k(λ+1)c−λkc = uλ
k+1c,

ψ(z2k+4) =
ψ(z2k+3)

b ⊕ 1

ψ(z2k+2)
= uλ

k+1cb−λk(λ+1) = uλ
k(λcb−λ−1) = uλ

k+1(λ+1),
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where the last equality relies on (5.1.3). Since λ > 1, formulas (5.1.7) imply
that the image set {ψ(zt)} ⊂ U is infinite.

Case 2: bc = 4. While the general logic of the argument remains
the same, it has to be adjusted since in this case, the only root of the
equation (5.1.3) is λ = 1. So we replace (5.1.5) by

ψ(z1) = u, ψ(z2) = ub,

and verify by induction that ψ(z2k−1) = u2k−1 and ψ(z2k+2) = u(k+1)b,
implying the claim. Details are left to the reader. �

Theorem 5.1.1 suggests the following definition.

Definition 5.1.3. A skew-symmetrizable matrix B = (bij) is called 2-finite
if and only if for any matrix B′ mutation equivalent to B and any indices i
and j, we have |b′ijb′ji| ≤ 3.

Corollary 5.1.4. In a seed pattern of finite type, every exchange matrix is
2-finite.

Proof. This is an immediate consequence of Theorem 5.1.1. If an exchange
matrix B is mutation equivalent to B′ = (b′ij) such that |b′ijb′ji| ≥ 4 for some
i and j, then “freezing” all the cluster variables in the corresponding seed
except for xi and xj, and alternately applying mutations µi and µj to the
corresponding seed, we obtain infinitely many distinct cluster variables, and
infinitely many distinct seeds. �

We will eventually show that the converse to Corollary 5.1.4 holds as
well, see Theorem 5.10.1.

5.2. Cartan matrices and Dynkin diagrams

The classification of cluster algebras of finite type turns out to be com-
pletely parallel to the famous Cartan-Killing classification of semisimple Lie
algebras, finite crystallographic root systems, etc. The latter classification
can be found in many books, e.g., [15, 17]. In this section, we quickly
review it, using the language of Cartan matrices and Dynkin diagrams. We
then explain the connection between (symmetrizable) Cartan matrices and
(skew-symmetrizable) exchange matrices.

Definition 5.2.1. A square integer matrix A = (aij) is called a symmetriz-
able generalized Cartan matrix if it satisfies the following conditions:

• all diagonal entries of A are equal to 2;

• all off-diagonal entries of A are non-positive;

• there exists a diagonal matrix D with positive diagonal entries such that
the matrix DA is symmetric.
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We call A positive if DA is positive definite; this is equivalent to the positiv-
ity of all principal minors ∆I,I(A). In particular, any such matrix satisfies

∆{i,j},{i,j}(A) = det

(

2 aij
aji 2

)

= 4− aijaji > 0,

or equivalently

(5.2.1) aijaji ≤ 3 for i 6= j.

Positive symmetrizable generalized Cartan matrices are often referred to
simply as Cartan matrices, or Cartan matrices of finite type.

Example 5.2.2. In view of (5.2.1), a 2× 2 matrix

A =

[

2 −b
−c 2

]

is a Cartan matrix of finite type if and only if one of the following holds:

• b = c = 0;

• b = c = 1;

• b = 1, c = 2 or b = 2, c = 1;

• b = 1, c = 3 or b = 3, c = 1.

Note that this matches the classifications in Theorem 5.1.1 and Proposi-
tion 5.1.2. The latter match has a well-known explanation: there is a canon-
ical correspondence between Cartan matrices of finite type and finite Weyl
groups (or finite crystallographic root systems). The relationship between
these objects and cluster algebras of finite type is much more subtle.

Remark 5.2.3. A Cartan matrix encodes essential information about the
geometry of a root system (or the corresponding Weyl group). The classi-
fication of finite crystallographic root systems (resp., associated reflection
groups) can be reduced to classifying Cartan matrices of finite type. This
standard material can be found in many books, see, e.g., [16].

Definition 5.2.4. The Coxeter graph of an n × n Cartan matrix A is a
simple graph with vertices 1, . . . , n in which vertices i and j 6= i are joined
by an edge whenever aij 6= 0. If aij ∈ {0,−1} for all i 6= j, then A is uniquely
determined by its Coxeter graph. (Such matrices are called simply-laced.)
If A is not simply-laced but of finite type then, in view of (5.2.1), one needs
a little additional information to specify A. This is done by replacing the
Coxeter graph of A with its Dynkin diagram in which, instead of being
connected by a single edge, each pair of vertices i and j with aijaji > 1 is
shown as follows:

i j if aij = −1 and aji = −2;
i j if aij = −1 and aji = −3.
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Note that our usage of the terms Coxeter graph and Dynkin diagram
is a bit non-standard: Coxeter graphs are usually defined as edge-labeled
graphs, and Dynkin diagrams are often assumed to be connected. (We make
no such requirement.) Also, as in [11], we use the conventions of [17] (as
opposed to those in [2]) in going between Dynkin diagrams and Cartan
matrices.

A couple of examples are shown in Figure 5.1. The notation B3 and C3

is explained in Figure 5.2.

B3





2 −2 0
−1 2 −1
0 −1 2





C3





2 −1 0
−2 2 −1
0 −1 2





Figure 5.1. Dynkin diagrams and Cartan matrices of types B3 and C3.

Remark 5.2.5. It is important to stress that the meaning of double and
triple arrows in a Dynkin diagram is very different from the meaning of
multiple arrows in a quiver. A double arrow

1 2

in a Dynkin diagram corresponds to the submatrix

[

2 −1
−2 2

]

of the associated Cartan matrix. Meanwhile, a double arrow

1 −→−→ 2

in a quiver corresponds to the submatrix

[

0 2
−2 0

]

of the associated exchange matrix.

A Cartan matrix is called indecomposable if its Dynkin diagram is con-
nected. By a simultaneous permutation of rows and columns, any Cartan
matrix A can be transformed into a block-diagonal matrix with indecom-
posable blocks. This corresponds to decomposing the Dynkin diagram of A
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into connected components. The type of A (i.e., its equivalence class with
respect to simultaneous permutations of rows and columns) is determined
by specifying the multiplicity of each type of connected Dynkin diagram in
this decomposition. Thus to classify Cartan matrices, one needs to produce
the list of all connected Dynkin diagrams. The celebrated Cartan-Killing
classification asserts that this list is given as follows.

Theorem 5.2.6. Figure 5.2 gives a complete list of connected Dynkin dia-
grams corresponding to indecomposable Cartan matrices of finite type.

An (n ≥ 1)

Bn (n ≥ 2)

Cn (n ≥ 3)

Dn (n ≥ 4)

E6

E7

E8

F4

G2

Figure 5.2. Dynkin diagrams of indecomposable Cartan matrices. The
subscript n indicates the number of nodes in the diagram.

We do not include the proof of Theorem 5.2.6 in this book, nor do
we rely on this theorem anywhere in our proofs. We will, however, make
extensive use of the standard nomenclature of Dynkin diagrams presented
in Figure 5.2. The notation Xn ⊔ Yn′ will denote the disjoint union of two
Dynkin diagrams Xn and Yn′ .
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The relationship between Cartan matrices and skew-symmetrizable ma-
trices is based on the following definition [11].

Definition 5.2.7. Let B = (bij) be a skew-symmetrizable integer matrix.
Its Cartan counterpart is the symmetrizable generalized Cartan matrix

(5.2.2) A = A(B) = (aij)

of the same size, defined by

(5.2.3) aij =

{

2 if i = j;

−|bij| if i 6= j.

The main result of this chapter is the following classification of cluster
algebras of finite type [11].

Theorem 5.2.8. A seed pattern (or the corresponding cluster algebra) is
of finite type if and only if it contains an exchange matrix B whose Cartan
counterpart A(B) (see Definition 5.2.7) is a Cartan matrix of finite type.

The proof of Theorem 5.2.8 spans Sections 5.3–5.10. An overview of the
proof is given below in this section.

One important feature of Theorem 5.2.8 is that the finite type property
depends solely on the exchange matrix B but not on the coefficient tuple y.
In other words, the top n×n submatrix B of an extended exchange matrix B̃
determines whether the seed pattern at hand has finitely many seeds. The
bottom part of B̃ has no effect on this property.

Definition 5.2.9. Let Xn be a Dynkin diagram on n vertices. A seed pat-
tern of rank n (or the corresponding cluster algebra) is said to be of (Cartan-
Killing) type Xn if one of its exchange matrices B has Cartan counterpart
of type Xn.

Example 5.2.10. The matrices

[

0 0
0 0

]

,

[

0 1
−1 0

]

,

[

0 1
−2 0

]

,

[

0 1
−3 0

]

define seed patterns (and cluster algebras) of types A1⊔A1, A2, B2, and G2,
respectively.

Remark 5.2.11. Suppose Xn is simply laced, i.e., is one of the types An,
Dn, E6, E7, E8. Then a seed pattern is of type Xn if one of its exchange
matrices B corresponds to a quiver that is an orientation of a Dynkin dia-
gram of type Xn. We note that by Exercise 2.6.5, all orientations of a tree
are mutation equivalent to each other, so if one of them is present in the
pattern, then all of them are.
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A priori, Definition 5.2.9 allows for the possibility that a given seed
pattern is simultaneously of two different types. However, the following
companion to Theorem 5.2.8 shows that this cannot happen.

Theorem 5.2.12. Let B′ and B′′ be skew-symmetrizable square matrices
whose Cartan counterparts A(B′) and A(B′′) are Cartan matrices of finite
type. Then the following are equivalent:

(1) the Cartan matrices A(B′) and A(B′′) have the same type;

(2) B′ and B′′ are mutation equivalent.

This theorem will be proved in Section 5.9.

By Theorem 5.2.8, a seed pattern of finite type must contain exchange
matrices whose Cartan counterparts are Cartan matrices of finite type. By
Theorem 5.2.12, all these matrices have the same type. Consequently the
(Cartan-Killing) type of a seed pattern (resp., cluster algebra) of finite type
is unambiguously defined.

Remark 5.2.13. Mutation classes of finite type can be partially ordered
via embeddability (cf. Definition 4.1.8), which in turn can be interpreted
in the language of cluster subalgebras (cf. Definition 4.2.6). For example,
the inclusion of Dynkin diagrams An ⊂ Dn+1 (see Figure 5.2) yields an
embedding An ≤ Dn+1 of mutation classes of type An and type Dn+1

quivers; consequently there is a cluster subalgebra of type An within each
cluster algebra of type Dn+1. Similarly, we have embeddings Dn ≤ En+1

for 5 ≤ n ≤ 7, and E6 ≤ E7 ≤ E8, cf. Example 4.1.9 and Figure 2.12.

Going beyond the quiver case, we have the embeddings An ≤ Bn+1,
An ≤ Cn+1, B3 ≤ F4, C3 ≤ F4, and the corresponding inclusions for
cluster algebras of finite type.

We conclude this section by an overview of the remainder of Chapter 5.

Sections 5.3–5.8 are dedicated to showing that any seed pattern that
has an exchange matrix whose Cartan counterpart is of one of the types
An, Bn, . . . , G2 has finitely many seeds. This is done case by case. The
idea is to explicitly construct, for each (indecomposable) type, a particu-
lar seed pattern whose exchange matrices have full Z-rank, and show that
this pattern has finitely many seeds. Then an argument based on Corol-
lary 4.3.6 and Remark 4.3.7 will imply the same for all cluster algebras of
the corresponding type.

In Sections 5.3–5.4 we exhibit seed patterns of types An and Dn pos-
sessing the requisite properties. In type An, we utilize the construction
involving the homogeneous coordinate ring of the Grassmannian Gr2,n+3,
cf. Section 1.2. Type Dn is treated using a similar construction, admittedly
much more technical than in the type An case. In Section 5.5, we handle the
types Bn and Cn using the technique of folding introduced in Section 4.4.
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The exceptional types are treated in a different way. In Section 5.6, we
use a computer check to verify that the cluster algebras of type E8 are of
finite type. This implies the same for the types E6 and E7. Types F4 and G2

are then handled in Section 5.7, via folding of E6 and D4, respectively.

In Section 5.8, we discuss decomposable types, and complete the first
part of the proof of Theorem 5.2.8.

We note that Sections 5.3–5.6 contain many incidental examples of clus-
ter algebras of finite type, in addition to those used in the proof of the
classification theorem.

Theorem 5.2.12 is proved in Section 5.9. Also in this section, we complete
and summarize the enumeration of the seeds (equivalently, clusters) and the
cluster variables for all finite types.

The proof of Theorem 5.2.8 is completed in Section 5.10, by demon-
strating that any seed pattern of finite type comes from a Cartan matrix of
finite type. This is done by exploiting the fact that every exchange matrix
appearing in such a seed pattern is 2-finite, see Corollary 5.1.4.

Theorem 5.2.8 provides a characterization of seed patterns of finite type
which, while conceptually satisfying, is not particularly useful in practice.
In Section 5.11, we discuss an alternative criterion for recognizing whether
a seed pattern is of finite type. This criterion is formulated directly in terms
of the given exchange matrix B (as opposed to its mutation class).

5.3. Seed patterns of type An

The main result of this section is Theorem 5.3.2, asserting that seed patterns
of type An are of finite type. The proof uses the fact that seed patterns of
type An are governed by the combinatorics of triangulated polygons. A case
in point is the cluster algebra structure in the Plücker ring R2,n+3 (the ho-
mogeneous coordinate ring of Gr2,n+3) discussed in Section 1.2. In this
example, we verify that a cluster variable indexed by a diagonal in a tri-
angulation T only depends on the diagonal and not on the choice of T , or
a sequence of mutation steps relating T to an initial triangulation. After
verifying that the cluster structure in R2,n+3 is of finite type, we check that
one of its exchange matrices has full Z-rank, and the general case follows.

Let T be a triangulation of a convex (n+3)-gon Pn+3 by n noncrossing
diagonals labeled 1, . . . , n. We define the n× n matrix B(T ) = (bij(T )) by

(5.3.1) bij(T ) =































1 if i and j label two sides of a triangle in T ,

with j following i in the clockwise order;

−1 if i and j label two sides of a triangle in T ,

with i following j in the clockwise order;

0 if i and j do not belong to the same triangle in T .
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The skew-symmetric matrix B(T ) corresponds to the mutable part of the
quiver Q(T ) described in Definition 2.2.1 and Figure 2.2.

The following easy lemma provides an alternative definition of the notion
of a seed pattern of type An.

Lemma 5.3.1. A seed pattern has type An if and only if one (equivalent-
ly, any) of its exchange matrices can be identified with the exchange matrix
B(T ) corresponding to a triangulation T of a convex (n+3)-gon, cf. (5.3.1).

4

3

2

1n+ 3

n+ 2

n+ 1

Figure 5.3. A triangulation T◦ of the polygon Pn+3 (here n = 5). The
mutable part of the quiver Q(T◦) (see Definition 2.2.1) is the equiori-
ented Dynkin quiver of type An.

Theorem 5.3.2. Seed patterns of type An are of finite type.

Remark 5.3.3. Definition 5.2.9 imposes no restrictions on the bottom part
of the extended exchange matrices, nor on the number of frozen variables.
In light of Lemma 5.3.1, Theorem 5.3.2 asserts that as long as the mutable
part of a quiver comes from a triangulated polygon, the total number of
seeds generated by the quiver is finite.

Proof. We start by showing that a particular seed pattern of type An, the
one associated with the Plücker ring R2,n+3, is of finite type.

As in Section 1.2, we label the vertices of the polygon Pn+3 clockwise by
the numbers 1, . . . , n+3. For a triangulation T ofPn+3 as in Definition 2.2.1,
we use the labels 1, . . . , n for the diagonals of T (in arbitrary fashion), and
use the labels n+ 1, . . . , 2n + 3 for the sides of Pn+3, as follows:

• the side with vertices ℓ and ℓ+ 1 is labeled n+ ℓ, for ℓ = 1, . . . , n+ 2;

• the side with vertices 1 and n+ 3 is labeled 2n + 3.

We define the matrix B̃(T ) = (bij(T )) by the formula (5.3.1), this time with

i∈{1, . . . , 2n + 3} and j∈{1, . . . , n}. Thus B̃(T ) is the extended exchange
matrix for the quiver Q(T ) from Definition 2.2.1. By Exercise 2.2.2, flips of
triangulations translate into mutations of associated quivers.
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We now reformulate the construction described in Section 1.2. Let
V = C2 be a 2-dimensional complex vector space, and let 〈·, ·〉 denote the
standard skew-symmetric nondegenerate bilinear form on V . Simply put,
〈u, v〉 is the determinant of the 2× 2 matrix with columns u, v ∈ V . Let K
be the field of rational functions on V n+3 written in terms of 2n + 6 vari-
ables, the coordinates of n+3 vectors v1, . . . , vn+3. The special linear group
naturally acts on V , hence on V n+3 and on K. Let F = KSL2 be the subfield
of SL2-invariant rational functions. All the action will take place in F .

We associate the Plücker coordinate Pij = 〈vi, vj〉 ∈ F with the line
segment connecting vertices i and j. For each triangulation T of Pn+3, we
let x̃(T ) be the collection of the 2n + 3 Plücker coordinates Pij associated
with the sides and diagonals of T , as in Section 1.2. By Lemma 5.3.4
below, the elements of x̃(T ) are algebraically independent. We view the
Plücker coordinates associated with the sides of Pn+3 as frozen variables.
As observed earlier, the Grassmann-Plücker relations (1.2.1) satisfied by
the elements Pij can be interpreted as exchange relations encoded by the

matrices B̃(T ).

We set Σ(T ) = (x̃(T ), B̃(T )). Therefore the seeds obtained from an
initial seed Σ(T◦) form a seed pattern of type An, and the initial cluster
variables consist of the Plücker coordinates labeling the triangulation T◦.
Because the Plücker coordinates satisfy the exchange relations, which cor-
respond to flips of triangulations, this gives a canonical identification of
cluster variables and clusters with diagonals and triangulations of Pn+3. (A
priori, a seed and the cluster variables in it could depend not only on the
triangulation they correspond to, but the sequence of mutations we used to
arrive at that triangulation from the initial seed.) Therefore the number of
distinct seeds in this pattern is finite.

We complete the proof of Theorem 5.3.2 using an argument based on
Corollary 4.3.6 and Remark 4.3.7. All we need to do is to check that for
some triangulation T◦, the matrix B̃(T◦) has full Z-rank. Taking T◦ as in
Figure 5.3, we obtain the matrix

B̃(T◦) =































0 −1 0 · · · 0 0
1 0 −1 · · · 0 0
0 1 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 −1
0 0 0 · · · 1 0

−1 0 0 · · · 0 0
1 0 0 · · · 0 0
...

...
...

. . .
...

...































,

where the line is drawn under the nth row. The matrix is easily seen to
have full Z-rank. �
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Lemma 5.3.4. For any triangulation T of the polygon Pn+3, the elements
of x̃(T ) are algebraically independent. Thus (x̃(T ), B̃(T )) is a seed in F .

Proof. One way to establish this is to observe that x̃(T ) generates the
field F (since each Plücker coordinate Pij is a rational function in x̃(T )),
and combine this with the fact that the transcendence degree of F over C

(equivalently, the dimension of the affine cone over Gr2,n+3) is 2n + 3. �

Remark 5.3.5. An alternative proof of Theorem 5.3.2 can be based on the
description of the fundamental group of the graph whose vertices are the
triangulations of the polygon Pn+3, and whose edges correspond to the flips.
(We view this graph as a 1-dimensional simplicial complex, the 1-skeleton
of the n-dimensional associahedron.) The fundamental group of this graph
is generated by 4-cycles and 5-cycles (the boundaries of 2-dimensional faces
of the associahedron) pinned down to a basepoint. For each of these cycles,
the corresponding sequence of 4 or 5 mutations in a seed pattern of type An
brings us back to the original seed; this follows from the analysis of the
type A2 case in Section 5.1. Consequently, the seeds in such a pattern can
be labeled by the triangulations of Pn+3, implying the claim of finite type.

Corollary 5.3.6. Cluster variables in a seed pattern of type An can be
labeled by the diagonals of a convex (n+ 3)-gon Pn+3 so that

• clusters correspond to triangulations of the polygon Pn+3 by noncrossing
diagonals,

• mutations correspond to flips, and

• exchange matrices are given by (5.3.1).

Cluster variables labeled by different diagonals are distinct, so there are alto-

gether n(n+3)
2 cluster variables and 1

n+2

(2n+2
n+1

)

seeds (and as many clusters).

Proof. It is well known that the number of triangulations a convex (n+3)-

gon has is equal to the Catalan number 1
n+2

(

2n+2
n+1

)

, see e.g., [26, Exer-

cise 6.19a]. So the only claim remaining to be proved is that all these
cluster variables are distinct in any seed pattern of type An. Let x and x′

be two cluster variables labeled by distinct diagonals d and d′. If d and d′ do
not cross each other, then there is a cluster containing x and x′, so x and x′

are algebraically independent and therefore distinct. If d and d′ do cross,
then there is an exchange relation of the form xx′ = M1 +M2 where M1

and M2 are monomials in the elements of some extended cluster x̃ contain-
ing x. Now the equality x = x′ would imply x2 = M1 +M2, contradicting
the condition that the elements of x̃ are algebraically independent. �

In the rest of this section, we examine several seed patterns (or cluster
algebras) of type An which naturally arise in various mathematical contexts.
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Exercise 5.3.7. A frieze pattern [4, 5] is a table of the form

n+ 2 rows































· · · 1 1 1 1 1 1 1 1 · · ·
· · · ∗ ∗ ∗ ∗ ∗ ∗ ∗ · · ·
· · · ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ · · ·
· · · ∗ ∗ ∗ ∗ ∗ ∗ ∗ · · ·
· · · ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ · · ·
· · · 1 1 1 1 1 1 1 · · ·

with (say) positive integer entries such that every quadruple

B
A C

D

satisfies AC −BD = 1. Identify the entries in a frieze pattern with cluster
variables in a seed pattern of type An. How many distinct entries does a
frieze pattern have? What kind(s) of periodicity does it possess?

Example 5.3.8. Let us discuss, somewhat informally, the example of a seed
pattern associated with the basic affine space for SL4. Choose the initial
seed for this pattern as shown in Figure 5.4. (This seed has already appeared
in Figure 2.5; it corresponds to a particular choice of a wiring diagram.) The
variables P2, P3, and P23 are mutable; the remaining six variables are frozen.
The mutable part of the initial quiver is an oriented 3-cycle; as such, it is
easily identified as the mutable part of a quiver associated with a particular
triangulation of a hexagon. Thus we are dealing here with a seed of type A3.

P1 P2 P3 P4

P12 P23 P34

P123 P234

Figure 5.4. A seed of flag minors in C[SL4]
U .

A matrix in SL4 has 2
4−2 = 14 nontrivial flag minors: the 6 frozen variables

P1, P12, P123, P4, P34, P234

(recall that they correspond to the unbounded chambers in a wiring dia-
gram) and 8 additional flag minors

P2, P3, P13, P14, P23, P24, P124, P134,

all of which can be obtained by the mutation process from our initial
seed. Note however that a seed pattern of type A3 should have 9 cluster
variables—so one of them is still missing!
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Examining the initial seed shown in Figure 5.4, we see that it can be
mutated in three possible ways. The corresponding exchange relations are:

P2 P13 = P12 P3 + P1 P23 ,

P3 P24 = P4 P23 + P34 P2 ,

P23 Ω = P123 P34 P2 + P12 P234 P3 .

The first two relations correspond to the two braid moves that can be applied
to the initial wiring diagram D◦. The third relation is different in nature: it
produces a seed that does not correspond to any wiring diagram, as the new
cluster variable Ω is not a flag minor. Ostensibly, Ω is a rational expression
(indeed, a Laurent polynomial) in the flag minors. One can check that
in fact

(5.3.2) Ω =
P123 P34 P2 + P12 P234 P3

P23
= −P1P234 + P2P134

—so Ω is not merely a rational function on the basic affine space but a regular
function. It follows that the corresponding cluster algebra is precisely the
invariant ring C[SL4]

U (recall that the latter is generated by the flag minors).
It turns out that this phenomenon holds for any special linear group SLk,
resulting in a cluster algebra structure in C[SLk]

U .

In the case under consideration, we get 14 distinct extended clusters, in
agreement with Corollary 5.3.6. See Figure 5.5.

Example 5.3.9. We conclude this section by presenting a family of seed
patterns of type An introduced in [28]. They correspond to cluster struc-
tures in particular double Bruhat cells for the special linear groups SLn+1(C),
more specifically in the cells associated with pairs of Coxeter elements in
the associated symmetric group Sn+1. This construction can be extended
to arbitrary simply connected semisimple complex Lie groups, see [28].

Let Ln ⊂ SLn+1(C) be the subvariety of tridiagonal matrices

(5.3.3) z =



















v1 q1 0 · · · 0

1 v2 q2
. . .

...

0 1 v3
. . . 0

...
. . .

. . .
. . . qn

0 · · · 0 1 vn+1



















of determinant 1. For i, j ∈ {1, . . . , n+ 3} satisfying i+ 2 ≤ j, consider the
solid principal minor (cf. Exercise 1.4.2)

Uij = ∆[i,j−2],[i,j−2] ∈ C[Ln],

the determinant of the submatrix with rows and columns i, i+1, . . . , j − 2.
For example, Ui,i+2=vi and U1,n+3=det(z)=1. By convention, Ui,i+1=1.
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P124 P134

Ω

P23

P14

P2 P3

P24 P13

Figure 5.5. Clusters in C[SL4]
U . The 14 clusters for this seed pattern

are shown as the vertices of a graph; the edges of the graph correspond
to seed mutations. Note that there is one additional vertex at infinity, so
the graph should be viewed as drawn on a sphere rather than a plane.
The regions are labeled by cluster variables. Each cluster consists of
three elements labeling the regions adjacent to the corresponding vertex.
The 6 frozen variables are not shown. This graph is isomorphic to the
1-skeleton of the three-dimensional associahedron, shown in Figure 1.4.

Exercise 5.3.10. Prove that these functions satisfy the relations

(5.3.4) Uik Ujℓ = qj−1qj · · · qk−2 Uij Ukℓ + Uiℓ Ujk ,

for 1 ≤ i < j < k < l ≤ n + 3. Then show that these relations are the
exchange relations in a particular seed pattern of type An. More precisely,
show that there is a seed pattern of type An, with the frozen variables
q1, . . . , qn, in which the cluster variables Uij associated to the diagonals
[i, j] of the convex polygon Pn+3 satisfy the exchange relations (5.3.4).

What is required to show that the relations (5.3.4) are the exchange
relations in a seed pattern of type An? Let us extend each n× n exchange
matrix B(T ) associated to a triangulation T of Pn+3 (see (5.3.1)) to the 2n×
n matrix B̃(T ) whose columns encode the relations (5.3.4) corresponding
to the n possible flips from T . One then needs to verify that whenever
triangulations T and T ′ are related by a flip, the associated matrices B̃(T )

and B̃(T ′) are related by the corresponding mutation.

One of the clusters in this seed pattern consists of the n leading principal
minors U13 , . . . , U1,n+2 . The exchange relations from this cluster are the
relations (5.3.4) with (i, j, k, ℓ) = (1, k − 1, k, k + 1). They can be rewritten
as follows:

(5.3.5) U1,k+1 = vk−1 U1,k − qk−2 U1,k−1 (k = 3, . . . , n+ 2).



5.4. Seed patterns of type Dn 35

These relations play important roles in the classical theory of orthogonal
polynomials in one variable [27], in the study of a generalized Toda lat-
tice [21], and in other mathematical contexts.

5.4. Seed patterns of type Dn

In this section we show that seed patterns of type Dn are of finite type. The
proof of this theorem, while substantially more technical than the proof of
Theorem 5.3.2, follows the same general plan. It relies on two main ingredi-
ents. The first ingredient is a combinatorial construction (“tagged arcs” in
a punctured disk) that enables us to explicitly describe the combinatorics
of mutations in type Dn and introduce the relevant nomenclature. The sec-
ond ingredient is an algebraic construction of a particular seed pattern of
type Dn. In this pattern, each cluster variable associated with a tagged arc
has an intrinsic definition independent of the mutation path; this will imply
that the number of seeds is finite. The “full Z-rank” argument will then
allow us to generalize the finiteness statement to arbitrary coefficients.

While type Dn Dynkin diagrams are usually defined for n ≥ 4, in this
section we will allow for the possibility of n = 3 (in which case one recovers
type A3).

Exercise 5.4.1. Show that a seed pattern is of type Dn if and only if one of
its exchange matrices corresponds to a quiver which is an oriented n-cycle.

Figure 5.6. Dynkin diagram of type Dn and an oriented n-cycle.

Theorem 5.4.2. Seed patterns of type Dn are of finite type.

As in Remark 5.3.3, the key point of Theorem 5.4.2 is that a pattern of
type Dn has finitely many seeds regardless of the number of frozen variables
and of the entries in the bottom parts of extended exchange matrices.

Definition 5.4.3. Let P•
n be a convex n-gon (n ≥ 3) with a distinguished

point p (a puncture) in its interior. We label the vertices of P•
n clockwise

from 1 to n. These vertices and the puncture p are the marked points of P•
n.
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An arc in P•
n is a non-selfintersecting curve γ in P•

n such that

• the endpoints of γ are two different marked points;

• except for its endpoints, γ is disjoint from the boundary of P•
n and from

the puncture p;

• γ does not cut out an unpunctured digon.

We consider each arc up to isotopy within the class of such curves.

The arcs incident to the puncture are called radii.

Definition 5.4.4. A tagged arc in P•
n is either an ordinary non-radius arc,

or a radius that has been labeled (“tagged”) in one of two possible ways,
plain or notched. Two tagged arcs are called compatible with one another
if their untagged versions do not cross each other, with the following modi-
fication: the plain and notched versions of the same radius are compatible,
but the the plain and notched versions of two different radii are not.

A tagged triangulation is a maximal (by inclusion) collection of pairwise
compatible tagged arcs. See Figure 5.7.

Lemma 5.4.5. Any tagged triangulation T of P•
n consists of n tagged arcs.

Any tagged arc in a tagged triangulation T can be replaced in a unique way
by a tagged arc not belonging to T , to form a new tagged triangulation T ′.

Proof. It is easy to see that tagged triangulations come in three flavors:

(1) a triangulation in the usual (topological) sense, with every radius plain;

(2) a triangulation in the usual sense, with every radius notched;

(3) the plain and notched versions of the same radius inside a punctured
digon. Outside of the digon, it is an ordinary triangulation.

In each of these cases, the total number of tagged arcs is n. �

In the situation described in Lemma 5.4.5, we say that the tagged tri-
angulations T and T ′ are related by a flip.

Exercise 5.4.6. Verify that any two tagged triangulations of P•
n are con-

nected via a sequence of flips.

We next define an extended exchange matrix B̃(T ) associated with a
tagged triangulation T of the punctured polygon P•

n. The construction is
similar to the one in type An. In the cases (1) and (2) above, the rule (5.3.1)
is used; in the case (3), some adjustments are needed around the radii.

Figure 5.8 illustrates the recipe used to define the matrix B̃(T ), or equiv-
alently the corresponding quiver. The vertices of the quiver corresponding
to boundary segments (i.e., the sides of the polygon) are frozen; the ones
corresponding to tagged arcs are mutable. Details are left to the reader.
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Figure 5.7. Tagged arcs in a once-punctured triangle P•

3 . Solid lines
indicate which arcs are compatible. The vertices of the dashed graph
correspond to tagged triangulations; its edges correspond to flips. Note
that there is one additional vertex at infinity, so the graph should be
viewed as drawn on a sphere rather than a plane.

Exercise 5.4.7. Verify that if two tagged triangulations T and T ′ are re-
lated by a flip, then the extended skew-symmetric matrices B̃(T ) and B̃(T ′)
are related by the corresponding matrix mutation.

Unfortunately, the matrices B̃(T ) have rank < n, so exhibiting a seed
pattern with these matrices and finitely many seeds would not yield a proof
of Theorem 5.4.2, cf. Remark 4.3.7. We will overcome this obstacle by
introducing additional frozen variables besides those labeled by boundary
segments.

We now prepare the algebraic ingredients for the proof of Theorem 5.4.2.
Similarly to the type An case, the idea is to interpret tagged arcs in a once-
punctured polygon as a family of rational functions. These rational func-
tions satisfy the type Dn exchange relations, which in turn are associated to
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⊲⊳

Figure 5.8. Quivers associated with tagged triangulations of a once-
punctured convex polygon P•

n.

flips of tagged arcs. The astute reader will notice that the algebraic construc-
tion we associate to the type Dn case contains the algebraic construction
associated to the type An−1 case (Plücker coordinates of an (n+2)-tuple of
vectors in C2), reflective of the fact that the type An−1 Dynkin diagram is
contained inside the type Dn Dynkin diagram.

As in Section 5.3, we set V = C2, and let 〈u, v〉 be the determinant of
the 2 × 2 matrix with columns u, v ∈ V . Let K be the field of rational
functions on V n×V ×V ×C2 ∼= C2n+6, written in terms of 2n+6 variables:
the coordinates of n+ 2 vectors

v1, . . . , vn, a, a ∈ V,

plus two additional variables λ and λ.

Let A ∈ End(V ) denote the linear operator defined by

(5.4.1) Av =
λ〈v, a〉 a − λ〈v, a〉 a

〈a, a〉 ,

so that a (resp. a) is an eigenvector for A with eigenvalue λ (resp. λ). Let

a⊲⊳ =
λ− λ
〈a, a〉 a;

thus a⊲⊳ is also an eigenvector for A, with eigenvalue λ. We choose this
normalization because of the following property, which is immediate from
the definitions.

Lemma 5.4.8. For v ∈ V , we have 〈v,Av〉 = 〈v, a〉〈v, a⊲⊳〉.
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We next describe a seed pattern inside K, and in fact inside its subfield
F of SL2(C)×C∗-invariant rational functions. (The group SL2 acts in the
standard way on each of the vectors v1, . . . , vn, a, a, and fixes λ and λ. The
group C∗ acts by rescaling the vector a. The subfield F can be thought of
as a field of rational functions on a (2n+2)-dimensional variety, and indeed,
extended clusters in our seed pattern will have size 2n + 2.) Informally
speaking, we are going to think of the vectors v1, . . . , vn as located at the
corresponding vertices of P•

n, and we shall associate both eigenvectors a
and a⊲⊳ with the puncture p. We make a cut running from the puncture p
to the boundary segment (the side of the polygon) that connects the vertices
1 and n. We will think of crossing the cut as picking up an application of A.

Definition 5.4.9. We associate an element Pγ ∈ K to each tagged arc or
boundary segment γ in P•

n, as follows (see Figure 5.9):

Pγ=























〈vi, vj〉 if γ doesn’t cross the cut, and has endpoints i and j > i;

〈vj, Avi〉 if γ crosses the cut, and has endpoints i and j > i;

〈vi, a〉 if γ is a plain radius with endpoints p and i;

〈vi, a⊲⊳〉 if γ is a notched radius with endpoints p and i.

⊲⊳

n 1

i

j

p

〈vi−1, vi〉

〈vj , Avi〉

〈vi, vj〉

〈vi, a〉〈vi, a⊲⊳〉

A

Figure 5.9. Elements of the field K associated with tagged arcs in P•

n.
The boundary segment crossed by the cut corresponds to 〈vn, Av1〉.
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We can now verify that the Pγ satisfy a family of relations that topolo-
gists know as “skein relations” for tagged arcs.

For example, Figure 5.10 illustrates the equation

(5.4.2) 〈vi, vl〉〈vk, Avi〉 = 〈vk, vl〉〈vi, a〉〈vi, a⊲⊳〉+ 〈vi, vk〉〈vl, Avi〉,

which follows from the Grassmann-Plücker relation (1.2.1) combined with
Lemma 5.4.8.

l=n 1

i

k

p =

A

⊲⊳

l=n 1

i

k

p +

A
l=n 1

i

k

p

A

Figure 5.10. Pictorial representation of the relation (5.4.2) (or (5.4.7)).

More generally, we have the following relations. The reader may want
to draw a figure corresponding to each relation to get some intuition about
the form of the relations.

Proposition 5.4.10. The elements Pγ described in Definition 5.4.9 satisfy
the following relations:

〈vi, vk〉〈vj , vl〉 = 〈vi, vj〉〈vk, vl〉+ 〈vi, vl〉〈vj , vk〉,(5.4.3)

〈vj , vl〉〈vk, Avi〉 = 〈vj , vk〉〈vl, Avi〉+ 〈vj , Avi〉〈vk, vl〉,(5.4.4)

〈vk, Avi〉〈vl, Avj〉 = λλ〈vi, vj〉〈vk, vl〉+ 〈vk, Avj〉〈vl, Avi〉,(5.4.5)

〈vi, vk〉〈vl, Avj〉 = 〈vl, Avi〉〈vj , vk〉+ 〈vl, Avk〉〈vi, vj〉,(5.4.6)

〈vi, vl〉〈vk, Avi〉 = 〈vi, vk〉〈vl, Avi〉+ 〈vk, vl〉〈vi, a〉〈vi, a⊲⊳〉,(5.4.7)

〈vj , Avi〉〈vl, Avj〉 = λλ〈vi, vj〉〈vj , vl〉+ 〈vj , a⊲⊳〉〈vj , a〉〈vl, Avi〉,(5.4.8)

〈vi, vl〉〈vl, Avj〉 = 〈vl, Avi〉〈vj , vl〉+ 〈vl, a⊲⊳〉〈vl, a〉〈vi, vj〉(5.4.9)

〈vi, vk〉〈vj , a〉 = 〈vi, vj〉〈vk, a〉+ 〈vi, a〉〈vj , vk〉,(5.4.10)

〈vj , Avi〉〈vk, a〉 = λ〈vj , vk〉〈vi, a〉+ 〈vj , a〉〈vk, Avi〉,(5.4.11)

〈vk, Avj〉〈vi, a〉 = 〈vk, Avi〉〈vj , a〉+ λ〈vk, a〉〈vi, vj〉,(5.4.12)

〈vi, a⊲⊳〉〈vj , a〉 = λ〈vi, vj〉+ 〈vj , Avi〉.(5.4.13)

where 1 ≤ i < j < k < ℓ ≤ n. In addition, they satisfy the relations obtained
from (5.4.10)–(5.4.13) by interchanging λ with λ and a with a⊲⊳ throughout.
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Proof. Each of these relations follows from a suitable instance of the Grass-
mann-Plücker relation (1.2.1), using Lemma 5.4.8 and the identities

〈Av,Av′〉 = det(A) 〈v, v′〉 = λλ〈v, v′〉,
〈Av, a〉 = λ〈v, a〉,
〈Av, a⊲⊳〉 = λ〈v, a⊲⊳〉.

For example, (5.4.12) can be obtained from the identity

〈vk, Avj〉〈Avi, a〉 = 〈vk, Avi〉〈Avj , a〉+ 〈vk, a〉〈Avi, Avj〉,

while (5.4.13) follows (using Lemma 5.4.8) from

〈vi, Avi〉〈vj , a〉 = 〈vi, vj〉〈Avi, a〉+ 〈vi, a〉〈vj , Avi〉. �

For a tagged triangulation T of the punctured polygon P•
n, let x̃(T ) be

the (2n + 2)-tuple consisting of the elements Pγ labeled by the tagged arcs

and boundary segments in T , together with λ and λ. We view the elements
Pγ ∈ x̃(T ) labeled by tagged arcs as cluster variables, and those labeled by

the boundary segments as frozen variables; λ and λ are frozen variables as
well.

Let γ be a tagged arc in a tagged triangulation T , and let γ′ be the
tagged arc that replaces γ when the latter is flipped. One can check that in
every such instance, exactly one of the relations in Proposition 5.4.10 has
the product Pγ Pγ′ on the left-hand side; the corresponding right-hand side

is always a sum of two monomials in the elements of x̃(T ). We let B̃•(T )
denote the matrix encoding these relations for all tagged arcs in T . The
matrix B̃•(T ) can be seen to be an extension of the matrix B̃(T ) by two
extra rows corresponding to λ and λ. (Put differently, setting λ = λ = 1

produces relations encoded by B̃(T ).)

Example 5.4.11. Figure 5.11 shows a triangulation T◦ of a punctured
pentagon, and the associated matrix B̃•(T◦). Columns 1 and 5 of B̃•(T◦)
encode the exchange relations

〈v5, Av2〉〈v1, a〉 = 〈v5, Av1〉〈v2, a〉+ λ〈v5, a〉〈v1, v2〉 = x10x2 + λx5x6

〈v4, Av1〉〈v5, a〉 = λ〈v4, v5〉〈v1, a〉+ 〈v4, a〉〈v5, Av1〉 = λx9x1 + x4x10.

The matrix B̃•(T◦) has full Z-rank. However, the submatrix of B̃(T◦) con-
sisting of the first ten rows does not have full rank (each row sum is 0).

This example can be straightforwardly generalized to n 6= 5.

Proposition 5.4.12. For any tagged triangulation T of P•
n, the elements

of x̃(T ) are algebraically independent, so (x̃(T ), B̃•(T )) is a seed in the field
generated by x̃(T ). The seeds associated to tagged triangulations related by
a flip are related to each other by the corresponding mutation.
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A

x1

x2

x3

x4

x5

x6

x7x8

x9

x10

p
B̃•(T◦) =













































0 −1 0 0 1
1 0 −1 0 0
0 1 0 −1 0
0 0 1 0 −1
−1 0 0 1 0

−1 1 0 0 0
0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1
1 0 0 0 −1
−1 0 0 0 0
0 0 0 0 1













































Figure 5.11. The (tagged) triangulation T◦ of a punctured pentagon

(n = 5), and the corresponding matrix B̃•(T◦). The columns of B̃•(T◦)

correspond to x1, . . . , x5. The rows correspond to x1, . . . , x10, λ, λ,
in this order.

Proof. It is a straightforward but tedious exercise to verify that the matrix
B̃•(T ) undergoes a mutation when a tagged arc in T is flipped to produce
a new tagged triangulation T ′. We already know that the elements of x̃(T )
and x̃(T ′) satisfy the corresponding exchange relation. It remains to show
algebraic independence. Since each exchange is a birational transformation,
it suffices to prove algebraic independence for one particular choice of T .

Consider the triangulation T◦ made up of n plain radii, cf. Figure 5.11
and Example 5.4.11. Then λ, λ, and 〈vn, Av1〉 are the only elements of x̃(T◦)
which involve λ, λ, or a. The remaining 2n− 1 elements are 2× 2 minors of
the matrix with columns v1, v2, . . . , vn, a; they form an extended cluster in
the corresponding seed pattern of type An−2. Hence they are algebraically
independent, and the claim follows. �

Proof of Theorem 5.4.2. By Proposition 5.4.12, the seeds (x̃(T ), B̃•(T ))
form a seed pattern. This pattern has finitely many seeds because a once-
punctured polygon has finitely many tagged triangulations. As verified in
Example 5.4.11, the extended exchange matrix B̃•(T◦) has full Z-rank. The
theorem follows by Corollary 4.3.6 and Remark 4.3.7. �

Corollary 5.4.13. Cluster variables in a seed pattern of type Dn can be
labeled by the tagged arcs in a once-punctured convex n-gon P•

n so that
clusters correspond to tagged triangulations, and mutations correspond to
flips. Cluster variables labeled by different tagged arcs are distinct. There
are altogether n2 cluster variables and 3n−2

n

(

2n−2
n−1

)

seeds (or clusters).

Most of the work in the proof of the corollary concerns the enumeration
of seeds. Let an (resp., dn) denote the number of seeds in a pattern of
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type An (resp., Dn), including a0 = 1, d2 = 4, and d3 = 14 by convention.

We know from Corollary 5.3.6 that an = 1
n+2

(2n+2
n+1

)

.

Lemma 5.4.14. The number of tagged triangulations T containing a given
radius γ is equal to an−1.

Proof. Assume without loss of generality that γ is a plain radius connecting
the puncture p to a boundary point i. If T contains the notched counterpart
of γ, then the remaining n− 1 arcs of T form a triangulation of the (n+1)-
gon obtained from P•

n by cutting it open along γ. The number of such
triangulations is an−2. If T does not contain the notched counterpart of γ,
then it is an ordinary triangulation of P•

n cut open along γ, in which we
are not allowed to use the arc connecting the two boundary points obtained
from i. The number of such triangulations is an−1 − an−2. �

Lemma 5.4.15. The numbers dn satisfy the recurrence

dn =
n−3
∑

k=0

ak dn−1−k + 2an−1 .

Proof. Consider two ways of counting the triples (T, γ, i) in which T is a
tagged triangulation of P•

n, γ is a tagged arc in T , and i is an endpoint of γ.
Selecting T first, then γ and then i, we see that the number of such triples
is equal to dn · n · 2. Selecting i first, then γ and T together, treating the
cases i 6= p and i = p separately, and using Lemma 5.4.14, we obtain:

2ndn = n
(

2

n−3
∑

k=0

ak dn−1−k + 2an−1

)

+ 2nan−1 ,

as desired. (The factor of 2 before the sum accounts for the two ways of
cutting up the polygon: leaving the puncture to the left or to the right of γ,
as we move away from i.) �

Proof of Corollary 5.4.13. The statements in the first sentence of the
corollary have already been established. The claim of distinctness can be
verified in the special case n = 4 by direct calculation; the general case then
follows by restriction.

The cluster variables are labeled by n2−3n+2
2 ordinary arcs not crossing

the cut, n2−n−2
2 ordinary arcs crossing the cut, and n radii of each of the

two flavors, bringing the total to n2.

The formula dn = 3n−2
n

(2n−2
n−1

)

can now be proved by induction using the
recurrence in Lemma 5.4.15. We leave this step to the reader. �

We conclude this section by examining a couple of examples of cluster
algebras of type Dn that occur in the settings discussed in Chapter 1.
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Example 5.4.16. The ring of polynomials in 9 variables zij (i, j ∈ {1, 2, 3}),
viewed as matrix entries of a 3× 3 matrix

z =







z11 z12 z13

z21 z22 z23

z31 z32 z33






∈ Mat3,3(C) ∼= C9,

carries a natural cluster algebra structure of type D4, see, e.g., [12]. The
seed pattern giving rise to this cluster structure contains, among others, the
seeds associated with double wiring diagrams with 3 wires of each kind.

Let us use the initial seed associated with the diagram D in Figure 2.6.
Thus the initial cluster is

(5.4.14) x = (x1, x2, x3, x4) = (∆1,2,∆3,2,∆13,12,∆13,23),

the 5 coefficient variables are

(5.4.15) (x5, . . . , x9) = (∆123,123,∆12,23,∆1,3,∆3,1,∆23,12),

and the exchange relations (encoded by the quiver shown in Figure 2.6) are:

∆1,2∆3,3 = ∆1,3 ∆3,2 +∆13,23 ,

∆3,2∆1,1 = ∆13,12 +∆3,1∆1,2 ,

∆13,12 ∆23,23 = ∆23,12 ∆13,23 +∆123,123 ∆3,2 ,

∆13,23 ∆12,12 = ∆123,123 ∆1,2 +∆12,23 ∆13,12 .

The mutable part of Q(D) is an oriented 4-cycle, so we are indeed dealing
with a pattern of typeD4. By Corollary 5.4.13, it has 50 seeds, which include
34 seeds associated with double wiring diagrams, see Figure 1.12. There
are 16 cluster variables, labeled by the 16 tagged arcs in a once-punctured
quadrilateral. They include the 14 minors of z not listed in (5.4.15). As
suggested by Exercise 1.4.4, the remaining two cluster variables are the
polynomials K(z) and L(z) given by (1.4.2)–(1.4.3).

Example 5.4.17. The coordinate ring C[SL5]
U of the basic affine space

for SL5 has a natural cluster algebra structure of type D6, to be discussed
in detail in Example 6.5.6. This cluster algebra has 36 cluster variables and
8 frozen variables. This set of 44 generators includes 25−2=30 flag minors
plus 14 non-minor elements. The total number of clusters is 672.

Remark 5.4.18. For any irreducible representation of a semisimple alge-
braic group G, Lusztig [23] introduced the concept of a canonical (resp.,
dual canonical) basis; these correspond to the lower and upper global bases
of Kashiwara [19]. While we will not define the dual canonical bases here,
we note that they are strongly connected to the theory of cluster algebras.
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12

3 4

∆1,2∆3,2

∆13,12 ∆13,23

Figure 5.12. The triangulation of a once-punctured square represent-
ing the initial cluster (5.4.14). Note that the frozen variables are not
shown; the frozen variables of the initial cluster at the right do not
correspond to the edges of the square.

In particular, it was conjectured in [10, p. 498] that every cluster monomial
in C[SLk]

U (i.e., a monomial in the elements of some extended cluster) be-
longs to the dual canonical basis; this conjecture was proved in [18]. For
k ≤ 5, cluster monomials make up the entire dual canonical basis in C[SLk]

U .

Example 5.4.19. The homogeneous coordinate ring of a Schubert divisor
in the Grassmannian Gr2,n+2 has a structure of a cluster algebra of type Dn;
see Example 6.3.5 for details.

5.5. Seed patterns of types Bn and Cn

By Definition 5.2.9, a seed pattern of rank n ≥ 2 (or the associated cluster
algebra) is of type Bn if one of its exchange matrices is

(5.5.1) B =























0 −2 0 0 · · · 0 0
1 0 −1 0 · · · 0 0
0 1 0 −1 · · · 0 0
0 0 1 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 −1
0 0 0 0 · · · 1 0























(up to simultaneous permutation of rows and columns).

Similarly, a seed pattern (or cluster algebra) of rank n ≥ 3 is of type Cn
if one of its exchange matrices has the form

(5.5.2) B =























0 −1 0 0 · · · 0 0
2 0 −1 0 · · · 0 0
0 1 0 −1 · · · 0 0
0 0 1 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 −1
0 0 0 0 · · · 1 0























.
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(We continue to use the conventions of [17], cf. Definition 5.2.4.)

Theorem 5.5.1. Seed patterns of type Bn are of finite type.

Theorem 5.5.2. Seed patterns of type Cn are of finite type.

Note that type B2 is already covered by Theorem 5.1.1, with bc = 2.

We will prove Theorems 5.5.1–5.5.2 using the technique of folding intro-
duced in Section 4.4. Specifically, we will obtain seed patterns of type Cn by
folding seed patterns of type A2n−1, and we will get type Bn from typeDn+1.

The following statement follows easily from the definitions.

Lemma 5.5.3. Let Q be a quiver globally foldable with respect to an action
of a group G. Let Q be a quiver constructed from Q by adding some new
frozen vertices together with some arrows connecting them to the mutable
vertices in Q. We extend the action of G from Q to Q by making G fix every
newly added vertex. Assume that the new arrows are compatible with the
action of G on Q, i.e. this action satisfies condition (2) of Definition 4.4.1.
Then the quiver Q is globally foldable with respect to G.

Corollary 5.5.4. Let Q be a quiver without frozen vertices. Suppose that
Q is globally foldable with respect to an action of a group G. If every seed
pattern with the initial exchange matrix B(Q) is of finite type (regardless of

the choice of an initial extended exchange matrix B̃ containing B(Q)), then
every seed pattern with the initial exchange matrix B(Q)G is of finite type.

Proof. Any extended exchange matrix B̃ that extends B(Q)G can be ob-
tained from an extended exchange matrix that extends B(Q) via the folding
procedure described in Lemma 5.5.3. The claim then follows from Corol-
lary 4.4.11. �

Proof of Theorem 5.5.2. Our proof strategy is as follows. We will con-
struct a type A2n−1 quiver Q0 with a group G acting on its vertices, so that
Q0 is globally foldable with respect to G, and B(Q0)

G is the n×n exchange
matrix of type Cn from Equation (5.5.2). Theorem 5.5.2 will then follow
from Theorem 5.3.2 and Corollary 5.5.4.

The combinatorial model for a seed pattern of type A2n−1 presented in
Section 5.3 uses triangulations of a convex (2n + 2)-gon P2n+2, with ver-
tices numbered 1, 2, . . . , 2n + 2 in clockwise order. Consider the centrally
symmetric triangulation T0 (see Figure 5.13) consisting of the following di-
agonals:

• a “diameter” d1 connecting vertices 1 and n+ 2;

• diagonals d2, d3, . . . , dn connecting n+ 2 with 2, 3, . . . , n;

• diagonals d2′ , d3′ , . . . , dn′ connecting 1 with n+ 3, n+ 4, . . . , 2n + 1.
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Let Q0 denote the mutable part of the quiver associated to the triangulation
T0 (see Section 2.2); Q0 is an orientation of the type A2n−1 Dynkin diagram
with vertices labeled n′, . . . , 3′, 2′, 1, 2, 3, . . . , n in order, and arrows directed
towards the central vertex 1, see Figure 5.13. The group G = Z/2Z acts
on the vertices of Q0 by exchanging i′ and i for 2 ≤ i ≤ n, and fixing the
vertex 1. It is easy to see that Q0 is G-admissible, and moreover B(Q0)

G is
the exchange matrix of type Cn from Equation (5.5.2).

1

2

3

45

6

7

8

d1

d2

d3

d2′

d3′

Figure 5.13. A centrally symmetric triangulation T0 and its quiver
Q0 = Q(T0). The folded matrix B(Q(T0))

G has type Cn; here n = 3.

It remains to show that Q0 is globally foldable. Besides acting on the set
{n′, . . . , 3′, 2′, 1, 2, 3, . . . , n}, the group G = Z/2Z naturally acts—by central
symmetry—on the set of diagonals of the polygon P2n+2. This action has
two kinds of orbits: (1) the “diameters” of P2n+2 fixed by the G-action, and
(2) pairs of centrally symmetric diagonals.

A transformation µJk ◦ · · · ◦ µJ1 associated with a sequence J1, . . . , Jk
of G-orbits in {n′, . . . , 3′, 2′, 1, 2, 3, . . . , n} corresponds to a sequence of flips
associated with diameters or pairs of centrally symmetric diagonals. Such a
sequence transforms T0 into another centrally symmetric triangulation T in
which the diameter retains the label 1 and each pair of centrally symmetric
diagonals have labels i and i′, for some i. It is easy to see that the quiver
associated to T is G-admissible. Thus Q0 is globally foldable. �

Proof of Theorem 5.5.1. We will follow the strategy used in the proof
of Theorem 5.5.2. Namely, we will construct a type Dn+1 quiver Q0 with
a group G acting on its vertices, so that Q0 is globally foldable with re-
spect to G, and B(Q0)

G is the exchange matrix of type Bn from (5.5.1).
Theorem 5.5.1 will then follow from Theorem 5.4.2 and Corollary 5.5.4.

The combinatorial model for a seed pattern of type Dn+1 (n ≥ 3) uses
tagged triangulations of a convex (n + 1)-gon P•

n+1 with a puncture p in
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its interior. The vertices of P•
n+1 are numbered 1, 2, . . . , n + 1 in clockwise

order. Consider the tagged triangulation T0 formed by:

• two radii d1 and d2 (tagged plain and notched) connecting the vertex 1
with the puncture p;

• plain arcs d3, d4, . . . , dn+1 connecting the vertex 1 with vertices 2, 3, . . . , n,
respectively, as shown in Figure 5.14.

⊲⊳

d1

p

d2

d3

d4

d5d6

d7

d8

2

3

4

56

7

8

1

Figure 5.14. A tagged triangulation T0 with quiver Q0 such that
B(Q0)

G is the type Bn exchange matrix; here n = 7.

The corresponding quiver Q0 = Q(T0) is an orientation of the type
Dn+1 Dynkin diagram. The group G = Z/2Z acts on the vertices of Q0

by exchanging the vertices 1 and 2, and fixing all the other vertices. It is
easy to see that Q0 is G-admissible, and moreover B(Q0)

G is the exchange
matrix of type Bn from Equation (5.5.1).

It remains to show that Q0 is globally foldable. In addition to the action
on the set {1, 2, . . . , n+1} described above, the group G = Z/2Z acts on the
set of tagged arcs in the punctured polygon P•

n+1 by fixing every non-radius
arc, and toggling the tags of the radii. A transformation µJk ◦ · · · ◦ µJ1 asso-
ciated with a sequence J1, . . . , Jk of G-orbits in {1, 2, . . . , n+1} corresponds
to a sequence of flips associated with non-radius arcs or pairs of “parallel”
radii with different tagging. (The latter step replaces a pair of parallel radii
inside a punctured digon by another such pair of radii – the pair incident to
the other vertex of the digon.) Such a sequence transforms T0 into another
G-invariant tagged triangulation T of the punctured polygon P•

n+1 in which
the labels 1 and 2 are assigned to a pair of parallel radii. It is easy to see
that the quiver associated to T is G-admissible (cf., e.g., the right picture
in Figure 5.8), and so Q0 is globally foldable. �
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Lemma 5.5.5. The cluster variables labeled by different G-orbits in a clus-
ter algebra of type Bn (respectively, Cn) are not equal to each other.

Proof. If two cluster variables appear in the same cluster, then they are
necessarily distinct. We now consider two cluster variables which do not
appear in the same cluster.

In type C, consider two pairs of centrally symmetric diagonals, or a
diameter and a pair of centrally symmetric diagonals, or two diameters.
By the observation in the first paragraph, we may assume that at least of
the diagonals/diameters cross over each other. In all three cases, there is
an octagon that contains the two G-orbits. Freezing all cluster variables
except those corresponding to the diagonals of this octagon yields a seed
subpattern of type C3. In type C3, one can check directly that each of 12
distinct G-orbits corresponds to a different cluster variable, say by verifying
that the Laurent expansions expressing these cluster variables in terms of a
particular initial cluster have different denominators.

In type B, consider two pairs of radii in P•
n+1, or a pair of radii and

an arc which is not a radius, or two arcs which are not radii. In all three
cases, the two G-orbits lie inside a certain punctured quadrilateral, reducing
the problem to the treatment of a seed subpattern of type B3. In type B3,
there are 12 different G-orbits; using the same method as in type C3, we
can verify that they correspond to 12 distinct cluster variables. �

Exercise 5.5.6. By enumerating G-orbits, verify that a cluster algebra of
type Bn or Cn has n2 + n cluster variables. By enumerating G-invariant
tagged triangulations and centrally symmetric triangulations, verify that a
cluster algebra of type Bn or Cn has

(2n
n

)

clusters (or seeds).

Proposition 5.5.7. The same seed pattern cannot be simultaneously of
type Bn and of type Cn for n ≥ 3.

Proof. By Lemma 2.7.13, if the diagram of an exchange matrix is con-
nected, then its skew-symmetrizing vector is unique up to rescaling. By
Exercise 2.7.7, the skew-symmetrizing vector is preserved under mutation.
It remains to note that the skew-symmetrizing vectors for the exchange ma-
trices of types Bn and Cn are (1, 2, 2, . . . , 2) and (2, 1, 1, . . . , 1), respectively
(up to rescaling and permuting the entries). �

Examples of coordinate rings having natural cluster algebra structures
of types Bn and Cn will be given in Section 6.3.

5.6. Seed patterns of types E6, E7, E8

In this section, we describe a computer-assisted proof of the statement that
the cluster algebras (or seed patterns) of exceptional types E6, E7, E8 are of
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finite type. The proof utilizes one of several software packages for computing
with cluster algebras, freely available online. Our personal favorites are the
Java applet [20] and the Sage package [24], cf. the links at [8]. Among
other things, both the applet and the Sage package allow one to compute
seeds and Laurent expansions of cluster variables obtained by applying a
sequence of mutations to a given initial seed.

Theorem 5.6.1. Seed patterns of types E6, E7, and E8 are of finite type.

Proof. It suffices to verify that a seed pattern of type E8 is of finite type.
A pattern of type E6 or E7 can be viewed as a subpattern of a pattern of
type E8, so if the latter has finitely many seeds, then so does the former.

The main part of the proof is a verification that a cluster algebra of type
E8 with trivial coefficients has finitely many seeds. (The case of general
coefficients will follow easily, see below.) With the Sage package [24], this
is done as follows. The Sage command

S24 = ClusterSeed([[0,1],[1,2],[2,3],[4,5],[5,6],[6,7],

[0,4],[1,5],[2,6],[3,7],[5,0],[6,1],[7,2]]);

defines a seed S24 with the quiver shown in Figure 5.15. Recall that by
Exercise 2.6.8, this quiver is mutation equivalent to any orientation of a
Dynkin diagram of type E8. Next, the Sage command

VC = S24.variable class(ignore bipartite belt=True);

performs an exhaustive depth-first search to find all seeds that can be ob-
tained from S24 using ≤ N mutations, for N = 0, 1, 2, 3, . . . ; the cluster
variables appearing in these seeds are recorded in the list VC. As soon as the
calculation stops, the finiteness of the seed pattern is thereby established.
Then the command

len(VC);

produces the output

128

which is the total number of cluster variables in the pattern. These 128
cluster variables, or more precisely their Laurent expansions in terms of the
chosen initial seed, can be displayed by executing the commands

for k in range(128): print(VC[k]); print("...");

To get a better idea of what happens in the course of the depth-first search,
one can run the command

SC=S24.mutation class(show depth=True, return paths=True);

its output will show how many seeds have been obtained after each stage.
These data are recorded in Figure 5.15. We see that no new seeds are found
for N = 14. The total number of seeds is 25080.
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0 1 2 3 4 5 6 7 8 9 10 11 12 ≥ 13
1 9 50 196 614 1582 3525 6863 11626 17098 21706 24220 24974 25080

Figure 5.15. Top: the triangulated grid quiver of type E8. Bottom:
the table showing, for each N ≥ 0, the number of distinct seeds that
can be obtained from the seed with this quiver using ≤ N mutations.

The proof of Theorem 5.6.1 for the case of general coefficients can now
be completed using a standard argument based on Corollary 4.3.6 and Re-
mark 4.3.7. One only needs to check that the 8× 8 exchange matrix

B =

























0 1 0 0 1 −1 0 0
−1 0 1 0 0 1 −1 0
0 −1 0 1 0 0 1 −1
0 0 −1 0 0 0 0 1
−1 0 0 0 0 1 0 0
1 −1 0 0 −1 0 1 0
0 1 −1 0 0 −1 0 1
0 0 1 −1 0 0 −1 0

























.

associated to the quiver in Figure 5.15 has full Z-rank. �

Remark 5.6.2. The reader may be wondering: why we chose as the initial
quiver the triangulated grid quiver in Figure 5.15, rather than an orientation
of a Dynkin diagram of type E8? The answer is that a straightforward im-
plementation of the latter strategy appears to be computationally infeasible.
A seed pattern of type E8 has 128 cluster variables. The formulas expressing
them as Laurent polynomials in the 8 initial cluster variables are recursively
computed in the process of the depth-first search, and then used to com-
pare the seeds to each other. When the triangulated grid quiver is chosen as
the initial one, these Laurent polynomials turn out to be quite manageable.
As a result, the entire calculation took less than one hour on a MacBook
Pro laptop computer (manufactured in 2013), with a 2.6 GHz processor
and 8 GB RAM. By comparison, a similar calculation using, as the initial
quiver, the Dynkin diagram of type E8 with an alternating orientation (i.e.,
each vertex is either a source or a sink) did not terminate within a few
days. The explanation likely lies in the fact that the Laurent polynomials
expressing some of the 128 cluster variables in terms of the initial ones are
extremely cumbersome in this case. To get an idea of the size of these Lau-
rent polynomials (which are known to have positive coefficients), one can
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specialize the 8 initial variables to 1, and compute the remaining 120 clus-
ter variables recursively. When the initial quiver is the alternating Dynkin
quiver of type E8, the largest of these specializations turns out to be equal
to 2820839; for the triangulated grid quiver, the corresponding value is 107.

Remark 5.6.3. One naturally arising cluster algebra of type E8 is the
homogeneous coordinate ring of the Grassmannian Gr3,8 of 3 planes in 8-
space. Another closely related example is the coordinate ring of the affine
space of 3 × 5 matrices. (See Chapter 6 and Chapter 8 for more details.)
Each of these constructions can in principle be used, with or without a
computer, to verify that seed patterns of type E8 are of finite type.

5.7. Seed patterns of types F4 and G2

We will now use folding to take care of types F4 and G2.

By Exercise 4.4.12, one can realize a type F4 exchange matrix as B(Q)G,
where Q is an orientation of the type E6 Dynkin diagram, G = Z/2Z, and
Q is globally foldable. Now Corollary 5.5.4, together with the fact that
type E6 cluster algebras are of finite type, implies that the same is true in
type F4.

An alternative approach is to use a computer to check directly that a
cluster algebra of type F4 (with no frozen variables) has finitely many seeds
(there are 105 of them). We can then use our standard argument based on

Remark 4.3.7, together with the fact that the matrix B̃G from Figure 4.3
has full Z-rank, to complete the proof.

We now turn to cluster algebras of type G2. While it follows from the
results of Section 5.1 that cluster algebras of type G2 are of finite type,
this result can also be obtained via folding of the type D4 quiver shown in
Figure 5.16. It is easy to see that this quiver is G-foldable, with respect to
the natural action of G = Z/3Z. Since every seed pattern of type D4 is of
finite type, Corollary 5.5.4 implies the same for the type G2.

x1

x2

x4 x3
B̃G =

[

0 3
−1 0

]

Figure 5.16. The generator of the group G = Z/3Z acts on the vertices
of the quiver shown on the left by sending 1 7→ 2 7→ 3 7→ 1 and 4 7→ 4.
All vertices are mutable. The rows and columns of the matrix B̃G are
indexed by the G-orbits {1, 2, 3} and {4}.
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5.8. Decomposable types

We refer to the disjoint union of two Dynkin diagrams of types Xn and Yn′

as a Dynkin diagram of type Xn ⊔ Yn′ ; and similarly for disjoint unions of
three or more Dynkin diagrams.

We have now defined cluster algebras of types An, Bn, Cn, Dn, E6, E7,
E8, F4, and G2, corresponding to the indecomposable Cartan matrices of
finite type, or equivalently, the connected Dynkin diagrams. A seed pattern
(or cluster algebra) of rank n + n′ is said to be of type Xn ⊔ Yn′ if one
of its exchange matrices is (up to a simultaneous permutation of rows and
columns) a block-diagonal matrix with blocks whose Cartan counterparts
are of types Xn and Yn′ . We have the following simple lemma.

Lemma 5.8.1. If A is a cluster algebra of decomposable type Xn⊔Yn′, then
the number of cluster variables is the sum of those of the cluster algebras of
types Xn and Yn′, and the number of clusters is the product.

Proof. Suppose that A is of type Xn ⊔ Yn′ . Then (after a simultaneous
permutation of rows and columns) one of its exchange matrices B is block-
diagonal with blocks whose Cartan counterparts are of types Xn and Yn′ .
Then the labeled seeds of A are all pairs of the form (x1 ⊔ x2, B1 ⊔ B2),
where each (xi, Bi) is a labeled seed of the cluster algebra associated to the
ith block of B, x1 ⊔x2 denotes the concatenation of the clusters x1 and x2,
and B1⊔B2 denotes the block-diagonal matrix with blocks B1 and B2. The
statement of the lemma follows. �

We are now ready to complete the proof of the “if” direction of Theo-
rem 5.2.8, restated below for the convenience of the reader.

Corollary 5.8.2. If the Cartan counterpart of an exchange matrix of a seed
pattern (or a cluster algebra) is a Cartan matrix of finite type, then the seed
pattern is of finite type.

Proof. Putting together Theorems 5.3.2, 5.4.2, 5.5.1, 5.5.2, and the results
of Sections 5.6–5.7, we conclude that if the Cartan counterpart A = A(B)
of one of the exchange matrices B associated to a seed pattern is an inde-
composable Cartan matrix of finite type, then the seed pattern has finite
type. In the general (decomposable) case, the same conclusion follows from
Lemma 5.8.1. �

5.9. Enumeration of clusters and cluster variables

In this section we present formulas for the number of cluster variables and
clusters in each cluster algebra of finite type. These enumerative invariants
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provide a way to distinguish cluster algebras of different types, leading to a
proof of Theorem 5.2.12.

One important property of finite type cluster algebras is that the un-
derlying combinatorics does not depend on the choice of coefficient tuple.
(Conjecturally this holds for arbitrary cluster algebras, see Section 9.1.) We
have seen that in cluster algebras of type An, seeds are in bijection with
triangulations of an (n+3)-gon, regardless of the choice of coefficient tuple.
Similarly, in cluster algebras of type Dn, seeds are in bijection with tagged
triangulations of a punctured n-gon, for any choice of coefficients. Seeds
of cluster algebras of types Cn and Bn are in bijection with folded trian-
gulations and tagged triangulations, respectively. For cluster algebras of
exceptional types other than E7, the exchange matrices all have full Z-rank.
It then follows from Corollary 4.3.6 and Remark 4.3.7 that the combina-
torics of seeds is independent of the choice of coefficients: if an exchange
matrix B(t) has full Z-rank, and B̃(t) is obtained from B(t) by appending

some additional rows, then the rows of B̃(t) lie in the Z-span of the rows of

B(t), and also the rows of B(t) lie in the Z-span of the rows of B̃(t). There-
fore Corollary 4.3.6 implies that the seeds of the seed patterns associated
with B(t) and with B̃(t) are in bijection with each other.

In type E7, one needs to add one additional row to the exchange matrix
B in order to obtain an exchange matrix B̃ of full Z-rank. One can then
check (for example by computer) that the seeds of the seed patterns asso-

ciated with B and B̃, respectively, are in bijection. The same argument as
before implies that the underlying combinatorics of any cluster algebra of
type E7 does not depend on the choice of coefficient tuple.

Proposition 5.9.1. Let Xn be a connected Dynkin diagram. The numbers
of seeds and cluster variables in a seed pattern of type Xn are given by the
values in the corresponding column of the table in Figure 5.17. Alternatively,
let Φ be an irreducible finite crystallographic root system of type Xn. Then

#seeds(Xn) =

n
∏

i=1

ei + h+ 1

ei + 1
,(5.9.1)

#clvar(Xn) =
n(h+ 2)

2
,(5.9.2)

where e1, . . . , en are the exponents of Φ, and h is the corresponding Coxeter
number.

Proof. The values in Figure 5.17 can be verified case by case. The types
An, Bn/Cn, and Dn were worked out in Corollary 5.3.6, Exercise 5.5.6,
and Corollary 5.4.13, respectively. Exceptional types can be handled using
the software packages discussed in Section 5.6. It is then straightforward
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Xn An Bn, Cn Dn E6 E7 E8 F4 G2

#seeds(Xn)
1

n+2

(2n+2
n+1

) (2n
n

)

3n−2
n

(2n−2
n−1

)

833 4160 25080 105 8

#clvar(Xn)
n(n+3)

2 n(n+ 1) n2 42 70 128 28 8

Figure 5.17. Enumeration of seeds and cluster variables

to check that the formulas (5.9.1)–(5.9.2) match the values shown in Fig-
ure 5.17. (See, e.g., [2, 9] for the values of the exponents and Coxeter
numbers for all types.) �

Remark 5.9.2. Since the number 1
n+2

(2n+2
n+1

)

of seeds in type An is a Cata-

lan number, the numbers in (5.9.1) can be regarded as generalizations of
the Catalan numbers to arbitrary Dynkin diagrams.

Remark 5.9.3. The number of cluster variables is alternatively given by

#clvar(Xn) =
#roots(Xn)

2 + n,

where # roots(Xn) denotes the number of roots in the root system Φ of
type Xn. Thus cluster variables are equinumerous to the roots which are
either positive or negative simple (i.e., the negatives of simple roots). A nat-
ural labeling of the cluster variables by these “almost positive” roots was
described and studied in [13].

The reader is referred to [9] for a detailed discussion of cluster combi-
natorics of finite type, and further references.

Recall from Lemma 5.8.1 that if A is a cluster algebra of decomposable
type Xn ⊔ Yn′ , then the number of cluster variables is the sum of those for
the cluster algebras of types Xn and Yn′ , and the number of seeds is the
product. Therefore Proposition 5.9.1 allows us to compute the number of
cluster variables and seeds for any cluster algebra of finite type.

Proof of Theorem 5.2.12. The implication (1)⇒(2) is easy to establish.
Suppose that the Cartan counterparts A(B′) and A(B′′) are Cartan ma-
trices of the same finite type. In the case of simply laced types ADE,
this means that the corresponding quivers are (possibly different) orienta-
tions of isomorphic Dynkin diagrams. By Exercise 2.6.5, these two quivers
are related to each other by a sequence of mutations at sources and sinks,
and consequently B′ and B′′ are mutation equivalent. The remaining cases
BCFG are treated in a similar fashion, using an appropriate analogue of
Exercise 2.6.5.
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Let us prove the implication (2)⇒(1). We first observe that it suffices
to establish this result in the indecomposable case, since mutations trans-
form the connected components of a quiver (or their analogues for skew-
symmetrizable matrices) independently of each other.

Let B′ and B′′ be mutation equivalent exchange matrices of types X ′

and X ′′, respectively, where X ′ and X ′′ are connected Dynkin diagrams.
We need to show that X ′ and X ′′ are of the same type. This is done as
follows. By Proposition 5.9.1, the number of cluster variables in a seed
pattern associated with such an exchange matrix is uniquely determined by
the type of the corresponding Dynkin diagram (i.e., it does not depend on
the choice of coefficient tuple). Moreover no two connected Dynkin types
of the same rank produce the same number of cluster variables—with the
exception of the pairs (Bn, Cn). For Bn versus Cn, the claim follows from
Proposition 5.5.7. �

We conclude this section by an elementary observation that shows that
the problem of enumerating cluster variables does not make sense outside
of finite type.

Proposition 5.9.4. A seed pattern is of finite type if and only if it has
finitely many cluster variables.

Proof. One direction is obvious: if a seed pattern has finitely many distinct
seeds, then it has finitely many cluster variables. Conversely, if a seed pat-
tern has finitely many cluster variables, then the only way it could possibly
have infinitely many distinct seeds is if there were infinitely many distinct
extended exchange matrices. By the Pigeonhole principle, one cluster would
have to appear with infinitely many different extended exchange matrices B̃,
which implies that one of its cluster variables xj would appear in infinitely
many exchange relations, leading to infinitely many different x′j ’s. �

5.10. 2-finite exchange matrices

In this section, we complete the proof of Theorem 5.2.8, closely follow-
ing [11]. The notion of a 2-finite (skew-symmetrizable) matrix introduced
in Definition 5.1.3 plays a key role.

We establish Theorem 5.2.8 by including it in the following statement.

Theorem 5.10.1. For a seed Σ = (x,y, B), the following are equivalent:

(1) there exists a matrix B′ mutation equivalent to B such that its Cartan
counterpart A(B′) is a Cartan matrix of finite type;

(2) the seed pattern (or the cluster algebra) defined by Σ is of finite type;

(3) the exchange matrix B is 2-finite.
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The implication (1)⇒ (2) in Theorem 5.10.1 is nothing but Corol-

lary 5.8.2. To the best of our knowledge, the only known proof of the
reverse implication (2)⇒ (1) goes through property (3).

The implication (2)⇒ (3) is precisely Corollary 5.1.4.

All that remains in order to complete the proof of Theorem 5.10.1 (hence

Theorem 5.2.8) is to prove the implication (3)⇒ (1) . We reformulate the

latter below as a standalone statement.

Proposition 5.10.2. Let B = (bij) be a 2-finite skew-symmetrizable integer
matrix. Then there exists a matrix B′ mutation equivalent to B such that
its Cartan counterpart A(B′) is a Cartan matrix of finite type.

In the rest of this section, we outline the proof of Proposition 5.10.2
given in [11, Sections 7–8]. The proof is purely combinatorial and rather
technical. The missing details (all of them relatively minor) can be found
in loc. cit.

The proof of Proposition 5.10.2 makes heavy use of the notion of diagram
from Definition 2.7.10. Recall from Proposition 2.7.11 that mutation is well-
defined for diagrams, and we write Γ ∼ Γ′ to denote that diagrams Γ and
Γ′ are mutation equivalent.

A diagram Γ is called 2-finite if every diagram Γ′ ∼ Γ has all edge
weights equal to 1, 2 or 3; otherwise we refer to Γ as 2-infinite. Thus a
matrix B is 2-finite if and only if its diagram Γ(B) is 2-finite. Note that a
diagram is 2-finite if and only if so are all its connected components.

We now restate Proposition 5.10.2 in the language of diagrams.

Proposition 5.10.3. Any 2-finite diagram is mutation equivalent to an
orientation of a Dynkin diagram (where the weight of each edge is understood
as its multiplicity in the corresponding Dynkin diagram).

We note that all orientations of a given Dynkin diagram are mutation
equivalent to each other, as they are related by source-or-sink mutations as
in the proof of Theorem 5.2.12. This is true more generally for any diagram
whose underlying graph is a tree.

A subdiagram of a diagram Γ is a diagram Γ′ ⊂ Γ obtained by taking an
induced directed subgraph of Γ and keeping all its edge weights intact.

The proof of Proposition 5.10.3 repeatedly makes use of the following
obvious property: any subdiagram of a 2-finite diagram is 2-finite. Equiv-
alently, any diagram that has a 2-infinite subdiagram is 2-infinite. Thus,
in order to show that a given diagram is 2-infinite, it suffices to exhibit a
sequence of mutations that creates an edge of weight 4 or larger, or a subdi-
agram which is already known to be 2-infinite. The strategy is to catalogue
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enough 2-infinite subdiagrams to be able to show that any diagram avoiding
them has to be mutation equivalent to an orientation of a Dynkin diagram.

We first examine two special classes of diagrams, those whose underlying
graphs are trees or cycles, respectively. We refer to them as tree diagrams
and cycle diagrams, respectively.

Proposition 5.10.4. Any 2-finite tree diagram is an orientation of a con-
nected Dynkin diagram.

For the proof we consider a class of diagrams defined as follows. A
diagram Γ is called an extended Dynkin tree diagram if

• Γ is a tree diagram with edge weights ≤ 3;

• Γ is not on the Dynkin diagram list;

• any proper subdiagram of Γ is a Dynkin diagram (possibly disconnected).

To prove the proposition, it is enough to show that any orientation of any
extended Dynkin tree diagram is 2-infinite. Direct inspection shows that
Figure 5.18 provides a complete list of such diagrams (as discussed above,
the choice of an orientation for a tree diagram is immaterial). We note that
all these diagrams are associated with untwisted affine Lie algebras and can
be found in the tables in [2] or in [17, Chapter 4, Table Aff 1]. The only

diagram from those tables that is missing in Figure 5.18 is A
(1)
n , which is an

(n+ 1)-cycle; it will appear later in our discussion of cycle diagrams.

In showing that an extended Dynkin tree diagram is 2-infinite, we can
arbitrarily choose its orientation. We start with the three infinite series

B
(1)
n , C

(1)
n , and D

(1)
n , each time orienting all the edges left to right. Let

us denote the diagram in question by X
(1)
n , and let n◦ be the minimal

value of n. So if X = D (resp., B, C), then n◦ equals 4 (resp., 3, 2). If
n > n◦, then mutating at the second vertex from the left, and subsequently
removing this vertex (together with all incident edges) leaves us with a

subdiagram of type X
(1)
n−1. Using induction on n, it suffices to check the

base cases D
(1)
4 , B

(1)
3 and C

(1)
2 . It is not hard to check that each of these

three diagrams is 2-infinite. The same applies to extended Dynkin trees of

types F
(1)
4 and G

(1)
2 .

The remaining three cases E
(1)
6 , E

(1)
7 and E

(1)
8 can be treated in a similar

manner (with or without a computer) but we prefer another approach. To
describe it, we will need to introduce some notation.

Definition 5.10.5. For p, q, r ∈ Z≥0, we denote by Tp,q,r the tree diagram
(with all edge weights equal to 1) on p + q + r + 1 vertices obtained by
connecting an endpoint of each of the three chains Ap, Aq and Ar to a
single extra vertex (see Figure 5.19).
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B
(1)
n

2 (n ≥ 3)

C
(1)
n

2 2 (n ≥ 2)

D
(1)
n (n ≥ 4)

E
(1)
6

E
(1)
7

E
(1)
8

F
(1)
4

2

G
(1)
2

3 a
(a ∈ {1, 2, 3})

Figure 5.18. Extended Dynkin tree diagrams. Each tree X
(1)
n has n+1

vertices. All unspecified edge weights are equal to 1.

Figure 5.19. The tree diagram T5,4,2 .

Definition 5.10.6. For p, q, r ∈ Z>0 and s ∈ Z≥0, let S
s
p,q,r denote the

diagram (with all edge weights equal to 1) on p+ q+ r+ s vertices obtained
by attaching three branches Ap−1, Aq−1, and Ar−1 to three consecutive
vertices on a cyclically oriented (s+ 3)-cycle (see Figure 5.20).
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Figure 5.20. The diagram S5
4,3,2 .

Note that in both definitions, the choice of orientations for the edges
where they are not shown is immaterial: different choices lead to mutation-
equivalent diagrams. For Tp,q,r , this follows from Exercise 2.6.5; for Ssp,q,r,
one needs a slight generalization of this result, see [11, Proposition 9.2].

Exercise 5.10.7. Show that the diagram Ssp,q,r is mutation equivalent to
Tp+r−1,q,s.

With the help of Exercise 5.10.7, the proof of Proposition 5.10.4 can now
be completed, using the observations that

E
(1)
6 = T2,2,2 ∼ S2

2,2,1 ⊃ D
(1)
5 ;

E
(1)
7 = T3,1,3 ∼ S3

3,1,1 ⊃ E
(1)
6 ;

E
(1)
8 = T2,1,5 ∼ S5

2,1,1 ⊃ E
(1)
7 .

Turning to the cycle diagrams, we have the following classification.

Exercise 5.10.8. Let Γ be a 2-finite diagram whose underlying graph is an
n-cycle (with some orientation of edges). Show that Γ is cyclically oriented,
and moreover it must be one of the following (see Figure 5.21):

(a) an n-cycle with all weights equal to 1 (in this case, Γ ∼ Dn);

(b) a 3-cycle with edge weights 2, 2, 1 (in this case, Γ ∼ B3);

(c) a 4-cycle with edge weights 2, 1, 2, 1 (in this case, Γ ∼ F4).

Proof of Proposition 5.10.3. We proceed by induction on n, the number
of vertices in Γ. If n ≤ 3, then Γ is either a tree or a cycle, and the theorem
follows by Proposition 5.10.4 and Exercise 5.10.8. So let us assume that
the statement is already known for some n ≥ 3; we need to show that it
holds for a diagram Γ on n+ 1 vertices. Pick a vertex v ∈ Γ such that the
subdiagram Γ′ = Γ − {v} is connected. Since Γ′ is 2-finite, it is mutation
equivalent to some Dynkin diagram Xn . Furthermore, we may assume that
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(a)

2 2

1

(b)

2

2

(c)

Figure 5.21. 2-finite cycles.

Γ′ is (isomorphic to) our favorite representative of the mutation equivalence
class of Xn . For each Xn , we will choose a representative that is most
convenient for the purposes of this proof, and use the classifications of 2-
finite tree and cycle diagrams obtained above to achieve the desired goal.

Case 1: Γ′ is an orientation of a Dynkin diagram with no branching point,
i.e., is of one of the types An, Bn, Cn, F4, or G2. Let us orient the edges
of Γ′ so that they all point in the same direction. If v is adjacent to exactly
one vertex of Γ′, then Γ is a tree, and we are done by Proposition 5.10.4. If
v is adjacent to more than two vertices of Γ′, then Γ has a cycle subdiagram
whose edges are not cyclically oriented, contradicting Exercise 5.10.8. Thus
we may assume that v is adjacent to precisely two vertices v1 and v2 of Γ′,
see Figure 5.22. Then Γ has precisely one cycle C, which must be of one of
the types (a)–(c) shown in Figure 5.21.

Suppose that C is an oriented cycle with unit edge weights. If Γ has

an edge of weight ≥ 2, then it contains a subdiagram of type B
(1)
m or G

(1)
2 ,

unless C is a 3-cycle, in which case µv(Γ) is a tree, and we are done by
Proposition 5.10.4. If all edges in Γ are of weight 1, then it is one of the dia-
grams Ssp,q,r in Exercise 5.10.7 (with q = 0). Hence Γ is mutation equivalent
to a tree, and we are done.

Suppose that C is as in Figure 5.21(b). If one of the edges (v, v1) and
(v, v2) has weight 1, then µv removes the edge (v1, v2), resulting in a tree,
and we are done again. So assume that both (v, v1) and (v, v2) have weight 2.

If at least one edge outside C has weight ≥ 2, then Γ ⊃ C
(1)
m or Γ ⊃ G

(1)
2 .

It remains to consider the case shown in Figure 5.22. A direct check shows
that µl ◦ · · · ◦ µ2 ◦ µ1 ◦ µv2 ◦ µv(Γ) = Bn+1 , and we are done.

v

v1

2 2

v2 1 2 3 · · · ℓ

Figure 5.22. Second subcase in Case 1.
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Suppose that C is as in Figure 5.21(c). It suffices to show that any
diagram C′ obtained from C by adjoining a single vertex adjacent to one of
its vertices is 2-infinite. Indeed, if this extra edge has weight 1 (resp., 2, 3),

then C′ has a 2-infinite subdiagram of type B
(1)
3 (resp., C

(1)
2 , G

(1)
2 ).

Case 2: Γ′ ∼ Dn (n ≥ 4). We may assume that Γ′ is an oriented n-cycle
with unit edge weights.

If v is adjacent to two non-adjacent vertices of Γ′ (and possibly others),
then Γ contains an improperly oriented cycle, contradicting Exercise 5.10.8.

Suppose v is adjacent to a single vertex v1 ∈ Γ′. If the edge (v, v1) has

weight ≥ 2, then Γ has a subdiagram B
(1)
3 or G

(1)
2 . If (v, v1) has weight 1,

then by Exercise 5.10.7, Γ is mutation equivalent to a tree, and we are done.

Suppose that v is adjacent to exactly two vertices v1 and v2 which are
adjacent to each other. Then the triangle (v, v1, v2) is either an oriented
3-cycle with unit edge weights or the diagram in Figure 5.21(b). In the
former case, µv(Γ) is an oriented (n + 1)-cycle, so Γ ∼ Dn+1. In the latter
case, µv(Γ) contains an improperly oriented (hence 2-infinite) cycle.

Case 3: Γ′ ∼ En = T1,2,n−4 , for n∈{6, 7, 8}. By Exercise 5.10.7, we may

assume that Γ′ = Sn−4
1,2,1 , i.e., Γ

′ consists of an oriented (n− 1)-cycle C with
unit edge weights, and an extra edge of weight 1 connecting a vertex in C
to a vertex v1 /∈ C.

There are several subcases to examine, depending on how v connects to C.
It is routine (if tedious) to check that in each of these subcases, Γ must be
equivalent to an orientation of a Dynkin diagram (e.g. because it is equiv-
alent to a tree, or to one of the diagrams treated in Cases 1 and 2 above),
or else Γ is not 2-finite. Details can be found in [11].

This concludes the proof of Proposition 5.10.3. As a consequence, we
obtain Proposition 5.10.2, Theorem 5.10.1, and Theorem 5.2.8. �

Remark 5.10.9. The property of being 2-finite is clearly hereditary. There-
fore the other two equivalent properties of exchange matrices appearing in
Theorem 5.10.1 are hereditary as well.

5.11. Quasi-Cartan companions

An unpleasant feature of the finite type classification (see Theorem 5.10.1)
is that it does not provide an effective way to verify whether a given ex-
change matrix B defines a seed pattern of finite type: both condition (3)
(2-finiteness) and condition (1) (being mutation equivalent to a skew-sym-
metrizable version of a Cartan matrix) impose a restriction on all matrices
in the mutation class of B. An alternative criterion formulated directly in
terms of the matrix B (rather than its mutation class) was given in [1]. We
reproduce this result below while omitting the technical part of the proof.
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Remark 5.11.1. A different finite type recognition criterion was given
in [25], by explicitly listing all minimal obstructions to finite type. More
precisely, [25] provides a list of all (up to isomorphism) minimal 2-infinite
diagrams, i.e., all diagrams which are not 2-finite but whose proper subdi-
agrams are all 2-finite. Then B is of finite type if and only if Γ(B) does
not contain a subdiagram on this list. Unfortunately, the list is rather long:
it includes 10 infinite series and a large number of exceptional diagrams of
size ≤ 9.

Definition 5.11.2. A quasi-Cartan matrix is a symmetrizable (square)
matrix A = (aij) with integer entries such that aii = 2 for all i. Note that
in such a matrix, the entries aij and aji always have the same sign. Unlike
for generalized Cartan matrices, they are allowed to be positive.

A quasi-Cartan matrix A is positive if the symmetrized matrix is positive
definite, or equivalently if the principal minors of A are all positive.

A quasi-Cartan matrix A is called a quasi-Cartan companion of a skew-
symmetrizable integer matrix B if |aij | = |bij | for all i 6= j. Thus B can have
several quasi-Cartan companions one of which is the Cartan counterpart
of B given by Definition 5.2.7. (To be precise, the number of quasi-Cartan
companions of B is 2e where e is the number of edges in the diagram of B.)

A chordless cycle in the diagram Γ(B) is an induced subgraph isomor-
phic to a cycle (with arbitrary orientation).

Theorem 5.11.3. For a skew-symmetrizable integer matrix B, each of the
conditions (1)–(3) in Theorem 5.10.1 is equivalent to

(4) every chordless cycle in Γ(B) is cyclically oriented, and B has a positive
quasi-Cartan companion.

The key ingredient in the proof of Theorem 5.11.3 given in [1] is the
following lemma, whose proof we omit.

Lemma 5.11.4 ([1, Lemma 4.1]). Property (4) in Theorem 5.11.3 is pre-
served under mutations of skew-symmetrizable integer matrices.

Proof of Theorem 5.11.3 modulo Lemma 5.11.4. We deduce the im-
plications (1)⇒ (4)⇒ (3) from Lemma 5.11.4. To prove that (1)⇒ (4), it
is enough to observe that if Γ(B) is a Dynkin diagram, then B satisfies (4).
(Indeed, the Cartan counterpart of B is positive, and Γ(B) has no cycles.)
To prove (4) ⇒ (3), note that any positive quasi-Cartan matrix A = (aij)
satisfies |aijaji| ≤ 3 for all i 6= j because of the positivity of the principal
2× 2 minor of A occupying the rows and columns i and j. �

Remark 5.11.5. As explained above, one can use Lemma 5.11.4 to estab-
lish the implications (1) ⇒ (4) ⇒ (3). In combination with the arguments
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given in Section 5.10, this yields a self-contained combinatorial proof of the
equivalence (3)⇔ (1).

A skew-symmetrizable integer matrix B can have many quasi-Cartan
companions A, corresponding to different choices for the signs of its off-
diagonal matrix entries. Note that the positivity property of A is preserved
by simultaneous sign changes in rows and columns. It turns out that for the
purposes of checking (4) for a given matrix B, there is a unique, up to these
transformations, sign pattern for A that needs to be checked for positivity.
More precisely, we have the following result, cf. [1, Propositions 1.4–1.5].

Proposition 5.11.6. Let B be a skew-symmetrizable integer matrix such
that each chordless cycle in Γ(B) is cyclically oriented. Then B has a quasi-
Cartan companion A = (aij) such that the sign condition

(5.11.1)
∏

{i,j}∈Z

(−aij) < 0

(product over all edges {i, j} in Z) is satisfied for every chordless cycle Z.
In fact, A is unique up to simultaneous sign changes in rows and columns.
Moreover B satisfies conditions (1)–(3) in Theorem 5.10.1 if and only if A
is positive.

Remark 5.11.7. Several characterizations of positive quasi-Cartan matri-
ces have been given in [1, Proposition 2.9]. In particular, these matrices
are, up to certain equivalence, also classified by Cartan-Killing types. More
precisely, any positive quasi-Cartan matrix corresponding to a root system
Φ has the entries aij = 〈β∨i , βj〉, where {β1, . . . , βn} ⊂ Φ is a Z-basis of the
root lattice generated by Φ, and β∨ is the coroot dual to a root β ∈ Φ.

We conclude this section by an example illustrating the use of Proposi-
tion 5.11.6 for checking whether a particular skew-symmetric matrix is an
exchange matrix of a seed pattern of finite type.
Example 5.11.8. Let Q(n) be the following quiver with vertices 1, 2, . . . , n:

1 3 5 7

2 4 6 8
· · ·

· · ·

The quiver Q(n) is the diagram of its n× n exchange matrix

B(n) = B(Q(n)) =























0 −1 1 0 · · · 0 0
1 0 −1 1 · · · 0 0
−1 1 0 −1 · · · 0 0
0 −1 1 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 −1
0 0 0 0 · · · 1 0
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(that is, Γ(B(n)) = Q(n)). This quiver has n − 2 chordless cycles, the 3-
cycles with vertices {i, i + 1, i + 2}, for i = 1, . . . , n − 2. All of them are
cyclically oriented. Now let A(n) be the quasi-Cartan companion of B(n)
such that aij = bij for i < j. One immediately checks that A(n) satisfies
the sign condition (5.11.1). Let δn = det(A(n)). By Sylvester’s criterion,
A(n) is positive if and only if all the numbers δ1, . . . , δn are positive.

It is not hard to compute the generating function of the sequence (δn),
with the convention δ0 = 1:

(5.11.2)
∑

n≥0

δn x
n =

(1 + x)(1 + x+ x2)(1 + x2)(1 + x3)

1− x12 .

We see that δn+12 = δn for n ≥ 0. Since the numerator in (5.11.2) is a
polynomial of degree 8, we conclude that δ9 = δ10 = δ11 =0. The fact that
δ9=0 implies that A(n) is not positive (hence B(n) is not 2-finite) for n ≥ 9.

The values of δn for 1 ≤ n ≤ 8 are given in Figure 5.23; cf. Exercise 2.6.8.
As all of them are positive, we conclude that A(n) is positive (and so B(n)
is 2-finite) if and only if n ≤ 8. The corresponding Cartan-Killing types are
shown in Figure 5.23; we leave the verification to the reader.

n 1 2 3 4 5 6 7 8

δn = det(A(n)) 2 3 4 4 4 3 2 1

Cartan-Killing type A1 A2 A3 D4 D5 E6 E7 E8

Figure 5.23. Determinants and Cartan-Killing types of the matrices A(n).
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Birkhäuser Boston, Inc., Boston, MA, 1993.

[24] Musiker, G., and Stump, C. A compendium on the cluster algebra and quiver
package in Sage. Sem. Lothar. Comb. 65 (2011). Article B65d.

[25] Seven, A. I. Recognizing cluster algebras of finite type. Electron. J. Combin. 14, 1
(2007), Research Paper 3, 35 pp. (electronic).

[26] Stanley, R. P. Enumerative combinatorics. Vol. 2, vol. 62 of Cambridge Studies
in Advanced Mathematics. Cambridge University Press, Cambridge, 1999. With a
foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin.
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Chapter 6

Cluster structures in

commutative rings

Cluster algebras are commutative rings endowed with a particular kind of
combinatorial structure (a cluster structure, as we call it). In this chapter,
we study the problem of identifying a cluster structure in a given commu-
tative ring, or equivalently the problem of verifying that certain additional
data make a given ring a cluster algebra.

Sections 6.1–6.3 provide several examples of cluster structures in coordi-
nate rings of affine algebraic varieties. General techniques used to verify that
a given commutative ring is a cluster algebra are introduced in Section 6.4.
These techniques are applied in Sections 6.5–6.7 to treat several important
classes of cluster algebras: the basic affine spaces for SLk (Section 6.5), the
coordinate rings of Matk×k and SLk (Section 6.6), and the homogeneous
coordinate rings of Grassmannians, also called Plücker rings (Section 6.7).
An in-depth study of the latter topic will be given later in Chapter 8, follow-
ing the development of the required combinatorial tools in Chapter 7. The
problem of defining cluster algebras by generators and relations is discussed
in Section 6.8.

Section 6.1 is based on [16, Section 12.1] and [20, Section 2]. Sections 6.2
and 6.3 follow [16, Sections 11.1 and 12]. Section 6.4 follows [12, Section 3],
which in turn extends the ideas used in the proofs of [3, Theorem 2.10] and
subsequently [38, Proposition 7]. The constructions presented in Sections
6.5 and 6.6 predate the general definition of cluster algebras; they essentially
go back to [2] and [13], respectively. Our development of cluster structures
in Grassmannians (Section 6.7) is different from the original sources [38]
and [24, Section 3.3]. The material in Section 6.8 is mostly new.

1



2 6. Cluster structures in commutative rings

6.1. Introductory examples

As a warm-up, we discuss several simple examples of cluster structures in
commutative rings.

Example 6.1.1. Let V = C2k, with k ≥ 3, be an even-dimensional vector
space with coordinates (x1, . . . , x2k). Consider the nondegenerate quadratic
form Q on V given by

(6.1.1) Q(x1, . . . , x2k) =

k
∑

i=1

(−1)i−1xix2k+1−i.

Let

C = {v ∈ V | Q(v) = 0}

be the isotropic cone and P(C) the corresponding smooth quadric in P(V ).

The homogeneous coordinate ring of the quadric (or equivalently the
coordinate ring of C) is the quotient

(6.1.2) A = C[x1, . . . , x2k]/〈Q(x1, . . . , x2k)〉.

To see that A is a cluster algebra, we define, for 1 ≤ s ≤ k−3, the functions

ps =

s+1
∑

i=1

(−1)s+1−ixix2k+1−i.

Then A has cluster variables {x2, x3, . . . , xk−1} ∪ {xk+2, xk+3, . . . , x2k−1}
and frozen variables {x1, xk, xk+1, x2k} ∪ {ps | 1 ≤ s ≤ k − 3}. It has 2k−2

clusters defined by choosing, for each i ∈ {2, . . . , k − 1}, precisely one of xi
and x2k+1−i. The exchange relations are (here 2 ≤ i ≤ k − 1):

xix2k+1−i =























pi−1 + pi−2 if 3 ≤ i ≤ k − 2;

p1 + x1x2k if i = 2 and k 6= 3;

xkxk+1 + x1x2k if i = 2 and k = 3

xkxk+1 + pk−3 if i = k − 1 and k 6= 3.

This cluster algebra is of finite type Ak−2
1 = A1 ×A1 × · · · ×A1. Figure 6.1

shows a seed of A in the case k = 5.

The quadric P(C) is a homogeneous space G/P (a “partial flag variety”)
for the special orthogonal group attached to Q. The fact that the coordinate
ring C[C] is a cluster algebra is a special case of a more general phenomenon.
The (multi-)homogeneous coordinate ring of any type A partial flag variety
carries a natural cluster algebra structure [19]. For generalizations to other
semisimple Lie groupsG and parabolic subgroups P ⊂G, see the survey [22].
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x2 x3 x4

x1 x10 p1 p2 x5 x6

Figure 6.1. A seed for the cluster structure on the ring (6.1.2), for
k = 5. Here p1 = −x1x10 + x2x9 , p2 = x1x10 − x2x9 + x3x8 = x4x7 −

x5x6.

Example 6.1.2. Let A = C[a1, . . . , an+1, b1, . . . , bn+1] be the coordinate
ring of the affine space of 2× (n+ 1) matrices

(6.1.3)

[

a1 a2 · · · an+1

b1 b2 · · · bn+1

]

.

We will show that A carries several pairwise non-isomorphic cluster algebra
structures.

First, we can identify A with a cluster algebra of type An as follows.
The cluster variables and frozen variables are the 2(n + 1) matrix entries

a1, . . . , an+1, b1, . . . , bn+1 together with the
(

n+1
2

)

minors (Plücker coordi-
nates) Pij = aibj − ajbi . The exchange relations are:

ai bj = Pij + aj bi (1 ≤ i < j ≤ n+ 1),

aj Pik = ai Pjk + ak Pij (1 ≤ i < j < k ≤ n+ 1),

bj Pik = bi Pjk + bk Pij (1 ≤ i < j < k ≤ n+ 1),

Pik Pjℓ = Pij Pkℓ + Piℓ Pjk (1 ≤ i < j < k < ℓ ≤ n+ 1).

By adding a column [ 10 ] at the beginning and a column [ 01 ] at the end of the
2× (n+ 1) matrix, we obtain a full rank 2× (n + 3) matrix, which we can
view as an element of the Grassmannian Gr2,n+3. Under this identification,
matrix entries of the 2 × (n + 1) matrix are equal to Plücker coordinates
of the corresponding element of Gr2,n+3: ai = Pi+1,n+3 and bi = P1,i+1.
Note also that P1,n+3 = 1. We can thus identify A with the quotient
R2,n+3/〈P1,n+3 − 1〉 of the Plücker ring R2,n+3. Our cluster variables and
frozen variables for A are inherited from the cluster structure on R2,n+3.
The cluster algebra A has rank n, with n + 2 frozen variables. In the case
n = 1 we recover Example 1.1.2.

On the other hand, subdividing a 2× (n+1) matrix (6.1.3) into a 2× i
matrix and a 2× (n+1− i) matrix, we can make A into a cluster algebra of
type Ai−1×An−i. The cluster and frozen variables would include all matrix
entries as well as every 2×2 minor contained in one of the two distinguished
submatrices. The total number of frozen variables in this cluster algebra is
(i+1)+(n+2− i) = n+3. For each i, this gives a cluster algebra structure
of rank (i− 1) + (n− i) = n− 1, with n+ 3 frozen variables.
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More generally, we can partition a 2 × (n + 1) matrix (6.1.3) into k
matrices of sizes 2 × i1, . . . , 2 × ik, where i1 + · · · + ik = n + 1. The
cluster variables and frozen variables would include all matrix entries plus
every 2× 2 minor contained in one of the k distinguished submatrices. This
gives a cluster structure of type Ai1−1× . . .×Aik−1 on the ring A. This
cluster algebra has rank (i1−1)+(i2−1)+. . .+(ik−1) =n−k+1, and has
(i1 + 1) + (i2 + 1) + · · ·+ (ik + 1) = n+k+1 frozen variables.

6.2. Cluster algebras and coordinate rings

Suppose a collection of regular functions on an algebraic variety X satisfies
relations which can be interpreted as exchange relations for a seed pattern.
Then—subject to conditions articulated below—the coordinate ring of X
can be naturally identified with the corresponding cluster algebra:

Proposition 6.2.1. Let A be a cluster algebra (of geometric type, over C) of
rank n, with frozen variables xn+1, . . . , xm. Let X denote the set of cluster
variables in A. Let X be a rational affine irreducible algebraic variety of
dimension m. Suppose we are given a family of nonzero regular functions

{ϕz : z ∈ X} ∪ {ϕn+1, . . . , ϕm} ⊂ C[X]

satisfying the following conditions:

the functions ϕz (z ∈ X ) and ϕi (n+ 1 ≤ i ≤ m) generate C[X];(6.2.1)

replacing each cluster variable z by ϕz, and each frozen variable xi(6.2.2)

by ϕi makes every exchange relation (3.1.1) into an identity in C[X].

Then there is a unique C-algebra isomorphism ϕ : A → C[X] such that
ϕ(z) = ϕz for all z ∈ X and ϕ(xi) = ϕi for i ∈ {n+ 1, . . . ,m}.

Remark 6.2.2. We briefly comment on the general assumptions on the
variety X made above. Irreducibility implies that the ring of regular func-
tions C[X] is a domain, so its fraction field is well defined (and coincides
with the field C(X) of rational functions on X). Rationality of X means
that C(X) is isomorphic to the field of rational functions over C in dim(X)
independent variables. In a typical application, X contains an open subset
isomorphic to an affine space, so this condition is satisfied.

Proof. The key assertion to be proved is that each cluster in A gives rise
to a transcendence basis of the field of rational functions C(X). Pick a seed
in A; let x (resp., x̃) be the corresponding cluster (resp., extended cluster).
Every cluster variable z ∈ X is expressed as a rational function in x̃ by
iterating the exchange relations away from the chosen seed. By (6.2.2), we
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can apply the same procedure to express all functions ϕz and ϕi inside the
field C(X) as rational functions in the set

Φ = {ϕx : x ∈ x} ∪ {ϕn+1, . . . , ϕm}.

Since X is rational and |Φ| = m = dim(X), we conclude from (6.2.1) that
Φ is a transcendence basis of the field of rational functions C(X), and that
the correspondence

z 7→ ϕz (z ∈ X ), xi 7→ ϕi (n < i ≤ m)

extends uniquely to an isomorphism of fields F → C(X), and hence yields
an isomorphism of algebras A → C[X]. �

6.3. Examples of cluster structures of classical types

Informally speaking, Proposition 6.2.1 tells us that in order to identify a
coordinate ring of a rational algebraic variety as a cluster algebra, it suffices
to find elements of that ring that satisfy the requisite exchange relations.
In reality, this approach is only practical for cluster algebras of finite type.
In this section, we present four examples of coordinate rings endowed with
cluster structures of types An, Bn, Cn, and Dn, respectively. All four rings
are closely related to each other; the first two of them are actually identical
(as commutative rings) even though the cluster structures are different.

Our first example, the homogeneous coordinate ring of a Grassmannian
of 2-planes, has already been thoroughly examined in Sections 1.2 and 5.3.

Example 6.3.1 (Type An). Let X = ̂Gr2,n+3 be the affine cone over
the Grassmannian Gr2,n+3 of 2-dimensional subspaces in Cn+3 taken in its
Plücker embedding. Equivalently, X can be viewed as the variety of nonzero
decomposable bivectors:

X ∼= {u ∧ v 6= 0 | u, v ∈ Cn+3}.

This is a (2n + 3)-dimensional affine algebraic variety. Its coordinate ring
is the Plücker ring R2,n+3 = C[X]. This ring is generated by the standard
Plücker coordinates Pab ∈ C[X], for 1 ≤ a < b ≤ n+ 3.

Alternatively, we can view the Plücker ring R2,n+3 as the ring of SL2-
invariant polynomial functions on the space of (n+3)-tuples of vectors in C2.
Representing these vectors as columns of a 2× (n+3) matrix z = (zab), one
identifies the Plücker coordinates with the 2× 2 minors of z:

Pab = z1az2b − z1bz2a (1 ≤ a < b ≤ n+ 3).

In Section 5.3, we constructed a seed pattern of type An in the field of
rational functions C(X). The seeds in this pattern are labeled by trian-
gulations of a convex (n + 3)-gon Pn+3 by pairwise noncrossing diagonals.
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Each cluster consists of the Plücker coordinates Pij corresponding to the
diagonals in a given triangulation. The frozen variables are the Plücker co-
ordinates associated with the sides of Pn+3. The exchange relations of the
seed pattern are exactly the Grassmann-Plücker relations (1.2.1). Thus, we
can view this example as an instance of Proposition 6.2.1.

As a cluster algebra of type An, the Plücker ring R2,n+3 is generated by
the cluster and coefficient variables, which are precisely the Plücker coordi-
nates Pij. It is moreover well known (and not hard to see) that the ideal
of relations among the Plücker coordinates is generated by the exchange
relations, or more precisely by the polynomials

PikPjl − PijPkl − PilPjk (1 ≤ i < j < k < l ≤ n+ 3)

(cf. (1.2.1)). We will see in Section 6.8 that this phenomenon does not
hold in general: even when a cluster algebra is of finite type, some of the
relations among its generators may not lie in the ideal generated by the
exchange relations.

While the type A cluster structure on a Plücker ring R2,m is perhaps
the most natural one, we can also endow this ring with a type B cluster
structure, as we now explain.

Example 6.3.2 (Type Bn). The two-element group Z/2Z acts on the set
of tagged arcs and boundary segments in the punctured polygon P•

n+1 (see
Definition 5.4.3) by switching the tagging on radii, and leaving everything
else intact. Let us associate an element Pγ of the Plücker ring R2,n+2 to
every Z/2Z-orbit γ as follows (cf. Definition 5.4.9):

Pγ=











Pab if γ doesn’t cross the cut, and has endpoints a and b > a;

Pab̄ if γ crosses the cut, and has endpoints a and b > a;

Pa,n+2 if γ is an orbit of radii with endpoints p and a,

where we use the notation

(6.3.1) Pab̄ = Pa,n+2Pb,n+2 − Pab .

The cluster variables and frozen variables are the elements Pγ , where γ
ranges over orbits of tagged arcs and boundary segments, respectively.

We use Proposition 6.2.1 to show that this yields a cluster structure of
type Bn in R2,n+2. The only nontrivial task is to check condition (6.2.2),
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which amounts to verifying the following six identities:

Pac Pbd = Pab Pcd + Pad Pbc (1 ≤ a < b < c < d ≤ n+ 1),(6.3.2)

Pac Pbd = Pab Pcd + Pad Pbc (1 ≤ a < b < c < d ≤ n+ 1),(6.3.3)

Pac Pbd = Pab Pcd + Pad Pbc (1 ≤ a < b < c < d ≤ n+ 1),(6.3.4)

Pac Pab = Pab Pac + P 2
a,n+2 Pbc (1 ≤ a < b < c ≤ n+ 1),(6.3.5)

Pab Pbc = Pab Pbc + P 2
b,n+2 Pac (1 ≤ a < b < c ≤ n+ 1),(6.3.6)

Pa,n+2Pb,n+2 = Pab + Pab̄ (1 ≤ a < b ≤ n+ 1) .(6.3.7)

While these identities can be directly deduced from the Grassmann-Plücker
relations, we prefer another route, presented below in a slightly informal way.

Consider the algebraic model of a seed pattern of type Dn+1 described in
Section 5.4. (Note that we are replacing n by n+1.) Recall that it involves
working with n+1 two-dimensional vectors v1, . . . , vn+1, two “special” vec-
tors a and a, and two scalars λ and λ. To get a seed pattern of type Bn, we
specialize the type Dn+1 seed pattern as follows. The vectors v1, . . . , vn+1

are kept without change. We take vectors a and b satisfying

(6.3.8) 〈b, a〉 = 1

(we shall later identify a with vn+2), set

a = a+ εb,

λ = 1,

λ = 1 + ε,

and take the limit ε → 0. We then have

a⊲⊳ =
λ− λ

〈a, a〉 a =
ε

〈a+ εb, a〉 (a+ εb) → a,

so in the limit we get a⊲⊳ = a and λ = λ. This yields the folding of our
type Dn+1 seed pattern into a type Bn pattern. It remains to check that
the (folded) cluster variables of the type Dn+1 pattern specialize to the
cluster variables Pγ defined above. The only nontrivial case is the second
one, wherein Pγ = Pab̄. The operator A defined in (5.4.1) specializes via

Av =
λ〈v, a〉 a − λ〈v, a〉 a

〈a, a〉 → 〈v, a〉a− 〈v, b〉a + 〈v, a〉b.

As a result, we get, using the Grassmann-Plücker relation and (6.3.8):

〈w,Av〉 → 〈v, a〉〈w, a〉 − 〈v, b〉〈w, a〉 + 〈v, a〉〈w, b〉 = 〈v, a〉〈w, a〉 − 〈v,w〉,

So in particular 〈vj, Avi〉 → 〈vi, a〉〈vj , a〉 − 〈vi, vj〉, matching (6.3.1).
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Remark 6.3.3. Examples 6.1.2 and 6.3.1-6.3.2 demonstrate that a given
ring can carry different non-isomorphic cluster structures. A particularly
striking example was given in [12, Figure 20]: the “mixed Plücker ring”

C[V 3 × (V ∗)4]SL(V ), with V ∼= C3, can carry a cluster structure of finite
type D6 or E6, or a cluster structure of an infinite mutation type (hence of
infinite type).

Example 6.3.4 (Type Cn). Let SO2 be the group of complex matrices

[

u −v
v u

]

with u2 + v2 = 1. Consider the ring R = C[V n+1]SO2 of SO2-invariant
polynomial functions on the space of (n + 1)-tuples of vectors

(6.3.9) (v1, . . . , vn+1) ∈ V n+1, V = C2,

or equivalently SO2-invariant polynomials in the entries of a 2 × (n + 1)
matrix

z =

[

z11 · · · z1,n+1

z21 · · · z2,n+1

]

.

This ring is generated by the Plücker coordinates

Pab = 〈va, vb〉 = z1az2b − z1bz2a (1 ≤ a < b ≤ n+ 1)

together with the polynomials

Pab = 〈vb,Mva〉 = z1az1b + z2az2b (1 ≤ a ≤ b ≤ n+ 1) ,

where M =
[

0 −1
1 0

]

∈ SO2. The ring R = C[V n+1]SO2 can also be viewed
as the coordinate ring C[X] of the variety X of complex (n + 1)×(n + 1)
matrices of rank ≤ 1; even more geometrically, X is the affine cone over
the product of two copies of the projective space CPn taken in the Segre
embedding. Specifically, the map

z =

[

z11 · · · z1,n+1

z21 · · · z2,n+1

]

7→ ((z1a − iz2a)(z1b + iz2b))a,b∈{1,...,n+1} ∈ X

induces an algebra isomorphism C[X] → C[V n+1]SO2 . (Note that

(z1a − iz2a)(z1b + iz2b) = Pab̄ + iPab .)

To construct a cluster algebra structure of type Cn in this ring, let us
associate an element Pγ ∈ R to every orbit γ of the action of Z/2Z on the set
of diagonals and sides of a regular (2n + 2)-gon P2n+2. Specifically, we set

Pγ=

{

Pab if γ = {(a, b), (a + n+ 1, b+ n+ 1)} for a < b ≤ n+ 1;

Pab̄ if γ = {(a, b + n+ 1), (a+ n+ 1, b)} for a ≤ b ≤ n+ 1.
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where we use the notation (a, b) to denote a diagonal or side with endpoints a
and b. The cluster variables and frozen variables are the elements Pγ , where
γ ranges over orbits of diagonals and boundary segments, respectively.

The verification is similar to Example 6.3.2 above. The only substantive
task is to check that the functions Pab and Pab̄ satisfy the requisite exchange
relations:

Pac Pbd = Pab Pcd + Pad Pbc (1 ≤ a < b < c < d ≤ n+ 1),(6.3.10)

Pac Pbd = Pab Pcd + Pad Pbc (1 ≤ a < b < c < d ≤ n+ 1),(6.3.11)

Pac Pbd = Pab Pcd + Pad Pbc (1 ≤ a < b < c < d ≤ n+ 1),(6.3.12)

Pac Pab = Pab Pac + Paa Pbc (1 ≤ a < b < c ≤ n+ 1),(6.3.13)

Pab Pbc = Pab Pbc + Pbb Pac (1 ≤ a < b < c ≤ n+ 1),(6.3.14)

Paa Pbb = P 2
ab + P 2

ab
(1 ≤ a < b ≤ n+ 1) .(6.3.15)

This can either be done directly or via folding, this time going from a cluster
structure of type A2n−1 in the Plücker ring R2,2n+2 to the type Cn cluster
structure in C[X], as follows. Starting with the (n + 1)-tuple (6.3.9), we
build the (2n + 2)-tuple (v1, . . . , v2n+2) by setting vn+1+a = Mva for a ∈
{1, . . . , n+1}. In this specialization, using the fact that M2 = −1, we have

〈vn+1+a, vn+1+b〉 = 〈Mva,Mvb〉 = 〈va, vb〉,
〈vb, vn+1+a〉 = 〈vb,Mva〉 = 〈Mvb,−va〉 = 〈va, vn+1+b〉.

This shows that two Plücker coordinates corresponding to centrally sym-
metric diagonals in P2n+2 are equal when evaluated at the (2n + 2)-tuple
(v1, . . . , v2n+2). Thus, the elements Pγ ∈ C[X] defined earlier come from
Plücker coordinates in R2,2n+2 via folding. The exchange relations in ques-
tion are obtained by specializing the exchange relations in the Plücker ring.

Example 6.3.5 (Type Dn). Let ̂Gr2,n+2 be the affine cone over the Grass-
mannian Gr2,n+2, taken in its Plücker embedding. Let X be the “Schubert”

divisor in ̂Gr2,n+2 given by the equation Pn+1,n+2 = 0; thus, we have

C[X] = C[̂Gr2,n+2]/〈Pn+1,n+2〉 .
A cluster structure of type Dn in the coordinate ring R = C[X] can be
obtained by associating an element Pγ ∈ R to each tagged arc γ in the
punctured polygon P•

n, as follows (cf. Definition 5.4.9):

Pγ=











































Pab if γ doesn’t cross the cut

and has endpoints a and b > a;

Pa,n+1Pb,n+2 − Pab if γ crosses the cut

and has endpoints a and b > a;

Pa,n+1 if γ is a plain radius with endpoint a;

Pa,n+2 if γ is a notched radius with endpoint a.
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(We thus identify the two eigenvectors of (5.4.1) with vn+1 and vn+2, re-
spectively.) The verification is left to the reader; or see [16, Example 12.15].

Remark 6.3.6. While the seed pattern of type Dn described in Exam-
ple 6.3.5 is much simpler than the one used in Section 5.4, we did not use it
there because the corresponding exchange matrices do not have full rank.

6.4. Starfish lemma

In what follows, we denote by A(x̃, B̃) the cluster algebra defined by a seed

(x̃, B̃) in some ambient field of rational functions freely generated by x̃.

Any cluster algebra, being a subring of a field, is an integral domain
(and under our conventions, a C-algebra). Conversely, given such a domain,
one may be interested in identifying it as a cluster algebra.

For the remainder of this section, we let R be an integral domain and
a C-algebra, and we denote by F the quotient field of R. The challenge
is to find a seed (x̃, B̃) in F such that A(x̃, B̃) = R. The difficulties here

are two-fold. To prove the inclusion A(x̃, B̃) ⊃ R, we need to demonstrate
that (a subset of) cluster variables in this seed pattern, together with the

frozen variables, generates R. To prove the reverse inclusion A(x̃, B̃) ⊂ R,
we need to show that each cluster variable in the seed pattern generated by
(x̃, B̃) is an element of R rather than merely a rational function in F . In
this section, we give sufficient conditions that guarantee the latter inclusion.

Recall that R is normal if it is integrally closed in F . This property is
in particular satisfied if R is factorial (or a unique factorization domain).

Recall that R is called Noetherian if any ascending chain of ideals sta-
bilizes. This is in particular satisfied if R is finitely generated (over C).

All rings of interest to us will be factorial and finitely generated, hence
normal and Noetherian.

Let us call two elements r, r′ ∈ R coprime if they are not contained in
the same prime ideal of height 1. If R is factorial, then such ideals are
principal, and one recovers the usual definition of coprimality (r and r′ are
coprime if gcd(r, r′) is a unit).

Proposition 6.4.1 (“Starfish lemma”). Let R be a C-algebra and a normal

Noetherian domain. Let (x̃, B̃) be a seed of rank n in the fraction field F
with x̃ = (x1, . . . , xm) for n ≤ m such that

(1) all elements of x̃ belong to R;

(2) the cluster variables in x̃ are pairwise coprime;

(3) for each cluster variable xk ∈ x̃, the seed mutation µk replaces xk with
an element x′k (cf. (3.1.1)) that lies in R and is coprime to xk.

Then A(x̃, B̃) ⊂ R.
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We will give two proofs of Proposition 6.4.1, one using commutative
algebra, and one using algebraic geometry. The commutative algebra proof
relies on two lemmas.

For P a prime ideal in R, let RP = R[(R\P )−1] denote the localization
of R at R \ P .

Lemma 6.4.2 ([32, Theorem 11.5]). For a normal Noetherian domain R,
the natural inclusion R ⊂ ⋂

htP=1RP (intersection over prime ideals P of
height 1) is an equality.

Lemma 6.4.3. Let P be a height 1 prime ideal in R. Then at least one of
the n+ 1 products

(x1 · · · xn), (x′1x2 · · · xn), . . . , (x1 · · · xn−1x
′
n)

does not belong to P .

Proof. Suppose that x1 · · · xn ∈ P . Since P is prime, we have xk ∈ P for
some k ≤ n. Since htP = 1, the coprimality assumption (6.4.1) implies
that xj /∈ P for j ∈ {1, . . . , n}− {k}. Similarly, (6.4.1) implies that x′k /∈ P .
Again using that P is prime, we conclude that x1 · · · x′k · · · xn /∈ P . �

Algebraic proof of Proposition 6.4.1. We need to prove that each clus-
ter variable z from any seed mutation equivalent to (x̃, B̃) belongs to R.
By Lemma 6.4.2, it suffices to show that z ∈ RP for each prime ideal P of
height 1. By Lemma 6.4.3, for any height 1 prime P in R, there exists a
cluster x′ such that

∏

x∈x′ x ∈ R \ P . By the Laurent Phenomenon (Theo-
rems 3.3.1 and 3.3.6), the cluster variable z can be expressed as a Laurent
polynomial in the elements of x′, with coefficients in C[xn+1, . . . , xm]. Thus
z ∈ R[(R \ P )−1] = RP , as desired. �

Geometric proof of Proposition 6.4.1. Our assumptions on the ring R
mean that it can be identified with the coordinate ring of an (irreducible)
normal affine complex algebraic variety X = Spec(R). Then the field of
fractions of R is Frac(R)=C(X), the field of rational functions on X. We
need to show that each cluster variable z from any seed mutation equivalent
to (x̃, B̃) belongs to R. The key property that we need is the algebraic
version of Hartogs’ continuation principle for normal varieties (see, e.g., [7,
Chapter 2, 7.1]) which asserts that a function on X that is regular outside
a closed algebraic subset of codimension ≥ 2 is in fact regular everywhere
on X.

Consider the subvariety

Y =
⋃

1≤i<j≤n

{xi = xj = 0} ∪
⋃

1≤k≤n

{xk = x′k = 0} ⊂ X.
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The coprimeness conditions imposed on (x̃, B̃) imply that codim(Y ) ≥ 2.
By the algebraic Hartogs’ principle mentioned above, it now suffices to show
that z is regular on X \ Y .

The complement X \ Y consists of the points x ∈ X such that

• at most one of the cluster variables in x̃ vanishes at x, and

• for each pair (xk, x
′
k) as above, either xk or x′k does not vanish at x.

Hence there is a seed (Q′, x̃′) (either the original seed (x̃, B̃) or one of the

adjacent seeds µk(x̃, B̃)) none of whose cluster variables vanishes at x; more-
over x̃′ ⊂ C[X]. Then the Laurent Phenomenon (Theorems 3.3.1 and 3.3.6)
implies that our distant cluster variable z is regular at x, as desired. �

Remark 6.4.4. The arguments given above actually establish a stronger
statement: under the conditions of Proposition 6.4.1, the ringR contains the
upper cluster algebra associated with A(x̃, B̃) (see [3]), or more precisely the
subalgebra of F consisting of the elements which, when expressed in terms
of any extended cluster, are Laurent polynomials in the cluster variables
and ordinary polynomials in the coefficient variables.

Remark 6.4.5. The versions of the Starfish Lemma and the Laurent phe-
nomenon given in [3] (implicit) and [26] are predicated on invertibility of
coefficient variables (that is, the ground ring is the ring of Laurent polyno-
mials in the coefficient variables) and concern the upper cluster algebra.

Corollary 6.4.6. Let R be a finitely generated factorial C-algebra. Let
(x̃, B̃) be a seed in the quotient field of R such that all cluster variables of
x̃ and all elements of clusters adjacent to x̃ are irreducible elements of R.
Then A(x̃, B̃) ⊂ R.

Proof. The only conditions in Proposition 6.4.1 that we need to check are
the ones concerning coprimality. Two elements of x̃ cannot differ by a scalar
factor since they are algebraically independent. Similarly, if xk and x′k were
to differ by a scalar factor, then the exchange relation (3.1.1) would give an
algebraic dependence in x̃. �

Suppose that a C-algebra R satisfies the conditions in the first sentence
of Proposition 6.4.1 (or Corollary 6.4.6). In order to identify a cluster struc-

ture in R, it suffices to exhibit a seed (x̃, B̃) such that

(i) all cluster variables of x̃ and of the clusters adjacent to x̃ are irreducible
elements of R;

(ii) the seed pattern generated by (x̃, B̃) contains a generating set for R.

This is however easier said than done.

Regarding condition (ii) above, let us make the following simple obser-
vation.
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Proposition 6.4.7. Let R be a cluster algebra that is finitely generated
(over C) as a C-algebra. Then R is generated by a finite subset of cluster
and coefficient variables.

Proof. Let S be a finite generating set for R, and let X be the set of cluster
and coefficient variables. Since each s ∈ S can be written as a polynomial
in the elements of a finite subset Xs ⊂ X , we conclude that the finite set
⋃

s∈S Xs ⊂ X generates R. �

We next review some general algebraic criteria that can be used to check
that a given C-algebra R satisfies the conditions in Proposition 6.4.1 or
Corollary 6.4.6.

The fact that R is a domain will usually be immediate, e.g. when R is
given as a subring of a polynomial ring.

Perhaps the most famous result concerning finite generation is (the mod-
ern version of) Hilbert’s Theorem, see, e.g., [35, Theorem 3.5]:

Theorem 6.4.8. Let G be a reductive algebraic group acting on an affine
algebraic variety X. Then the ring of invariants C[X]G is finitely generated.

For the purposes of applying Proposition 6.4.1, the following version is
particularly useful.

Theorem 6.4.9 ([8, Proposition 3.1]). Let G be a reductive algebraic group
acting algebraically on a normal finitely generated C-algebra A. Then AG

is a normal finitely generated C-algebra.

Even when a group is not reductive, the ring of its invariants may be
finitely generated. The most important case to us is the following.

Theorem 6.4.10 ([8, Theorem 5.4]). Let G be a reductive group acting
rationally on a finitely generated C-algebra A. Let U be a maximal unipotent
group of G. Then the subalgebra AU of U -invariant elements in A is finitely
generated over C.

We conclude this section with a couple of factoriality criteria, see [35,
Theorem 3.17], [42] and references therein.

Proposition 6.4.11. Let G be a connected, simply connected semisimple
complex Lie group. Then the ring of regular functions C[G] is factorial.

Theorem 6.4.12. Let G be a connected algebraic group acting on an affine
algebraic variety X. If G has no nontrivial characters and C[X] is factorial,
then so is C[X]G.

Remark 6.4.13. The paper [23] provides factoriality criteria for cluster
algebras. It also shows that a cluster algebra contains no nontrivial units,
and all cluster variables are irreducible elements.
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6.5. Cluster structure in the ring C[SLk]
U

In this section, we identify a cluster algebra structure in the ring C[SLk]
U ,

the coordinate ring of the basic affine space for the special linear group.
This ring made its first appearance in Section 1.3. We start by reviewing
the key features of this construction.

Let V ∼= Ck be a k-dimensional complex vector space. After choosing a
basis in V , we can identify SLk with the special linear group G = SL(V ) of
complex matrices with determinant 1. The subgroup U ⊂ G of unipotent
lower-triangular matrices acts on G by left multiplication. This action in-
duces the action of U on the coordinate ring C[G]. We will show that the
ring C[G]U of U -invariant regular functions on G has a natural structure of
a cluster algebra.

We note that U is not reductive, so Theorem 6.4.8 does not apply. Still,
C[G]U is finitely generated by Theorem 6.4.10. As mentioned in Section 1.3,
this can be made explicit as follows. Recall that a flag minor PJ of a k× k
matrix z (here J ⊂ {1, . . . , k}) is the determinant of the submatrix of z
occupying the columns labeled by J and the rows labeled 1, 2, . . . , |J |.

Theorem 6.5.1. The ring of invariants C[SLk]
U is generated by the 2k − 2

flag minors PJ ; here J runs over nonempty proper subsets of {1, . . . , k}.

The ideal of relations satisfied by the flag minors is generated by certain
generalized Grassmann-Plücker relations (which we will not rely upon).

Theorem 6.5.1 is a consequence of the classical construction of irreducible
representations of special linear groups, see, e.g., [18, 37]. This construction
generalizes to an arbitrary connected, simply connected semisimple complex
Lie group G and its maximal unipotent subgroup U . The role of flag minors
is played by certain matrix elements in fundamental representations of G.
See the end of this section for additional details.

Corollary 6.5.2. The ring C[SLk]
U is factorial.

Proof. This follows from Proposition 6.4.11 and Theorem 6.4.12. (The
polynomial ring C[U ] has no nontrivial units.) �

Definition 6.5.3. Let D be a wiring diagram with k strands. Let F be the
field of rational functions in the chamber minors of D, cf. Section 1.3. We
associate to D the pair (x̃(D), B̃(D)), where

• x̃(D) consists of the chamber minors of D, listed so that the minors
indexed by the bounded chambers precede the minors indexed by the
unbounded ones;

• B̃(D) is the signed adjacency matrix of the quiver Q(D) from Defini-
tion 2.3.1.
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Note that B̃(D) is a (k−1)(k+2)
2 × (k−1)(k−2)

2 integer matrix whose rows are
indexed by all chambers and whose columns are indexed by the bounded
chambers. The minors corresponding to the bounded (resp., unbounded)
chambers are the cluster variables (resp., frozen variables) of this seed.

Theorem 6.5.4. Let G = SLk(C).

(1) For any wiring diagram with k strands, the pair (x̃(D), B̃(D)) is a
seed in the field of fractions for C[G]U .

(2) All seeds (x̃(D), B̃(D)) are mutation equivalent to each other.

(3) The seed pattern containing the seeds (x̃(D), B̃(D)) defines a clus-

ter algebra structure in C[G]U . That is, A(x̃(D), B̃(D)) = C[G]U .

Proof. Statement (2) is part of Exercise 3.1.3. We then conclude that
any flag minor can be expressed as a rational function in the elements of

a given extended cluster x̃(D). Since |x̃(D)| = (k−1)(k+2)
2 = dim(U\G), it

follows that the elements of x̃(D) are algebraically independent, proving
statement (1).

It remains to prove statement (3). Since each flag minor appears in some

extended cluster x̃(D), Theorem 6.5.1 implies thatA(x̃(D), B̃(D)) ⊃ C[G]U .

We prove the inclusion A(x̃(D), B̃(D)) ⊂ C[G]U using Proposition 6.4.1.
Let us choose the seed associated to the wiring diagram D of the kind shown
in Figure 6.2. The quiver is shown in Figure 6.3.

1

2

3

4

5

6

7

7

6

5

4

3

2

1

1 2 3 4 5 6 7

12 23 34 45 56 67

123 234 345 456 567

1234 2345 3456 4567

12345 23456 34567

123456 234567

Figure 6.2. A special wiring diagram for k = 7, and its chamber minors.

All the elements of x̃(D) are flag minors, so they belong to C[G]U . More-
over they are irreducible polynomials, hence irreducible elements of C[G]U .
This follows from the well-known fact that the determinant of a matrix of
indeterminates is an irreducible polynomial, see [39, Theorem 3.2].

Let us compute the elements of the clusters adjacent to x̃(D). Note that
the chamber minors of D are solid, i.e., they have column sets of the form

[a, d] = {a, a+ 1, . . . , d− 1, d},
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1 2 3 4 5 6 7

12 23 34 45 56 67

123 234 345 456 567

1234 2345 3456 4567

12345 23456 34567

123456 234567

Figure 6.3. The seed corresponding to the wiring diagram in Figure 6.2.

for 1 ≤ a ≤ d ≤ k. Note that mutations at vertices in the bottom row of
the quiver can be understood using the braid moves we studied earlier, cf.
Figure 1.7. To understand mutations at the other vertices of the quiver, note
that a typical chamber minor P[b,c] ∈ x̃(D) is exchanged with the element

Ω ∈ Frac(C[G]U ) given by

(6.5.1) Ω =
PJabc PJcd PJb + PJab PJbcd PJc

PJbc

,

where we used the shorthand

a = b− 1,

d = c+ 1,

J = [b+ 1, c− 1],

Jbc = J ∪ {b, c} = [b, c],(6.5.2)

and similarly for Jb, Jc, etc. This can be seen by examining the quiver Q(D)
in the vicinity of the vertex associated with P[b,c] = PJbc, see Figure 6.4.

We verify that Ω ∈ C[G]U by expressing Ω as a polynomial in flag minors:

Lemma 6.5.5. The rational function Ω defined by (6.5.1) satisfies

(6.5.3) Ω = −PJaPJbcd + PJbPJacd.

Proof. Follows from (5.3.2) by virtue of Muir’s Law (Proposition 1.3.5). �

It remains to prove that Ω is coprime to PJbc. Let f denote the special-
ization that sets the top |J |+ 2 entries in column a to zero. Note that f
leaves PJbc unchanged, and f(PJa) = 0. We know that PJbc is irreducible.
If Ω were divisible by PJbc, then f(Ω) = ±PJb · z|J |+3,a · PJcd would also be
divisible by PJbc. But f(Ω) is a product of three irreducible polynomials
none of which is a scalar multiple of PJbc. �
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a

b

d

c

c

d

b

a

Jb Jc

Jab Jbc Jcd

Jabc Jbcd

Jb Jc

Jab Jbc Jcd

Jabc Jbcd

Figure 6.4. Chamber minors appearing in the exchange relation for a
flag minor PJbc in a special wiring diagram, and part of the associated
quiver. Only the arrows incident to the vertex Jbc are shown.

The special cases G = SL3 and G = SL4 of this construction have been
presented in Examples 3.2.1 and 5.3.8, respectively. We now discuss the
case G = SL5.

Example 6.5.6. Let G = SL5. In this case, the cluster structure in C[G]U

is of typeD6, and accordingly has 36 cluster variables, cf. Figure 5.17. There
are 8 coefficient variables, all of them flag minors.

To compute all cluster variables, one can use the following method, cf.
[17, Proposition 11.1(1)]. Start with a seed coming from a wiring diagram.
Apply mutations to obtain a seed whose quiver is a bipartite orientation
of the Dynkin diagram type D6. (That is, each vertex is either a source
or a sink.) Then repeatedly alternate between mutating at all sources and
mutating at all sinks until all 36 cluster variables are computed. After
each mutation, one needs to represent the new cluster variable as a regular
function, not just a rational one. At the end of this process, one determines
that each of the 22 = 25−2−8 flag minors which is not a coefficient variable
is a cluster variable. The remaining 14 cluster variables are described as
follows. Define

g(a, b|c, d) = −PaPbcd + PbPacd,

g(a, b|c, d|J) = −PJaPJbcd + PJbPJacd,

h(a, b, c|d, e) = −PabPcde + PacPbde,

j(a, b|c, d, e) = −PaPbcde + PbPacde,
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where we use the shorthand bcd = {b, c, d}, Ja = J ∪ {a}, etc. Note that
g(a, b|c, d|J) is precisely the regular function Ω from (6.5.1) and (6.5.3).
With this notation, the 14 cluster variables in question turn out to be:

g(1, 2|3, 4), g(2, 3|4, 5), g(4, 5|1, 2), g(1, 3|4, 5), g(1, 2|3, 5),(6.5.4)

g(1, 2|3, 4|5), g(2, 3|4, 5|1), g(4, 5|1, 2|3), g(1, 3|4, 5|2), g(1, 2|3, 5|4),(6.5.5)

h(1, 2, 3|4, 5), h(5, 4, 3|2, 1),(6.5.6)

j(1, 2|3, 4, 5), j(5, 4|3, 2, 1).(6.5.7)

For k ≥ 6, the cluster structure on C[SLk]
U that we described above is

of infinite type. See Table 6.1.

Ring Cluster type

C[SL3]
U A1

C[SL4]
U A3

C[SL5]
U D6

C[SLk]
U for k ≥ 6 infinite type

Table 6.1. The type of the standard cluster structure on C[SLk]
U .

Remark 6.5.7. Let U+ ⊂ G = SLk be the subgroup of unipotent upper-
triangular matrices. (Recall that we denoted by U the subgroup of unipo-
tent lower-triangular matrices.) Let ϕ : C[G]U → C[U+] be the ring map
defined by restricting U -invariant functions on G to the subgroup U+. Since
every matrix entry of an element of U+ can be written as a flag minor, ϕ is
onto. The map ϕ can be used to transform a cluster structure on C[G]U

into a cluster structure on C[U+]. (This boils down to removing the co-
efficient variables corresponding to the leading principal minors P1,··· ,j, as
P1,··· ,j(u) = 1 for u ∈ U+.)

More generally, the coordinate ring of a maximal unipotent subgroup of
any Kac-Moody group is a cluster algebra [21].

In this section we have so far discussed the basic affine space in the
case of G = SLk. We now give a quick review of basic affine spaces and
their significance for general semisimple Lie groups G. An excellent in-
troduction is given in [5, Section 2.1]. Additional material can be found
in [4, 27]. For general background on linear algebraic groups, see, e.g., [8,
Section 3.3] or [34].

Let G be a simply connected semisimple complex algebraic group. Let U
be a maximal unipotent subgroup ofG. The varietyX = G/U is smooth and
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quasi-affine (i.e., open in an affine variety). To be more specific, let O(X)
denote the ring of regular functions on X. Then X embeds as an open
subvariety into the affine (irreducible) variety X = Spec(O(X)), the “affine
completion” of X. The rings of regular functions on X and on X coincide:
O(X) = O(X). Moreover these rings are naturally identified with the ring
of invariants C[G]U . The variety X is called the basic affine space for G. It
is normal and usually singular.

In this section we proved that C[SLk]
U is a cluster algebra. More gener-

ally, for a simply-laced G, with U as above, there is a cluster algebra con-
tained inside the coordinate ring C[G]U [19]; it conjecturally coincides with
the coordinate ring after a certain localization, see [19, Conjecture 10.4].
In this context, some generalized minors [14, Definition 1.4] (see also [31,
Definition 6.2]) play the role of flag minors, and are used to define a collec-
tion of special seeds for the corresponding cluster algebra.

The significance of the basic affine space stems from the well known fact
that its coordinate ringC[G]U is a direct sum of all irreducible rational repre-
sentations of G, each occurring with multiplicity 1. A more detailed descrip-
tion is as follows. The subgroup U is the unipotent radical of a Borel sub-
group B⊂G. The action of the Cartan subgroup H=B/U on X commutes
with the natural G-action. The H-action induces a grading of C[G]U by the
weight lattice of G. The graded components are labeled by the dominant
weights λ, and carry irreducible representations of G (of highest weight λ).

When G = SLk is the special linear group, the irreducible representation
with the highest weight d1ω1 + d2ω2 + · · · (here d1, d2, . . . are nonnegative
integers, and ω1, ω2, . . . are the fundamental weights of G in the standard
order) appears as the space of polynomials in the flag minors which are
homogeneous of degree d1 in the flag minors P1, P2, P3, . . . , of degree d2 in
P12, P13, P23, . . . , and so on. To rephrase, these polynomials have degree
d1 + d2 + d3 + · · · with respect to the first row entries of a k × k matrix;
degree d2 + d3 + · · · with respect to the second row entries; and so on.

A monomial in the flag minors is called a cluster monomial if all these
minors belong to the same extended cluster. In the finite type cases where
G is SL3, SL4, or SL5, the cluster monomials form a C-basis of C[G]U .
This is an instance of (the classical limit of) the dual canonical basis of
G. Lusztig [30], also known as the upper global basis of M. Kashiwara [29].
(In the case G = SL3, this basis was introduced and studied in detail in [25].)
This description of the basis served as the key original motivation for the
introduction of cluster algebras in [15].

In infinite type, the picture turns out to be much more complicated.
The fundamental result obtained in [28] asserts that in general, the dual
canonical (or upper global) basis contains all cluster monomials. The rest
of the basis still awaits an explicit description.
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6.6. Cluster structure in the rings C[Matk×k] and C[SLk]

The coordinate ring C[Matk×k] of the space of k×k complex matrices is the
polynomial ring C[zij ]; here z = (zij) denotes a generic k × k matrix. We
will use double wiring diagrams to describe a cluster structure in this ring.
An adaptation of this construction will then produce a cluster structure in
the coordinate ring C[SLk] of the special linear group.

Theorem 6.6.1. The ring C[Matk×k] has a cluster structure whose set of
coefficient and cluster variables includes all minors of a k × k matrix.

Proof. Recall from Section 2.4 and Exercise 3.1.3 that one can associate a
seed (x̃, B̃) to every double wiring diagram. All cluster and frozen variables
in such a seed are minors of z. In particular, the set of frozen variables
consists of all minors of the form ∆I,J or ∆J,I where I = {1, 2, . . . , i} and
J = {k − i+ 1, k − i+ 2, . . . , k}, with i ∈ {1, . . . , k}.

Recall that any two double wiring diagrams can be connected by local
moves, cf. Figure 1.10. Since these moves correspond to mutations of the
corresponding seeds, all such seeds define the same cluster algebra.

Let (x̃, B̃) be a seed associated to a double wiring diagram. To show

that C[Matk×k] ⊂ A(x̃, B̃), it suffices to show that each matrix entry zij lies

in A(x̃, B̃). The latter statement follows from the fact that one can always
construct a double wiring diagram whose extended cluster x̃ contains zij .

The inclusion A(x̃, B̃) ⊂ C[Matk×k] can be shown using either of the two
arguments outlined below. These two arguments use two different seeds as
well as two different versions of the Starfish lemma. The first argument relies
on Proposition 6.4.1, which requires checking a coprimality condition on
cluster variables; the second argument uses Corollary 6.4.6, which requires
checking an irreducibility condition.

The polynomial ring C[zij ] is factorial and therefore normal. In order to
use Proposition 6.4.1, we first observe that x̃ ⊂ C[Matk×k]. Moreover, any
two cluster variables in x̃ are pairwise coprime, since the determinant is an
irreducible polynomial. It remains to check property (3) of Proposition 6.4.1.

Let us choose the seed (x̃, B̃) shown in Figure 6.5. (The figure shows the
example for k = 4 but the generalization to an arbitrary k is clear from the
picture.) Note that the minors appearing in this seed are very simple: they
are solid minors that “stick” to the left edge or the upper edge of the matrix.
We now need to check that for each minor xℓ in the seed, the new cluster
variable x′ℓ obtained by an exchange with xℓ is a polynomial in the matrix
entries that is moreover coprime to xℓ. Although some cluster variables x′ℓ
will no longer be minors (in particular, those resulting from mutations at
degree 6 vertices in the quiver), one can adapt the argument from Section 6.5
to prove that they are nevertheless polynomials coprime to xℓ.
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1234,1234

Figure 6.5. A double wiring diagram D whose extended cluster con-
sists of solid minors. In the corresponding quiver, many mutable vertices
will have degree 6. Mutation at such a vertex will result in a cluster
variable which is not a minor.

An alternative approach relies on Corollary 6.4.6 to establish the inclu-
sion A(x̃, B̃) ⊂ C[Matk×k]. Here we use a “grid seed” for C[Matk×k], see
Figures 6.6 and 6.7. This seed has the property that every mutable vertex
in its quiver has degree three or four, and the corresponding exchange re-
lation is a three-term Grassmann-Plücker relation. It follows that for each
cluster variable xℓ the adjacent cluster variable x′ℓ is a minor, and hence an

irreducible polynomial. The claim A(x̃, B̃) ⊂ C[Matk×k] follows. �
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34,12 34,13 13,13 13,34 12,34

234,123 134,123 134,134 123,134 123,234

1234,1234

Figure 6.6. A double wiring diagram for C[Mat4×4] whose associated
quiver is the “grid quiver” shown in Figure 6.7.

Theorem 6.6.2. The coordinate ring C[SLk] of the special linear group has
a cluster structure whose set of coefficient and cluster variables includes all
minors of a k × k matrix, except for the determinant of the matrix.

Proof. To adapt the above arguments to the case of C[SLk], we use Propo-
sition 6.4.11 to show that the ring C[SLk] is factorial, and hence normal.
The cluster variables, frozen variables, and clusters are the same as for
C[Matk×k], except that the k × k determinant of the entire matrix is no
longer a frozen variable (as it is now equal to 1). �
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1234,1234

234,123 134,123 134,134 123,134 123,234

34,12 34,13 13,13 13,34 12,34

4,1 3,1 3,3 1,3 1,4

Figure 6.7. A grid seed for C[Mat4×4], cf. Figure 6.6. Every mutable
vertex in the quiver has degree three or four.

Remark 6.6.3. One might expect that the cluster structures on C[Matk×k]
and C[SLk] described in this section can be modified to yield a cluster struc-
ture in the coordinate ring of a general linear group GLk. However this
cannot be achieved without tweaking the basic definitions, because the in-
verse of the determinant det−1 ∈ C[GLk] is a regular function that does
not lie in the cluster algebra. (The ground ring for a cluster algebra is the
polynomial ring generated by the coefficient variables; it does not include
their inverses.) As noted in Definition 3.1.6, a common alternative is to
change the ground ring, adjoining the inverses of the coefficient variables
(or “localizing at coefficients”). With this convention, the coordinate ring
C[GLk] becomes a cluster algebra.

Remark 6.6.4. The constructions presented above allow multiple general-
izations and variations. In particular, one can replace SLk by any connected,
simply connected semisimple complex Lie group G and/or consider various
subvarieties of G, such as those related to double Bruhat cells, see [3].

6.7. The cluster structure in the ring C[̂Gra,b]

The Grassmannian Gra,b of a-dimensional subspaces in Cb can be embedded

in the projective space of dimension
(

b
a

)

−1 via the Plücker embedding; see,

e.g., [8, Corollary 2.3]. Let ̂Gra,b denote the affine cone over Gra,b taken

in this embedding. The ring C[̂Gra,b] (the homogeneous coordinate ring
of Gra,b) is generated by the Plücker coordinates PJ , where J ranges over
all a-element subsets of {1, . . . , b}). These generators satisfy the quadratic
Grassmann-Plücker relations.

Example 6.7.1 (cf. Section 1.2). The homogeneous coordinate ringC[̂Gr2,4]
is generated by the six Plücker coordinates P12, P13, P14, P23, P24, P34, which
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are subject to the single Grassmann-Plücker relation

(6.7.1) P13P24 = P12P34 + P14P23 .

This ring carries the structure of a cluster algebra of rank 1 in which

• the ambient field is the field C(P12, P13, P14, P23, P34) of rational functions
in five algebraically independent variables;

• the frozen variables are P12, P23, P34, P14;

• the cluster variables are P13 and P24;

• the single exchange relation is (6.7.1).

The ring C[̂Gra,b] is an archetypal object of classical invariant theory;
see, e.g., [8, Chapter 2], [35, §9], [37, Section 11], and [41]. In invariant
theory, this ring is typically given a somewhat different description:

Definition 6.7.2. Let V ∼= Ca be an a-dimensional complex vector space
equipped with a volume form. The special linear group SL(V ) ∼= SLa(C)
naturally acts on the vector space V b of b-tuples of vectors, hence on its
coordinate (polynomial) ring. The Plücker ring Ra,b is the ring

(6.7.2) Ra,b = C[V b]SL(V )

of SL(V )-invariant polynomials on V b. As a subring of a polynomial ring,
Ra,b is a domain.

In coordinate notation, the Plücker ring is described as follows. Consider
a matrix z = (zij) of size a × b filled with indeterminates. The ring Ra,b

consists of polynomials in these ab variables that are invariant under the
transformations z 7→ gz, for g ∈ SLa(C). One example of such a polynomial
is a Plücker coordinate PJ where J is an a-element subset of columns in z;
by definition, PJ is the a× a minor of z occupying the columns in J .

The First Fundamental Theorem of invariant theory, which goes back to
A. Clebsch and H. Weyl, states the following.

Theorem 6.7.3. The Plücker ring Ra,b is generated by the
(

b
a

)

Plücker
coordinates PJ .

Theorem 6.7.3 implies that for a ≤ b, the Plücker ring Ra,b is isomorphic

to C[̂Gra,b], the homogeneous coordinate ring of the Grassmannian Gra,b .
Therefore we can talk interchangeably about these two rings.

We note that the fact that the Plücker ring is finitely generated is a
special case of Theorem 6.4.8.

Remark 6.7.4. The Second Fundamental Theorem, which we will not need,
describes the ideal of relations among the generators PJ of the Plücker
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ring Ra,b. As mentioned above, this ideal is generated by certain quadratic
relations, the Grassmann-Plücker relations. The 3-term Grassmann-Plücker
relations are among the exchange relations of the standard cluster structure
on Ra,b described below. When 3 ≤ a ≤ b − 3, the Grassmann-Plücker
relations include some longer quadratic relations which are not generated
by the 3-term ones, cf. Example 6.8.6 below.

Corollary 6.7.5 ([40, Section 1.6b]). The Plücker ring Ra,b is factorial.

Proof. This follows from Theorem 6.4.12 and (6.7.2). (Being semisimple,
SLa has no nontrivial characters.) �

We next describe a cluster structure in the Plücker ring Ra,b [38]. While
canonical up to a ring automorphism, this structure will depend on the
choice of a cyclic ordering of the b vectors.

The set of coefficient variables for this cluster structure in Ra,b consists
of the b Plücker coordinates PJ where J is a contiguous segment modulo b.
For example, the coefficient variables for R3,7 are the Plücker coordinates

P123, P234, P345, P456, P567, P167, P127.

We will work with some distinguished seeds: the rectangles seed Σa,b,
together with its cyclic shifts Σi

a,b for 1 ≤ i ≤ b−1. To define the rectangles
seed Σa,b, we first construct a quiver Qa,b whose vertices are labeled by
the rectangles contained in an a× (b− a) rectangle R, including the empty
rectangle ∅. The frozen vertices of Qa,b are labeled by the rectangles of sizes
a×j (with 1 ≤ j ≤ b−a), rectangles of sizes i×(b−a) (with 1 ≤ i ≤ a), and
the empty rectangle. The arrows from an i× j rectangle go to rectangles of
sizes i× (j +1), (i+1)× j, and (i− 1)× (j − 1) (assuming those rectangles
have nonzero dimensions, fit inside R, and the arrow does not connect two
frozen vertices). There is also an arrow from the frozen vertex labeled by ∅

to the vertex labeled by the 1× 1 rectangle. See Figure 6.8.

We map each rectangle r contained in the a × (b − a) rectangle R to
an a-element subset of {1, 2, . . . , b} (representing a Plücker coordinate), as
follows. We justify r so that its upper left corner coincides with the upper
left corner of R. There is a path of length b from the northeast corner of
R to the southwest corner of R which cuts out the smaller rectangle r; we
label the steps of this path from 1 to b. We then map r to the set of labels
J(r) of the vertical steps on this path. This construction allows us to assign
to each vertex of the quiver Qa,b a particular Plücker coordinate. We set

x̃a,b = {PJ(r) | r is a rectangle contained in an a× (b− a) rectangle},

and then define the rectangles seed Σa,b = (x̃a,b, B̃(Qa,b)). See Figure 6.9.
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∅

Figure 6.8. The quiver Q3,7. The vertices are labeled by rectangles
contained in a 3 × 4 rectangle, and arranged in a (triangulated) grid.
The width and height of the rectangles increase from left to right and
from top to bottom, respectively.

457

467

347

367

237

267

567

456 345 234 123

127

167

Figure 6.9. The rectangles seed Σ3,7.

Remark 6.7.6. When a = 2, the rectangles seed Σ2,b coincides with the
seed associated to the triangulation of the polygon Pb that uses all of the
diagonals incident to the vertex b, cf. Example 6.3.1 and Definition 2.2.1.

Given an a-element subset J = {j1, j2, . . . , ja} ⊂ {1, 2, . . . , b} and a
positive integer i, we define

(J + i) mod b = {j1 + i, j2 + i, . . . , ja + i},

where the sums are taken modulo b. We define a quiver Qi
a,b and seed Σi

a,b

by replacing each vertex label J in Qa,b by (J + i) mod b. (The quivers Qa,b

and Qi
a,b are exactly the same; only their vertex labels are different.)

Exercise 6.7.7. Start from the seed Σa,b and mutate at each of the mutable
vertices of Qa,b exactly once, in the following order: mutate each row from
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left to right, starting from the bottom row and ending at the top row. Show
that at the end of this process, one obtains the seed Σ1

a,b. For example, in

Figure 6.9, mutating at 457, 347, 237, 467, 367, 267 (in this order) recovers
the same quiver but with each label cyclically shifted.

The same mutation sequence transforms the seed Σi
a,b into Σi+1

a,b . There-
fore the rectangles seed and all its cyclic shifts are mutation equivalent.

Theorem 6.7.8. The seed pattern defined by Σa,b (or by any of its cyclic

shifts, cf. Exercise 6.7.7) gives the Plücker ring Ra,b = C[̂Gra,b] the structure
of a cluster algebra.

Theorem 6.7.8 was first proved in [38], using results from [36]. Below
in this section we give a different (and self-contained) proof.

Remark 6.7.9. There is a well known isomorphism Ra,b → Rb−a,b defined
by PJ 7→ PJc , where Jc = {1, 2, . . . , b} \ J . This isomorphism extends to an
isomorphism between respective seed patterns in Ra,b and Rb−a,b.

Lemma 6.7.10. There is an injective ring homomorphism Ra−1,b−1 → Ra,b

which sends PI to PI∪{b}.

Proof. The fact that the correspondence PI 7→ PI∪{b} extends to a ring
homomorphism follows from Muir’s law (Proposition 1.3.5). �

We call the map Ra−1,b−1 → Ra,b described above the Muir embedding.

Recall the notion of a seed subpattern from Definition 4.2.6.

Lemma 6.7.11. The Muir embedding sends the seed pattern in Ra−1,b−1

defined by Σa−1,b−1 to a subpattern of the seed pattern in Ra,b defined by Σa,b.

Proof. Delete the bottom row of vertices in the rectangles quiver Qa,b.
Freeze the vertices of the new bottom row of the resulting quiver. Delete any
arrows connecting two frozen vertices. Then remove the index b from every
label. This will produce the rectangles quiver Qa−1,b−1, with its standard
labeling. �

Remark 6.7.12. Similarly, the seed pattern in Ra,b−1 defined by Σa,b−1 is
isomorphic to a seed subpattern of the seed pattern in Ra,b defined by Σa,b.
(This involves deleting the rightmost column of the quiver Qa,b.)

Lemma 6.7.13. Ra,b ⊂ A(Σa,b).

Proof. Since the Plücker coordinates PJ generate the Plücker ring Ra,b, it
suffices to show that each PJ lies in the cluster algebra A(Σa,b).

We will prove this claim by induction on a. The base case a = 2 holds
from our earlier analysis of Gr2,b. By induction, for any (a − 1)-element
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subset I of {1, 2, . . . , b − 1}, there is a sequence of mutations that we can
apply to Σa−1,b−1 to obtain the Plücker coordinate PI . By Lemma 6.7.11,
we can apply the same sequence of mutations to Σa,b to obtain the Plücker
coordinate PI∪{b}. Consequently all Plücker coordinates of the form PI∪{b}

belong to the cluster algebra A(Σa,b). It then follows by Exercise 6.7.7 that
all Plücker coordinates in Ra,b lie in A(Σa,b). �

Proof of Theorem 6.7.8. In view of Lemma 6.7.13, it remains to show
that A(Σa,b) ⊂ Ra,b. By the Starfish lemma, all we need to establish is that
mutating at any vertex PJ of the quiver Qa,b yields a cluster variable (PJ )

′

which is coprime to PJ .

The mutable vertices of Qa,b all have degree 4 or 6. If we mutate at a
degree 4 vertex of Qa,b, then the corresponding exchange relation is a 3-term
Grassmann-Plücker relation, and the resulting cluster variable is a Plücker
coordinate. Since the determinant is an irreducible polynomial, the old and
new cluster variables are coprime.

If we mutate at a degree 6 vertex, the resulting cluster variable is not a
Plücker coordinate; however one can use an argument similar to that from
Section 6.5 to prove that the old and new cluster variables are still coprime.
In this case, our degree 6 vertex is labeled by some Plücker coordinate PijkS,
where the subset S ⊂ {1, . . . , b} of size a − 3 is disjoint from {i, j, k}. The
exchange relation has the form

PijkSP
′
ijkS = PikfSPijdSPjkeS + PikdSPijeSPjkfS,

where the subset {d, e, f} ⊂ {1, . . . , b} is disjoint from {i, j, k}∪S. One can
then check that P ′

ijkS = PikfSPjdeS − PjkdSPiefS .

We need to show that PijkS and P ′
ijkS are coprime. Since the determi-

nant is an irreducible polynomial, the only way PijkS and P ′
ijkS can fail to

be coprime is if PijkS divides P ′
ijkS. Let us show that this cannot happen.

Let z be a generic 3 × b matrix; let us augment it to an a × b matrix ẑ by
adding new rows 4 through a, where the submatrix located in rows 4 . . . a
and columns S is the identity, and all other entries in rows 4 . . . a are 0. Then
PijkS(ẑ) divides P

′
ijkS(ẑ) implies that Pijk(z) divides P

′
ijk(z). If we specialize

z1d = z1e = z2d = z2e = 0, then Pijk is unchanged whereas Pjde becomes 0,
Pjkd becomes z3,d ∆12,jk(z), and Pief becomes −z3,e∆12,if . Thus P ′

ijk spe-

cializes to z3,d ∆12,jk(z) z3,e ∆12,if . Now if Pijk divides P ′
ijk then the same is

true after specialization. But Pijk does not divide z3,d∆12,jk(z) z3,e ∆12,if .
Thus PijkS and P ′

ijkS are coprime, and we are done. �

Typically, the cluster structure in a Plücker ring Ra,b is of infinite type.
The few exceptional cases where it has finite type are listed in Table 6.2.
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Ring Cluster type

R2,b and Rb−2,b Ab−3

R3,6 D4

R3,7 and R4,7 E6

R3,8 and R5,8 E8

Ra,b for other a, b infinite type

Table 6.2. The type of the cluster structure of Ra,b.

Remark 6.7.14. It is natural to seek an explicit description for all cluster
and coefficient variables for the cluster structure in Ra,b described above.
As we have seen, this set contains all Plücker coordinates. In the cases
a = 2 and a = b−2, there is nothing else; in all other cases, the list includes
non-Plücker cluster variables. For the finite types listed in Table 6.2, the
formulas for non-Plücker variables were given in [38]. Beyond finite type,
the problem remains open. The case a = 3 was extensively studied in [12].

Remark 6.7.15. The above construction can be adapted to yield a cluster
structure in the coordinate ring C[Mata×(b−a)] of the affine space of a×(b−a)
matrices. Append an identity matrix to the right of an a× (b− a) matrix z
to obtain an a × b matrix z′. Up to SLa action, the only restriction on z′

is that its a × a minor occupying the last a columns is equal to 1. We can
now identify the minors of z with the maximal minors of z′ (the Plücker
coordinates): a Plücker coordinate PJ ∈ Ra,b corresponds to the minor
ϕ(PJ ) = ∆KL(z) ∈ C[Mata×(b−a)] whose row and column sets are given by

K = ({b− a+ 1, b− a+ 2, . . . , b} \ J)− b+ a,

L = J ∩ {1, 2, . . . , b− a};

here the notation S−c means {s−c | s ∈ S}. Given a seed for Ra,b, applying
the map ϕ to all cluster and coefficient variables (except for the coefficient
variable Pb−a+1,b−a+2,...,b) yields a seed for C[Mata×b].

In the special case b = 2a, this identification shows that the cluster
structures in the rings C[Mata×a] and C[SLa] introduced in Section 6.6 are
very closely related to the cluster structure in the Plücker ring Ra,2a.

The constructions presented in Sections 6.5–6.7 can be generalized and
modified to build cluster structures in many other rings naturally arising in
the context of classical invariant theory as well as algebraic Lie theory. We
already mentioned generalizations and extensions to other semisimple Lie
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groups, their subgroups, parabolic quotients, and double Bruhat cells; the
excellent survey [22] describes the state of the art circa 2013.

To keep our exposition within reasonable bounds, we did not discuss the
constructions of cluster structures in the rings of SLk invariants of collections
of vectors, covectors, and/or matrices [6, 12, 11]. Likewise, we left out the
treatment of the Fock-Goncharov configuration spaces [9, 10] and related
topics of higher Teichmüller theory.

6.8. Defining cluster algebras by generators and relations

One traditional way of describing a commutative algebra A (say over C) is
in terms of generators and relations. In this approach, A is represented as
a quotient of a C-algebra C[z] = C[z1, z2, . . . ] freely generated by a (finite
or countable) set of “variables” z = {z1, z2, . . . } modulo an explicitly given
ideal I ⊂ C[z]. In typical applications, the set z is finite (so that P = C[z]
is a polynomial ring) and the ideal I is finitely generated: I = 〈g1, . . . , gN 〉,
where g1, . . . , gN are polynomials in the variables z1, z2, . . . . (By common
abuses of terminology, we identify polynomials f ∈ C[z] with the elements
of A ∼= C[z]/I they represent. We also conflate the polynomials g ∈ I with
the relations g(z1, z2, . . . ) = 0 holding in A.)

The definition of a cluster algebra (Definition 3.1.6) is set up differently:
a cluster algebra A is defined inside a field F of rational functions in sev-
eral variables as the algebra generated by certain (recursively determined)
elements of F , the cluster variables of A. While the relations among these
generators are not given explicitly, we do know some of them, namely the
exchange relations (3.1.1).

It is natural to try to extract from this definition a traditional-style
description of a cluster algebra as a quotient of a polynomial ring. This runs
into two issues. First, the set of cluster variables is typically infinite. Second,
the exchange relations do not, in general, generate the ideal of all relations
among cluster variables. We will discuss these two issues one by one.

The following statement, provided here without proof, shows that some
cluster algebras are not finitely generated:

Proposition 6.8.1 ([3, Theorem 1.26]). A cluster algebra of rank 3 with
trivial coefficients is finitely generated if and only if it has an acyclic seed.

In the terminology of Example 4.1.5, a cluster algebra defined by a 3-
vertex quiver Q with no frozen vertices is finitely generated if and only if Q
is mutation-acyclic.

To illustrate Proposition 6.8.1, the cluster algebra defined by the Markov
quiver (see Figure 2.10) is not finitely generated. The following result,
combined with Proposition 6.8.1, provides many more examples.
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Proposition 6.8.2 ([1, Theorem 1.2]). Let Q(a, b, c) denote the quiver with
vertices 1, 2, 3 and a+ b + c arrows: a arrows 1 → 2, b arrows 2 → 3, and
c arrows 3 → 1. (See Figure 6.10.) The following are equivalent:

• the quiver Q(a, b, c) is not mutation-acyclic;

• a, b, c ≥ 2 and det
(

2 a c
a 2 b
c b 2

)

≥ 0.

1

2

3

Figure 6.10. The 3-vertex quiver Q(a, b, c) with a = 3, b = 2, c = 1.

Various cluster algebras arising in Lie theory, such as the ones discussed
in Sections 6.5, 6.6, and 6.7, are finitely generated, for the reasons given in
Theorems 6.4.8, 6.4.9, and 6.4.10.

Another class of finitely generated cluster algebras is provided by the
following result, stated here without proof.

Theorem 6.8.3 ([3, Corollary 1.21]). Any cluster algebra defined by an
acyclic quiver (with no frozen vertices) is finitely generated. In fact, it is
generated by the cluster variables belonging to the initial acyclic seed together
with the cluster variables obtained from this seed by a single mutation; the
ideal of relations among these cluster variables is generated by the exchange
relations out of the initial acyclic seed.

Theorem 6.8.3 was extended in [33] to the much larger class of “locally
acyclic” cluster algebras.

Remark 6.8.4. Any cluster algebra of finite type is finitely generated.
This follows from the appropriate generalization of Theorem 6.8.3: a cluster
algebra of finite type always has an acyclic seed of the kind described in
Theorem 5.2.8. (In the quiver case, the quiver at such a seed is an orientation
of the corresponding Dynkin diagram.) See [3, Remark 1.22].

Many cluster algebras of infinite type (and even infinite mutation type)
are finitely generated. For example, any Plücker ring Ra,b is finitely gener-
ated whereas its cluster structure is typically of infinite type, see Table 6.2.

When thinking about finite generation, it is helpful to keep in mind that
by Proposition 6.4.7, a cluster algebra A is finitely generated if and only if
A is generated by a finite subset of cluster and coefficient variables.

We next turn to the problem of describing the ideal of relations satisfied
by a set of generators of a cluster algebra. Even when a cluster algebra
is of finite type, this is a delicate issue, as Examples 6.8.5 and 6.8.6 below
demonstrate.
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Example 6.8.5. Let A = A(1, 2) be the cluster algebra of type B2 with
trivial coefficients. In the notation of Example 3.2.7, A is generated by the
6-periodic sequence of cluster variables z1, z2, . . . satisfying the exchange
relations

z1z3 − z22 − 1 = 0,(6.8.1)

z2z4 − z3 − 1 = 0,(6.8.2)

z3z5 − z24 − 1 = 0,(6.8.3)

z4z6 − z5 − 1 = 0,(6.8.4)

z5z1 − z26 − 1 = 0,(6.8.5)

z6z2 − z1 − 1 = 0.(6.8.6)

It turns out that these relations do not generate the ideal of all relations
satisfied by z1, . . . , z6. It is not hard to check (using the formulas in Exam-
ple 3.2.7) that these cluster variables also satisfy the relations

z1z4 − z2 − z6 = 0,(6.8.7)

z3z6 − z4 − z2 = 0,(6.8.8)

z5z2 − z6 − z4 = 0,(6.8.9)

none of which lies in the ideal generated by (6.8.1)–(6.8.6) inside the poly-
nomial ring in six formal variables z1, . . . , z6.

The last claim, like several others made below in this section, can be
readily checked using any of the widely available software packages for com-
mutative algebra.

Example 6.8.6. Consider the Plücker ring R3,6 = C[̂Gr(3, 6)], viewed as
a cluster algebra of finite type D4, as explained in Section 6.7. The set
of its cluster variables contains the Plücker coordinates Pijk. This cluster
algebra is graded, with deg(Pijk) = 1 for all i, j, k. All cluster variables are
homogeneous elements, and all relations among them are homogeneous as
well. These relations in particular include the Grassmann-Plücker relation

(6.8.10) P135P246 − P134P256 − P136P245 − P123P456 = 0.

The relation (6.8.10) cannot be written as a polynomial combination of
exchange relations, since all those relations have degree at least 2, and none
of them involves the monomial P135P246. Thus the ideal of relations among
the cluster variables of R3,6 is not generated by the exchange relations.

This example can be extended to bigger Grassmannians using Muir’s
Law (Proposition 1.3.5).

On the bright side, the rings discussed in Examples 6.8.5 and 6.8.6 do
have “nice” explicit presentations. The ideal of relations among the Plücker
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coordinates is generated by the classical (quadratic) Grassmann-Plücker
relations. As to the cluster algebra A(1, 2) from Example 6.8.5, the ideal
of relations among the six cluster variables z1, . . . , z6 is generated by (the
left-hand sides of) the relations (6.8.1)–(6.8.6) and (6.8.7)–(6.8.9).

In Theorem 6.8.10 below, we will provide a general description of a
finitely generated cluster algebra A in terms of generators and relations.
This will require some preparation.

Definition 6.8.7. Recall that a cluster algebra A of rank n is defined by a
seed pattern whose seeds are labeled by the vertices of the n-regular tree Tn,
cf. Definition 3.1.4. Let T be a finite subtree of Tn. For i ∈ {1, . . . , n}, let
T [i] denote the forest obtained from T by removing the edges labeled by i.
We denote by zT the (finite) set of formal variables which includes

• one formal variable for each coefficient variable of A, and

• one formal variable for each connected component of T [i], for every i ∈
{1, . . . , n}.

The formal variable associated to a connected component C of T [i] naturally
corresponds to the unique cluster variable in A that is indexed by i within
each of the labeled seeds in C.

We denote by C[zT ] the ring of polynomials in the set of variables zT .
The exchange ideal IT ⊂ C[zT ] is the ideal generated by the exchange
relations corresponding to the edges of T . More precisely, for each exchange
relation zz′ = M1 + M2 corresponding to an edge of T (here z, z′ ∈ zT ,
and M1,M2 are monomials in the elements of zT ), the exchange ideal IT
contains the polynomial zz′ −M1 −M2.

Let ZT denote the set of all cluster and coefficient variables appearing
in the seeds labeled by the vertices of T . Let AT ⊂ A be the subalgebra
generated by ZT . We are especially interested in the cases where AT = A,
so that ZT generates the entire cluster algebra A.

In what follows, we habitually use the same notation for a formal variable
z ∈ zT and the corresponding cluster variable z ∈ ZT . When this abuse
of notation becomes dangerously confusing, we write f(zT ) and f(ZT ) to
distinguish between a polynomial f ∈ C[zT ] and its evaluation in AT ⊂ A.

Remark 6.8.8. Let A be a finitely generated cluster algebra. By Propo-
sition 6.4.7, A is generated by a finite subset z of cluster and coefficient
variables. Enlarging z if necessary, we may furthermore assume that all
cluster variables in z come from clusters connected to each other by muta-
tions that pass through clusters all of whose cluster variables belong to z.
It follows that we can find a finite tree T such that AT = A.
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Example 6.8.9. Let A = A(1, 2), as in Example 6.8.5. We first consider
the 3-vertex tree T corresponding to the following triple of clusters:

(6.8.11) (z1, z2)
1−−− (z3, z2)

2−−− (z3, z4).

Then ZT = {z1, z2, z3, z4}, in the notation of Definition 6.8.7. The relations

z6 = z1z4 − z2 ,(6.8.12)

z5 = z4z6 − 1 = z1z
2
4 − z2z4 − 1 = z1z

2
4 − z3 − 2(6.8.13)

(cf. (6.8.7) and (6.8.4)) imply that the cluster algebra A is generated by ZT .
This is an instance of Theorem 6.8.3: the four cluster variables in ZT come
from the cluster (z2, z3) and the two clusters obtained from it by single
mutations.

The four elements of ZT satisfy the exchange relations (6.8.1) and (6.8.2).
The left-hand sides of these relations correspond to the generators of the
exchange ideal IT ⊂ C[zT ]. One can check that this exchange ideal contains
all relations satisfied by the cluster variables z1, z2, z3, z4, in agreement with
Theorem 6.8.3. Consequently A ∼= C[zT ]/IT .

Alternatively, consider the subtree T spanning the four clusters

(6.8.14) (z1, z2)
1−−− (z3, z2)

2−−− (z3, z4)
1−−− (z5, z4).

Again, the set ZT = {z1, . . . , z5} generates A. The three exchange relations
associated with the edges of T are (6.8.1), (6.8.2), and (6.8.3). It turns
out that the exchange ideal IT ⊂ C[zT ] generated by (the left-hand sides
of) these relations does not contain some of the relations satisfied by the
cluster variables z1, . . . , z5. For example, f(zT ) = z1z

2
4 − z3 − z5 − 2 /∈ IT

even though f(ZT ) = 0 in A, cf. (6.8.13). Thus for this choice of a tree T , we
have A 6∼= C[zT ]/IT . (As the exchange ideal IT is radical in this instance,
the gap cannot be explained by the discrepancy between the ideal of an
affine variety and an ideal coming from its set-theoretic description.)

To describe the relationship between the algebra AT and the quotient
C[zT ]/IT , we will need the following notation. LetMT denote the product of
all formal variables in zT that correspond to the (mutable) cluster variables.
We denote by

(6.8.15) JT = (IT : 〈MT 〉∞) = {f ∈ C[zT ] : (MT )
af ∈ IT for some a}

the saturation of the exchange ideal IT by the principal ideal 〈MT 〉. In
plain language, JT consists of all polynomials that can be multiplied by a
monomial so that the product lies in the exchange ideal IT .
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Theorem 6.8.10. For a polynomial f(zT ), the following are equivalent:

• f(ZT )=0, i.e., f describes a relation among cluster variables in AT ;

• f(zT ) lies in the saturated ideal JT .

We thus have the canonical isomorphism

(6.8.16) AT
∼= C[zT ]/JT .

Informally, a polynomial in the cluster variables vanishes in the cluster
algebra if and only if this polynomial can be multiplied by some monomial
in cluster variables so that the product lies in the exchange ideal.

Remark 6.8.11. If the cluster algebra A is finitely generated, with A = AT

(cf. Remark 6.8.8), then (6.8.16) provides an implicit presentation of A in
terms of generators and relations. Furthermore, in each specific example,
the saturated ideal JT can be explicitly computed using existing efficient
algorithms of computational commutative algebra.

Before proving Theorem 6.8.10, we illustrate it with a couple of exam-
ples.

Example 6.8.12. Continuing with Example 6.8.9, let A = A(1, 2). Take
the tree T shown in (6.8.14). We saw that the polynomial f = z1z

2
4 − z3 −

z5 − 2 does not lie in the exchange ideal IT , even though f describes an
identity among the generators of A. On the other hand,

z3f = z3(z1z
2
4 − z3 − z5 − 2)

= z24(z1z3−z22−1)+(z2z4+z3+1)(z2z4−z3−1)−(z3z5−z24−1) ∈ IT ,

so f lies in the saturated ideal JT .

Example 6.8.13. Continuing with Example 6.8.6, consider the Plücker
ring R3,6. Although the Grassmann-Plücker relation (6.8.10) does not lie in
the ideal generated by the exchange relations, we can multiply (6.8.10) by
a monomial (in fact, by a single variable) and get inside the ideal:

P124(P135P246 − P134P256 − P136P245 − P123P456)

= P246(P124P135 − P123P145 − P125P134)(6.8.17)

− P134(P124P256 − P125P246 + P126P245)(6.8.18)

− P245(P124P136 − P123P146 − P126P134)(6.8.19)

− P123(P124P456 − P145P246 + P146P245) ∈ IT .(6.8.20)

(Each of the four parenthetical expressions in (6.8.17)–(6.8.20) is a three-
term Grassmann-Plücker relation, thus an instance of an exchange relation.)
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Proof of Theorem 6.8.10. Going in one direction, let us verify that if
f(zT ) ∈ JT , then f(ZT ) = 0. Suppose that M(zT ) is a monomial such that
f(zT )M(zT ) ∈ IT . Since every exchange relation holds when we substitute
cluster variables into it, this implies that f(ZT )M(ZT ) = 0 in AT . But AT

is contained in a field F , and M(ZT ) is a nonzero element of F . Therefore
f(ZT ) = 0 as desired.

To prove the converse, we will need the following definitions. Fix a root
vertex t0 in the tree T . Let us linearly order the set zT so that

• the coefficient variables and the variables associated with the root cluster
are smaller than the remaining variables;

• for each exchange relation zz′ = · · · , we have z′ < z if the “cluster”
containing z′ is closer to t0 in T than the “cluster” containing z.

(We put the word “cluster” in quotation marks since we are dealing with
formal variables rather than the associated cluster variables.)

Let f = f(zT ) be a polynomial such that f(ZT ) = 0. We need to show
that there exists a monomial M ∈ C[zT ] such that fM ∈ IT . We will prove
this by double induction: first, on the largest variable z ∈ zT appearing in f ,
and for a given z, on the degree with which z appears. In other words, we
will argue as follows. Let z ∈ zT be the largest variable appearing in f , say
with degree d. Then we can assume, while proving the claim above, that a
similar statement holds for any polynomial that only involves the variables
smaller than z, and perhaps also z in degrees < d.

We begin by writing

f = zg + h,

where g, h ∈ C[zT ] are polynomials, with h not involving z. Let

E = zz′ −M1 −M2 ∈ IT

be the polynomial associated with the unique exchange relation among the
variables in zT that corresponds to an edge in T and where z′ < z. Thus
M1,M2 ∈ C[zT ] are monomials that only involve variables smaller than z.

Now set

f ′ = z′f − Eg.

Then f ′(ZT ) = 0 because f(ZT ) = E(ZT ) = 0. Moreover the calculation

f ′ = z′f − Eg

= zz′g + z′h− (zz′ −M1 −M2)g

= z′h+ (M1 +M2)g

shows that f ′ satisfies the conditions of the induction hypothesis. (Indeed,
the polynomials z′, h, M1 and M2 only involve variables < z whereas
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degz(g) = degz(f) − 1.) Hence there exists a monomial M ′ = M ′(zT )
satisfying f ′M ′ ∈ IT . Now let M = M ′z′ and conclude that

fM = M ′z′f = M ′f ′ +M ′Eg ∈ IT ,

proving the claim. �



Bibliography
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Chapter 7

Plabic graphs

In this chapter, we present the combinatorial machinery of plabic graphs,
introduced and developed by A. Postnikov [21]. These are planar (unori-
ented) graphs with bicolored vertices satisfying some mild technical condi-
tions. Plabic graphs can be transformed using certain local moves. A key
observation is that each plabic graph gives rise to a quiver, so that local
moves on plabic graphs translate into (a subclass of) quiver mutations.

Crucially, the combinatorics underlying several important classes of clus-
ter structures that arise in applications fits into the plabic graphs framework.
This in particular applies to the basic examples introduced in Chapter 1.
More concretely, we show that the combinatorics of flips in triangulations
of a convex polygon (resp., braid moves in wiring diagrams, either ordi-
nary or double) can be entirely recast in the language of plabic graphs. In
these and other examples, an important role is played by the subclass of re-
duced plabic graphs that are analogous to—and indeed generalize—reduced
decompositions in symmetric groups.

D. Thurston’s triple diagrams [24] are closely related to plabic graphs.
After making this connection precise and developing the machinery of triple
diagrams, we use this machinery to establish the fundamental properties of
reduced plabic graphs.

Plabic graphs and related combinatorics have arisen in the study of
shallow water waves [16, 17] (via the KP equation) and in connection with
scattering amplitudes in N = 4 super Yang-Mills theory [2]. Constructions
closely related to plabic graphs were studied by T. Kawamura [13] in the
context of the topological theory of graph divides.

A reader interested exclusively in the combinatorics of plabic graphs can
read this chapter independently of the previous ones. While we occasionally

1
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refer to the combinatorial constructions introduced in Chapters 1–2, they
are not relied upon in the development of the general theory of plabic graphs.

Cluster algebras as such do not appear in this chapter. On the other
hand, reduced plabic graphs introduced herein will prominently feature in
the upcoming study of cluster structures in Grassmannians and related va-
rieties, see Chapter 8.

The structure of this chapter is as follows.

Section 7.1 introduces plabic graphs and their associated quivers.

In Section 7.2, we recast the combinatorics of triangulations of a polygon
and (ordinary or double) wiring diagrams in the language of plabic graphs.

Section 7.3 discusses the version of the theory in which all internal ver-
tices of plabic graphs are trivalent. (This version naturally arises in some
applications, cf., e.g., [9].) As Section 7.3 is not strictly necessary for the
sections that follow, it can be skipped if desired.

The important notions of a trip, a trip permutation and a reduced plabic
graph are introduced in Section 7.4. Here we state (but do not prove) some
key results, including the “fundamental theorem of reduced plabic graphs”
which characterizes the move equivalence classes of reduced plabic graphs
in terms of associated decorated permutations.

Section 7.5 introduces the basic notions of triple diagrams. We then
show that triple diagrams are in bijection with normal plabic graphs.

In Section 7.6, we study minimal triple diagrams, largely following [24].
These diagrams can be viewed as counterparts of reduced plabic graphs.

In Section 7.7, we explain how to go between minimal triple diagrams
and reduced plabic graphs. We then use this correspondence to prove the
fundamental theorem of reduced plabic graphs.

In Section 7.8, we state and prove the bad features criterion that detects
whether a plabic graph is reduced or not.

In Section 7.9, we describe a bijection between decorated permutations
and a certain subclass of affine permutations.

In Section 7.10, a factorization algorithm for affine permutations is used
to construct a family of reduced plabic graphs called bridge decompositions.

Section 7.11 discusses edge labelings of reduced plabic graphs and gives
a particularly transparent resonance criterion for recognizing whether a
plabic graph is reduced.

Section 7.12 introduces face labelings of reduced plabic graphs. In Sec-
tion 7.13, we provide an intrinsic combinatorial characterization of collec-
tions of face labels that arise via this construction. Face labels will reappear
in Chapter 8 in the study of cluster structures in Grassmannians.
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7.1. Plabic graphs and their quivers

Definition 7.1.1. A plabic (planar bicolored) graph is a planar graph G
embedded into a closed disk D, such that:

• the embedding of G into D is proper, i.e., the edges do not cross;

• each internal vertex is colored black or white;

• each internal vertex is connected by a path to some boundary vertex;

• the (uncolored) vertices lying on the boundary of D are labeled 1, 2, . . . , b
in clockwise order, for some positive integer b;

• each of these b boundary vertices is incident to a single edge.

Loops and multiple edges are allowed.

We consider plabic graphs up to isotopy of the ambient disk D fixing
the disk’s boundary. The faces of G are the connected components of the
complement of G inside the ambient disk D. A degree 1 internal vertex
which is connected by an edge to a boundary vertex is called a lollipop.

Two examples of plabic graphs are shown in Figure 7.1. Many more
examples appear throughout this chapter. In what follows, we will often
omit the boundary of the ambient disk when drawing plabic graphs.

1 2

3

4

5

1 2

3

4

5

6

(a) (b)

Figure 7.1. (a) A plabic graph G. (b) A plabic graph G′ with a white lollipop.

Remark 7.1.2. Plabic graphs were introduced by A. Postnikov [21, Sec-
tion 12], who used them to describe parametrizations of cells in totally non-
negative Grassmannians. A closely related class of graphs was defined by
T. Kawamura [13] in the context of the topological theory of graph divides.
Our definition is very close to Postnikov’s.

The key role in the theory of plabic graphs is played by a particular
equivalence relation that is generated by a family of transformations called
(local) moves.
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Definition 7.1.3. We say that two plabic graphs G and G′ are move-equi-
valent, and write G ∼ G′, if G and G′ can be related to each other via a
sequence of the following local moves, denoted (M1), (M2), and (M3):

(M1) (The square move) Change the colors of all vertices on the boundary of
a quadrilateral face, provided these colors alternate and these vertices
are trivalent. See Figure 7.2.

←→

Figure 7.2. Move (M1) on plabic graphs.

(M2) Remove a bivalent vertex (of any color) and merge the edges adjacent
to it; or, conversely, insert a bivalent vertex in the middle of an edge.
See Figure 7.3.

←→ or ←→

Figure 7.3. Move (M2) on plabic graphs.

(M3) Contract an edge connecting two internal vertices of the same color;
or split an internal vertex into two vertices of the same color joined
by an edge. See Figure 7.4.

←→ or ←→
Figure 7.4. Move (M3) on plabic graphs. The number of “hanging”
edges on either side can be any nonnegative integer.

We next explain how to associate a quiver to a plabic graph. This
construction is closely related to the one presented in Definition 2.5.1.

Definition 7.1.4. The quiver Q(G) associated to a plabic graph G is defined
as follows. The vertices of Q(G) are in one-to-one correspondence with the
faces of G. A vertex of Q(G) is declared mutable or frozen depending on
whether the corresponding face is internal (i.e., disjoint from the boundary
of D) or not. The arrows of Q(G) are constructed in the following way.
Let e be an edge in G that connects a white vertex to a black vertex and
separates two distinct faces, at least one of which is internal. For each such
edge e, we introduce an arrow in Q(G) connecting the faces separated by e;
this arrow is oriented so that when we move along the arrow in the direction
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of its orientation, we see the white endpoint of e on our left and the black
endpoint on our right. We then remove oriented 2-cycles from the resulting
quiver, one by one, to get Q(G). See Figure 7.5.

1 2

3

4

5

1 2

Figure 7.5. Two plabic graphs and their associated quivers. Shown
on the left is the graph G from Figure 7.1(a). The quiver on the right
has double arrows, corresponding to the instances where a pair of faces
share two boundary segments disconnected from each other. The frozen
vertex v at the top of the picture is isolated: the two arrows between v

and an internal vertex located underneath v cancel each other.

Proposition 7.1.5. Let G and G′ be two plabic graphs related to each other
by one of the local moves (M1), (M2), or (M3). Additionally, if G and G′

are related via the square move (M1), then we require that

among the four faces surrounding the square, the consecutive ones(7.1.1)

must be distinct, see Figure 7.6.

Then the quivers Q(G) and Q(G′) are mutation equivalent.

AB C

Figure 7.6. Restriction (7.1.1) allows the square move at A—but not
at B, since face C is adjacent to two consecutive sides of B.

Proof. It is straightforward to check that a square move in a plabic graph
translates into a quiver mutation at the vertex associated to that square
face, provided that condition (7.1.1) is satisfied. It is also straightforward
to check that the quiver associated with a plabic graph does not change
under moves (M2) or (M3), see Figure 7.7. �
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Figure 7.7. Fragments of plabic graphs and their associated quivers.
The first two plabic graphs are related by a square move (M1); their
quivers are related by a single mutation. The second and the third
graphs are related by moves of type (M3), and have isomorphic quivers.

Remark 7.1.6. Suppose condition (7.1.1) fails at a square face B, with
B incident to another face C along two consecutive edges, as in Figure 7.6.
Then the arrows transversal to these edges cancel each other, so they do
not appear in the associated quiver. This leads to a discrepancy between
the square move and the quiver mutation.

Remark 7.1.7. The key difference between the setting of this section vs.
Section 2.5 is that here we do not require plabic graphs to be bipartite.
This distinction is not particularly important, since we can always apply a
sequence of moves (M2) to a plabic graph to make it bipartite.

In the bipartite setting, the square move (M1) corresponds to urban
renewal, see Definition 2.5.2 as well as Definition 7.5.13 below.

Remark 7.1.8. In light of Proposition 7.1.5, one may choose to adjust the
definition of the square move (M1)—hence the notion of move equivalence
of plabic graphs—by forbidding square moves violating condition (7.1.1).
(This convention was adopted in [9].) We note that for the important sub-
class of reduced plabic graphs (see Definition 7.4.2 below), condition (7.1.1)
is automatically satisfied, so there is no need to worry about it.

Remark 7.1.9. Using Definition 7.1.4, we can associate a seed pattern—
hence a cluster algebra—to any plabic graph G. By Proposition 7.1.5, this
cluster algebra only depends on the move equivalence class of G, assuming
that we adopt a restricted notion of move equivalence, cf. Remark 7.1.8.
We will soon see that this family of cluster algebras includes all the main
examples of cluster algebras (defined by quivers) introduced in the earlier
chapters. This justifies the importance of the combinatorial study of plabic
graphs, and in particular their classification up to move equivalence.

The quivers arising from plabic graphs are rather special. In particular,
each quiver Q(G) is planar.

On the other hand, the mutation class of any quiver without frozen ver-
tices can be embedded into the mutation class of a quiver of a plabic graph:

Proposition 7.1.10 ([8]). Let Q be a quiver whose vertices are all mutable.
Then there exists a plabic graph G such that Q is a full subquiver (see
Definition 4.1.1) of a quiver mutation-equivalent to Q(G).
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7.2. Triangulations and wiring diagrams via plabic graphs

In this section, we explain how the machinery of local moves on plabic
graphs unifies the combinatorial constructions of Chapter 2, including:

• flips in triangulations of a polygon (Section 2.2);

• braid moves for wiring diagrams (Section 2.3);

• their analogues for double wiring diagrams (Section 2.4).

As mentioned in Remark 7.1.7, the urban renewal transformations (Sec-
tion 2.5) can also be interpreted in terms of local moves in plabic graphs.

Example 7.2.1 (Triangulations of a polygon, see [16, Algorithm 12.1]).
Let T be a triangulation of a convex m-gon Pm . The plabic graph G(T )
associated to T is constructed as follows:

(1) Place a white vertex of G(T ) at each vertex of Pm.

(2) Place a black vertex of G(T ) in the interior of each triangle of T . Con-
nect it by edges to the three white vertices of the triangle.

(3) Embed Pm into the interior of a disk D.

(4) Place m uncolored vertices of G(T ) on the boundary of D.

(5) Connect each white vertex of G(T ) to a boundary vertex. These edges
must not cross.

We emphasize that the set of edges of G(T ) includes neither the sides of Pm

nor the diagonals of T . See Figure 7.8.

Figure 7.8. A triangulation T of an octagon, and the corresponding
plabic graph G(T ), cf. Figure 2.2.

Exercise 7.2.2. Show that Q(G(T )) = Q(T ), i.e., the quiver associated
to the plabic graph of a triangulation T coincides with the quiver Q(T )
associated to T , as in Definition 2.2.1.

Exercise 7.2.3. Show that if triangulations T and T ′ are related by a flip,
then the plabic graphs G(T ) and G(T ′) are move-equivalent to each other.
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More concretely, flipping a diagonal in T translates into a square move at
the corresponding quadrilateral face of G(T ), plus some (M3) moves to make
each vertex of that face trivalent.

Example 7.2.4 (Wiring diagrams). Let D be a wiring diagram, as in
Section 1.3. We associate a plabic graph G(D) to D by replacing each
crossing in D by a pair of trivalent vertices connected vertically, with a
black vertex on top and a white vertex on the bottom. We then enclose the
resulting graph in a disk.

This construction applies to a more general version of wiring diagrams.
Let si denote the simple transposition in the symmetric group Sn that ex-
changes i and i+ 1. Given a sequence w = si1si2 . . . sim of simple transpo-
sitions, we associate to it a diagram D(w) by concatenating m graphs; here
the graph associated to sj consists of n wires, of which n− 2 are horizontal,
while the jth and (j + 1)st wires cross over each other. See Figure 7.9.

Figure 7.9. Top: the wiring diagrams D1 andD2 associated to reduced
expressions s2s3s2s1s2s3 and s3s2s3s1s2s3 for w0 = (4, 3, 2, 1) ∈ S4.
These wiring diagrams (resp., reduced expressions) are related via a
braid move. Middle: the plabic graphs G(D1) and G(D2). Bottom: the
quivers Q(G(D1)) and Q(G(D2)), with isolated frozen vertices removed.
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Exercise 7.2.5. Show that after removing isolated frozen vertices at the
top and bottom, the quiver Q(G(D)) associated to the plabic graph of a
wiring diagram D coincides with the quiver Q(D) associated to D, as in
Definition 2.3.1, up to a global reversal of arrows.

Remark 7.2.6. If we changed our convention in Example 7.2.4, swapping
the colors of the black and white vertices, we’d recover precisely the quiver
Q(D) associated to the wiring diagram. However, we prefer the convention
used in Example 7.2.4 because it will lead to a transparent algorithm for
recovering the chamber minors, as shown in Figure 7.62. And as noted in
Remark 3.1.10, the cluster algebra associated to a given quiver is the same
as the cluster algebra associated to the opposite quiver.

Remark 7.2.7. If two wiring diagrams D and D′ are related by a braid
move, then the corresponding plabic graphs G(D) and G(D′) are related by
a square move plus some (M3) moves, see Figure 7.10.

Figure 7.10. A braid move on wiring diagrams, and a corresponding
sequence of moves on plabic graphs. The first two (resp., the last two)
plabic graphs are related by two (M3) moves; the two plabic graphs in
the middle are related by an (M1) move.

Example 7.2.8 (Double wiring diagrams). Let D be a double wiring
diagram, as in Section 1.4. The plabic graph G(D) associated toD is defined
by adjusting the construction of Example 7.2.4 in the following way: as
before, we replace each crossing in the double wiring diagram by a pair of
trivalent vertices connected vertically, and color one of these vertices white
and the other black. If the crossing is thin, the top vertex gets colored
white and the bottom one black; if the crossing is thick, the colors of the
two vertices are reversed. See Figure 7.11.

As in Example 7.2.4, the above construction works for a more general
version of double wiring diagrams. Given two sequences w = si1si2 . . . sim
and w = sj1sj2 . . . sjℓ , choose an arbitrary shuffle of w and w. Then we can
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associate a (generalized) double wiring diagram to this shuffle, where thick
crossings are associated to factors in w, and thin crossings are associated to
factors in w. So, e.g., the double wiring diagram in Figure 7.11 is associated
to the shuffle s2s1s2s1s2s1.

3

2

1

1

2

3

1

2

3

3

2

1

Figure 7.11. A double wiring diagram D, the corresponding plabic
graph G(D), and the quiver associated to G(D). If one removes the
bottom frozen vertex, one recovers the quiver from Figure 2.6 (up to a
global reversal of arrows).

Exercise 7.2.9. Extend the statements of Exercise 7.2.5 and Remark 7.2.7
to the case of double wiring diagrams.

In addition to triangulations and (ordinary or double) wiring diagrams,
plabic graphs can also be used to describe Fock-Goncharov cluster struc-
tures [7]:

Exercise 7.2.10. Construct a plabic graph whose associated quiver is the
quiver shown in Figure 2.3. How does this construction generalize to a quiver
Q3(T ) associated to an arbitrary triangulation T of a convex polygon, cf.
Exercise 2.2.3?
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7.3. Trivalent plabic graphs

In Section 7.1, we introduced plabic graphs and described local moves that
generate an equivalence relation on them. In this section, we focus on
trivalent plabic graphs, i.e., those plabic graphs whose interior vertices are
all trivalent. This will require working with an alternative set of moves that
preserve the property of being trivalent.

Remark 7.3.1. Trivalent plabic graphs arise naturally in the studies of

• soliton solutions to the KP equation [16],

• sections of fine zonotopal tilings of 3-dimensional cyclic zonotopes [10],

• combinatorics of planar divides and associated links [9], and

• π-induced subdivisions for a projection π from the hypersimplex ∆k,n to
an n-gon [22].

We begin with the following simple observation.

Lemma 7.3.2. Any plabic graph with no interior leaves (i.e., no degree 1
interior vertices) can be transformed by a sequence of moves of type (M2)
and/or (M3) into a plabic graph all of whose interior vertices are trivalent.

Proof. We can get rid of bivalent vertices using the moves (M2). If there are
any vertices of degree ≥ 4, split those vertices using (M3) until all internal
vertices are trivalent. �

The alternative set of moves for trivalent plabic graphs consists of the
square move (M1) together with the flip move (M4) defined below.

Definition 7.3.3. The flip move (sometimes also called the Whitehead
move) for trivalent plabic graphs is defined as follows:

(M4) Replace a fragment containing two trivalent vertices of the same color
connected by an edge by another such fragment, see Figure 7.12.

Figure 7.12. The flip move (or Whitehead move) for trivalent graphs.
The four vertices shown should either all be white, or all be black.

Remark 7.3.4. A flip move (M4) can be expressed as a composition of two
moves of type (M3).
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The main result of this section is the following.

Theorem 7.3.5. Two trivalent plabic graphs G and G′ are related via a
sequence of local moves of types (M1), (M2), and (M3) if and only if they
are related by a sequence of moves of types (M1) and (M4).

The rest of this section is devoted to the proof of Theorem 7.3.5.

Lemma 7.3.6. If two trivalent plabic graphs G and G′ are connected by
a sequence of moves of type (M2) or (M3), then they are connected by a
sequence of moves of type (M3).

Proof. We first note that in many cases, move (M2) can be thought of as
an instance of move (M3): instead of using (M2) to add or remove a bivalent
vertex that is adjacent via an edge e to a vertex of the same color, we can
use (M3) to (un)contract e, to the same effect.

The only (M2) moves that are genuinely different from (M3) moves are
the (M2) moves that add or remove a white (resp., black) vertex in the
middle of a black-black or black-boundary (resp., white-white or white-
boundary) edge. We call them creative or destructive (M2) moves, see the
left and middle of Figure 7.13. We need to show that it is never necessary
to use a creative or destructive (M2) move to connect G and G′ as above.

Figure 7.13. Using a creative (M2) move and then an (M3) move to
grow a white leaf.

Consider a shortest sequence of (M2)/(M3) moves connecting G and G′:

(7.3.1) G = G0 ∼ G1 ∼ · · · ∼ Gk = G′.

We first claim that each Gi does not contain an internal leaf. Suppose
otherwise. Let Gi−1 ∼ Gi be the last step when we grow a leaf (as in
Figure 7.13). That is, i is maximal such that Gi has a leaf v′ attached
via edge e to some vertex v, where v′ and e were not present in Gi−1.
Since G′ has no leaves, there must be some j > i such that Gj is obtained
from Gj−1 by contracting the edge adjacent to v′. By construction, each
graph Gi, Gi+1, . . . , Gj−1 contains leaf v′ along with a path connecting v′

to a vertex of the same color; this path is obtained by subdividing the edge
e by adding bivalent vertices (which must remain bivalent since no new
leaves may be added). But then we can construct a shorter sequence of
moves connecting G to G′ by removing all steps used to create and contract
this path.



7.3. Trivalent plabic graphs 13

Having established that none of the graphs appearing on the shortest
path (7.3.1) have internal leaves, we will now demonstrate that this path
never uses a creative or destructive (M2) move. Note that we cannot have
only destructive (M2) moves because (M3) moves alone cannot create a
vertex whose removal requires a destructive (M2) move. Thus, it is enough
to show that we cannot have a creative (M2) move along (7.3.1). Suppose
there is one, and that the last creative (M2) move adds a bivalent white
vertex w along a black-black edge. Along (7.3.1), this bivalent vertex w
might split into multiple bivalent white vertices (pairwise adjacent, in a
row). However, all these vertices must get removed somewhere along (7.3.1),
since G′ has no bivalent vertices. We can then shorten (7.3.1) by removing
all moves involving these bivalent vertices. The lemma is proved. �

Lemma 7.3.7. Let G and G′ be two trivalent plabic graphs such that

• each of the graphs G and G′ is connected;

• each of the graphs G and G′ has f interior faces, b boundary vertices,
and b boundary faces (the number of boundary vertices equals the number
of boundary faces since the graphs are connected);

• in each of the graphs G and G′, all interior vertices have the same color,
and this color is the same in both graphs.

Then G and G′ can be connected by a sequence of flip moves (M4).

Proof. The dual graph Gdual of a trivalent connected plabic graph G is
obtained as follows. Place a vertex of Gdual in the interior of each face of G.
For each edge e of G, introduce a (transversal) edge of Gdual connecting the
vertices of Gdual located in the faces of G on both sides of e, see Figure 7.14.
(This new edge may be a loop.) Under the conditions of the lemma, the dual
graph Gdual is a generalized triangulation T of a (dual) b-gon. (We note that
T may contain self-folded triangles – loops with an interior “pendant” edge
– coming from the faces of G enclosed by a loop in G, as in Figure 7.14.)
The triangulation T has b + f vertices: the b vertices of the dual b-gon
together with the f interior points (“punctures”).

Figure 7.14. A trivalent plabic graph G and its dual graph Gdual (in
red); the latter contains a self-folded triangle. Here b = 3 and f = 1.
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Figure 7.15 shows that a flip move in a trivalent plabic graph corresponds
to a flip in the corresponding triangulation. The claim that G and G′ are
connected by flip moves can now be obtained from the well-known fact
[11, 12] that any two triangulations of a b-gon with f interior points are
connected by flips. �

Figure 7.15. The flip move for trivalent graphs corresponds to a flip
of the corresponding dual triangulations.

Definition 7.3.8. A white component W of a plabic graph G is obtained
by taking a maximal (by inclusion) connected induced subgraph of G all
of whose internal vertices are white, together with the half-edges extending
from the (white) vertices of W towards black vertices outside W or towards
boundary vertices of G. Black components of G are defined in the same
way, with the roles of black and white vertices reversed.

Remark 7.3.9. Each black or white component C of a plabic graph G can
itself be regarded as a (generalized) plabic graph. To this end, enclose C by
a simple closed curve γ passing through the endpoints of the half-edges on
the outer boundary of C. If the portion of G located inside γ is exactly C,
then we get a usual plabic graph. It may however happen that C contains
“holes,” i.e., some of the half-edges on the boundary of C may be entirely
contained in the interior of the disk enclosed by γ. In that case, we need
to draw simple closed curves through the endpoints of those half-edges, so
that C becomes a generalized plabic graph inside a “swiss-cheese” shape (a
disk with some smaller disks removed), as in Figure 7.16. The argument
in the proof of Lemma 7.3.7 extends to this setting, so Lemma 7.3.7 also
holds for black/white components of trivalent plabic graphs. We will use
this generalization in the proof of Proposition 7.3.10 below.

Proposition 7.3.10. Let two trivalent plabic graphs be related to each other
by moves (M2) or (M3). Then they are related by a series of flip moves (M4).

Proof. Let G and G′ be the plabic graphs in question. Without loss of
generality we may assume that G and G′ are connected. By Lemma 7.3.6,
G and G′ are connected by moves (M3).

Each of the graphs G and G′ breaks into disjoint (white or black) com-
ponents. Each (M3) move only affects a single component. It follows that
the white (resp., black) components W1, . . . ,Wℓ (resp., B1, . . . , Bm) of G
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γ

Figure 7.16. A generalized plabic graph inside a “swiss-cheese” shape
(in this case, a disk with two smaller disks removed).

are in bijection with the components W ′
1, . . . ,W

′
ℓ (resp., B′

1, . . . , B
′
m) of G′,

so that each Wi (resp., Bj) is related to W ′
i (resp., B′

j) via (M3) moves.

Since an (M3) move preserves both the number of boundary vertices
and the number of faces of a graph, both Wi and W ′

i (respectively, Bj

and B′
j) have the same number of boundary vertices and the same number

of faces. It now follows from Lemma 7.3.7 (more precisely, from its extension
to components of plabic graphs, see Remark 7.3.9) that each pair Wi and
W ′

i can be connected by flip moves, and similarly for Bj and B′
j . The

proposition follows. �

Proof of Theorem 7.3.5. The “if” direction immediately follows from
Remark 7.3.4.

Suppose that G and G′ are related via a sequence of (M1), (M2), and
(M3) moves. Let k denote the number of square moves (M1) in the sequence.
We then have a sequence of move-equivalences

G = G′
0 ∼ G1 ∼ G′

1 ∼ G2 ∼ G′
2 ∼ · · · ∼ Gk ∼ G′

k ∼ Gk+1 = G′,

where for all i,

• Gi is related to G′
i by a single square move;

• G′
i is related to Gi+1 by a sequence of (M2) and (M3) moves.

Since a square move only involves trivalent vertices, we may assume, apply-
ing extra (M2) and (M3) moves as needed, that all plabic graphs Gi and
G′

i are trivalent. It then follows by Proposition 7.3.10 that for every i, the
graphs G′

i and Gi+1 are related by flip moves alone, and we are done. �

Remark 7.3.11. The plabic graphs associated to wiring diagrams and dou-
ble wiring diagrams as in Example 7.2.4 and Example 7.2.8 are trivalent,
and consequently one can express the transformation corresponding to braid
moves using square moves and flip moves, as shown in Figure 7.10.

On the other hand, the plabic graphs associated to triangulations of a
polygon (see Example 7.2.1 and Figure 7.8) are not trivalent.
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7.4. Trips. Reduced plabic graphs

Reduced plabic graphs are a subclass of plabic graphs that play a critically
important role in the study of cluster structures and total positivity in
Grassmannians. In this section, we introduce reduced plabic graphs and
various related concepts. The main result of the section, Theorem 7.4.25,
provides a criterion for move equivalence of reduced plabic graphs. The
proof of this theorem will occupy Sections 7.5–7.7.

Definition 7.4.1. We say that T is a collapsible tree in a plabic graph G if

• T is a tree with at least one edge not incident to the boundary of G;

• T is an induced subgraph of G;

• T is attached to the rest of G at a single vertex v, the root of T , so that

– if v is a boundary vertex, one can use local moves (M2)–(M3) to
collapse T to a lollipop based at v.

– if v is an internal vertex, one can use local moves (M2)–(M3) to
collapse T onto the vertex v.

In other words, local moves can be used to replace the tree T by either a
lollipop based at v, or by v. See Figure 7.17.

v

T

Figure 7.17. A collapsible tree T whose root is the internal vertex v.

Definition 7.4.2. A plabic graph G is reduced if no plabic graph G′ ∼ G
contains one of the following “forbidden configurations:”

• a hollow digon, i.e., two edges connecting a pair of distinct vertices, with
no other edges in the region between them; or

• an internal leaf that is not a lollipop and does not belong to a collapsible
tree.

See Figure 7.18 for a slightly modified (but equivalent) version.

Remark 7.4.3. For plabic graphs, the property of being reduced is, by
definition, invariant under local moves.

Remark 7.4.4. As stated, this property is not readily testable, because the
move equivalence class of a plabic graph is usually infinite. We will later
obtain criteria (see Theorems 7.8.6 and 7.11.5) for testing this property.
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(a) (b) (c)

u v

(d)

u v

(e)

Figure 7.18. A plabic graph is not reduced if and only if it is move-
equivalent to a graph containing a hollow digon, as in (a,b,c), or a graph
containing an internal leaf u adjacent to a trivalent vertex v of opposite
color such that v is not a root of a collapsible tree, see (d,e).

Remark 7.4.5. The notion of a reduced plabic graph, as introduced above
in Definition 7.4.2, may appear artificial, as the choice of forbidden configu-
rations is not well motivated. We will soon present alternative definitions of
reducedness (in slightly restricted generality) that are both more conceptual
and more elegant; see Proposition 7.4.9 and Corollary 7.4.26. In particular,
these alternative definitions do not involve the forbidden configurations in
Figure 7.18(d,e).

Remark 7.4.6. The requirement in Figure 7.18(d,e) concerning the col-
lapsible tree cannot be removed: as shown in Figure 7.19, dropping this
requirement would make any plabic graph non-reduced.

(M2)−→ (M3)−→ (M2)−→ (M3)−→
u v

Figure 7.19. Any plabic graph can be transformed via moves (M2)–
(M3) into a graph containing a configuration as in Figure 7.18(d,e) in
which vertex v is the root of a collapsible tree that contains vertex u.

Reduced plabic graphs can be interpreted as generalizations of reduced
expressions in symmetric groups:

Exercise 7.4.7. Consider sequences (or “words”) w = si1 · · · sim of simple
transpositions in a symmetric group, as in Example 7.2.4. We say that two
such words are braid-equivalent if they can be related to each other using
the braid relations sisi+1si = si+1sisi+1 and sisj = sjsi for |i − j| ≥ 2.
A word w is called a reduced expression if no word in its braid equivalence
class has two consecutive equal entries: · · · sisi · · · . Show that if w fails to
be a reduced expression, then G(D(w)) fails to be a reduced plabic graph.

Remark 7.4.8. Conversely, if w is reduced, then G(D(w)) is reduced; this
can be proved using Theorem 7.8.6 or Theorem 7.11.5.

Proposition 7.4.9. Let G be a plabic graph that has no internal leaves,
other than lollipops. Then the following are equivalent:

(i) G is not reduced;

(ii) G can be transformed, via local moves that do not create internal leaves,
into a plabic graph containing a hollow digon, cf. Figure 7.18(a,b,c).
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We note that in the absence of internal leaves, the only forbidden con-
figurations are the hollow digons.

The proof of Proposition 7.4.9 will require some technical preparations,
see Definition 7.4.10 and Lemma 7.4.11 below.

Definition 7.4.10. We denote by G the plabic graph obtained from G by
repeatedly collapsing all collapsible trees. It is not hard to see that G is
uniquely defined.

Lemma 7.4.11. Let G be a plabic graph such that G has no internal leaves,
other than lollipops. Let G′ be a plabic graph obtained from G by a local
move. Assume that this move is not a square move (M1) where one of the

vertices of the square (in G) is the root of a collapsible tree. Then G
′
has no

internal leaves, other than lollipops. Moreover, G and G
′
are either equal

to each other or related by a single local move.

Proof. If the changes resulting from the local move G→ G′ occur within a

collapsible tree, then the tree remains collapsible, so G
′
= G. Otherwise, the

same move can be applied in G, yielding G
′
(and not creating any leaves).

�

Proof of Proposition 7.4.9. The implication (ii)⇒(i) is immediate. Let
us establish (i)⇒(ii). Assume that G is not reduced. Then there exists a
sequence of plabic graphs

(7.4.1) G = G0, G1, . . . , GN

in which each pair (Gi, Gi+1) is related by a local move and moreover GN

contains a forbidden configuration from Figure 7.18.

Case 1: the sequence (7.4.1) does not include a square move Gk
(M1)−→ Gk+1

where one of the vertices of the square in Gk is the root of a collapsible tree.
Repeatedly applying Lemma 7.4.11, we conclude that the graphs Gi do not
contain internal leaves, other than lollipops. Moreover, for each i, the plabic
graphs Gi and Gi+1 either coincide or are related via a single local move. It
is furthermore easy to see that since GN contains a forbidden configuration,
then the same must be true for GN . That is, GN contains a hollow digon.
We conclude that G = G0 = G0 is connected by local moves that do not
create internal leaves to a plabic graph GN containing a hollow digon.

Case 2: the sequence (7.4.1) includes a square move Gk
(M1)−→ Gk+1 in which

one of the vertices of the square in Gk is the root of a collapsible tree. Let
(Gk, Gk+1) be the first such occurrence (i.e., the one with the smallest k).
Repeatedly applying Lemma 7.4.11, we conclude that G = G0 is related to
Gk via local moves that do not create internal leaves. Moreover, Gk contains
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a square configuration in which one of the vertices of the square is bivalent.
Removing this vertex using (M2) and contracting the resulting edge yields
a bicolored hollow digon, and we are done. �

The most fundamental result concerning reduced plabic graphs is their
classification up to move equivalence (cf. Remark 7.4.3), to be given in
Theorem 7.4.25 below. To state this result, we will need some preparation.

Definition 7.4.12. A trip τ in a plabic graph G is a directed walk along
the edges of G that either begins and ends at boundary vertices (with all
intermediate vertices internal), or is a closed walk entirely contained in the
interior of the disk, which obeys the following rules of the road :

• at a black vertex, τ always makes the sharpest possible right turn;

• at a white vertex, τ always makes the sharpest possible left turn.

If the trip begins and ends at boundary vertices we call it a one-way trip;
if it is a closed walk entirely contained in the interior of the disk, we call it
a roundtrip.

The endpoints of a one-way trip may coincide with each other. For
example, the trip corresponding to a lollipop rooted at a vertex i starts and
ends at i.

Remark 7.4.13. Just as different countries have different rules regarding
which side of the road one should drive on, different authors make conflict-
ing choices for the rules of the road for plabic graphs. In this book, we
consistently use the convention chosen in Definition 7.4.12.

Remark 7.4.14. The notion of a trip and the condition of being reduced
have appeared in the study of dimer models in statistical mechanics, wherein
trips have been called zigzag paths [14]. Reduced plabic graphs were called
“marginally geometrically consistent” in [4, Section 3.4], and were said to
“obey condition Z” in [3, Section 8].

Remark 7.4.15. For any edge e in G, there is a unique trip traversing e
in each of the two directions. It may happen that the same trip traverses e
twice (once in each direction).

Exercise 7.4.16. Show that one-way trips starting at different vertices
terminate at different vertices.

Exercise 7.4.17. Let G(D) be a plabic graph associated to some wiring
diagram D, see Example 7.2.4 and Figure 7.9. Show that the trips starting
at the left side of G(D) follow the pattern determined by the strands of D,
while the trips starting at the right side of G(D) proceed horizontally to
the left. Describe the trips in a plabic graph associated to a double wiring
diagram.



20 7. Plabic graphs

Definition 7.4.18. Let G be a plabic graph with b boundary vertices. The
trip permutation πG : {1, . . . , b} → {1, . . . , b} is defined by setting πG(i) = j
whenever the trip originating at i terminates at j. We will mostly use the
one-line notation πG = (πG(1), . . . , πG(b)) to represent these permutations.

To illustrate, in Figure 7.1(a), we have πG = (3, 4, 5, 1, 2).

Exercise 7.4.19. Show that move-equivalent plabic graphs have the same
trip permutation.

The notion of a trip permutation can be further enhanced to construct
finer invariants of local moves. For example, we can record, in addition
to the trip permutation, the suitably defined winding number of each trip.
These winding numbers do not change under local moves (with one subtle
exception, cf. Figure 7.34 below). A more powerful invariant associates to
any plabic graph a particular (transverse) link, see [9].

Definition 7.4.20. A decorated permutation π̃ on b letters is a permutation
of the set {1, . . . , b} together with a decoration of each fixed point by either
an overline or an underline. In other words, for every i, we have

π̃(i) ∈ {i, i} ∪ {1, . . . , b} \ {i}.

An example of a decorated permutation on 6 letters is (3, 4, 5, 1, 2, 6).

Exercise 7.4.21. Show that the number of decorated permutations on b

letters is equal to b!
∑b

k=0
1
k! .

The following statement will be proved in Section 7.7.

Proposition 7.4.22. Let G be a reduced plabic graph. If πG(i) = i, then
the connected component of G containing the boundary vertex i collapses to
a lollipop.

In Proposition 7.4.22, the requirement that G is reduced cannot be
dropped, see Figure 7.20.

i

Figure 7.20. A non-reduced plabic graph G with πG(i) = i, cf. Fig-
ure 7.18(d). The component containing i is not collapsible.

Definition 7.4.23. Let G be a reduced plabic graph with b boundary ver-
tices. The decorated trip permutation associated with G is defined as follows:

π̃G(i) =











πG(i) if πG(i) 6= i;

i if G contains a tree collapsing to a white lollipop at i;

i if G contains a tree collapsing to a black lollipop at i.
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Figure 7.21 shows two reduced plabic graphs with the same decorated
trip permutation (3, 4, 5, 1, 2, 6).

1 2

3

4

5

6

1 2

3

4

5

6

Figure 7.21. Two reduced plabic graphs sharing the same decorated
trip permutation (3, 4, 5, 1, 2, 6). Cf. Figure 7.1(b).

Exercise 7.4.19 can be strengthened as follows.

Exercise 7.4.24. The decorated trip permutation of a reduced plabic graph
is invariant under local moves.

We will later show (see Corollary 7.10.4) that for each decorated permu-
tation π̃ on b letters, there exists a reduced plabic graph whose decorated
trip permutation is π̃.

Crucially, the move-equivalence class of a reduced plabic graph is com-
pletely determined by its decorated trip permutation:

Theorem 7.4.25 (Fundamental theorem of reduced plabic graphs). Let G
and G′ be reduced plabic graphs. The following statements are equivalent:

(1) G and G′ are move-equivalent;

(2) G and G′ have the same decorated trip permutation.

To illustrate, the two reduced plabic graphs shown in Figure 7.21 have
the same decorated trip permutation and consequently are move-equivalent.

The statement (1)⇒(2) in Theorem 7.4.25 is easy, cf. Exercise 7.4.24.
The converse implication (2)⇒(1) is much harder. In Section 7.7, we give
a proof of this implication that utilizes D. Thurston’s machinery of triple
diagrams, which is presented in Sections 7.5–7.6.

A very intricate argument justifying the implication (2)⇒(1) was given
in A. Postnikov’s original preprint [21, Section 13]. Another proof of Theo-
rem 7.4.25, involving some difficult results about plabic tilings (and relying
on Theorem 7.13.4 below), was given by S. Oh and D. Speyer [20].
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Corollary 7.4.26. Let π be a permutation on b letters. Consider all plabic
graphs G without internal leaves (other than lollipops) whose trip permuta-
tion is π; in particular, G has b boundary vertices. Among all such plabic
graphs G, the reduced ones are precisely those that have the smallest number
of faces.

Proof. Local moves do not change the number of faces. It follows by The-
orem 7.4.25 that all reduced plabic graphs with a given decorated trip per-
mutation have the same number of faces.

Changing the color of a lollipop transforms a reduced plabic graph into
another reduced graph with the same number of faces and the same trip
permutation (but with different decoration). Therefore all reduced plabic
graphs G with π(G) = π have the same number of faces.

It remains to show that if G is not reduced and has no internal leaves
other than lollipops, then there exists a plabic graph G′ with π(G′) = π
and with fewer faces than G. We note that under our assumptions on G,
Proposition 7.4.9 applies, so G can be transformed by local moves that do
not create internal leaves into a plabic graph G′′ containing a hollow digon.
We now claim that G′′ can be replaced by a plabic graph G′′′ (not move-
equivalent to G′′) such that G′′ and G′′′ have the same trip permutation but
G′′′ has fewer faces than G′′. The recipe for constructing G′′′ is as follows.
If the vertices of the hollow digon in G′′ are of the same color, then remove
one of the sides of the digon (keeping its vertices) to get G′′′. If, on the other
hand, the vertices of the digon have different colors, then remove both sides
of the digon; if one of the vertices was bivalent, then remove it as well. It
is straightforward to check that in each case, the trip permutation does not
change whereas the number of faces decreases by 1 or 2. �

In Corollary 7.10.5, we will give a formula for the number of faces in a
reduced plabic graph in terms of the associated decorated trip permutation.

Remark 7.4.27. In Corollary 7.4.26, the requirement that G has no inter-
nal leaves cannot be dropped. For example, the graph in Figure 7.20 has a
single face but is not reduced.

Remark 7.4.28. Some authors call a plabic graph reduced if it has the
smallest number of faces among all graphs with a given decorated trip
permutation, cf. Corollary 7.4.26. If one adopts this definition, then the
graph G in Figure 7.20 becomes reduced. This leads to a failure of Propo-
sition 7.4.22, since the component of G attached to the boundary vertex i
does not collapse to a lollipop.

Another reason to treat this kind of plabic graph G as non-reduced will
arise in the context of triple diagrams, cf. Section 7.7. While reduced plabic
graphs should correspond to minimal triple diagrams (see Theorem 7.7.3),
the triple diagram corresponding to G is not minimal.
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7.5. Triple diagrams and normal plabic graphs

Triple diagrams (or triple crossing diagrams), introduced by D. Thurston
in [24], are planar topological gadgets closely related to plabic graphs. Our
treatment of triple diagrams in Sections 7.5–7.6 is largely based on [24].

Definition 7.5.1. Consider a collection X of oriented intervals and/or cir-
cles immersed into a disk D. Their images are collectively called strands.
The images of immersed intervals (resp., circles) are the arcs (resp., closed
strands) of X. A face of X is a connected component of the complement of
the union of the strands within D. We call X a triple diagram if

• the preimage of each point in D consists of either 0, 1, or 3 points; in the
latter case of a triple point, the three local branches intersect transversally
in the interior of D;

• the endpoints of arcs are distinct points located on the boundary ∂D;
each arc meets the boundary transversally;

• the union of the strands and the boundary of the disk is connected; this
ensures that each face is homeomorphic to an open disk;

• the strand segments lying on the boundary of each face are oriented
consistently (i.e., clockwise or counterclockwise); in particular, as we
move along the boundary, the sources (endpoints where an arc runs away
from ∂D) alternate with the targets (where an arc runs into ∂D).

Each triple diagram, say with b arcs, comes with a selection of b points
on ∂D (called boundary vertices) labeled 1, . . . , b in clockwise order. There
is one such boundary vertex within every other segment of ∂D between two
consecutive arc endpoints. Specifically, we place boundary vertices so that,
moving clockwise along the boundary, each boundary vertex follows (resp.,
precedes) a source (resp., a target). See Figure 7.22.

1 2

3

4

5

Figure 7.22. A triple diagram X with the strand permutation πX = (3, 4, 5, 1, 2).

Triple diagrams are considered up to smooth isotopy among such dia-
grams. This makes them essentially combinatorial objects: 6-valent/uni-
valent directed graphs with some additional structure.
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Remark 7.5.2. In [24], the definition of a triple diagram does not include
the restriction appearing in Definition 7.5.1 that requires the union of the
strands and the boundary ∂D to be connected. In the terminology of [24],
all our triple diagrams are connected.

Remark 7.5.3. In order to ensure consistent orientations along the face
boundaries, the orientations of strands must alternate between “in” and
“out” around each triple point. Given a triple diagram with unoriented
strands, we can satisfy this condition as follows: start anywhere and prop-
agate out by assigning alternating orientations around vertices.

Definition 7.5.4. Let X be a triple diagram with b boundary vertices
(hence b arcs). For each boundary vertex i, let si (resp., ti) denote the
source (resp., target) arc endpoint located next to i on the boundary of D.

The strand permutation πX is defined by setting πX(i) = j whenever the
arc originating at si ends up at tj. Thus, the strand permutation describes
the connectivity of the arcs. See Figure 7.22.

We will soon see (cf. Definition 7.6.8 below) that any permutation can
arise as a strand permutation of a triple diagram.

Just as the local moves on plabic graphs preserve the (decorated) trip
permutation (see Exercise 7.4.24), there is a notion of a local move on triple
diagrams that keeps the strand permutation invariant.

Definition 7.5.5. We say that two triple diagrams X and X
′ are move-

equivalent to each other, and write X ∼ X
′, if one can get between X and X

′

via a sequence of swivel moves shown in Figure 7.23. (These moves are
called 2↔ 2 moves in [24].)

Figure 7.23. The swivel move replaces one of these fragments of a
triple diagram by the other fragment, then smooths out the strands.
The orientation of each strand on the left should match the orientation
of the strand on the right that has the same endpoints.

Remark 7.5.6. The connectivity of strands on both sides of Figure 7.23 is
the same, so the strand permutation is invariant under the swivel move.

We will soon see that triple diagrams are essentially cryptomorphic to
plabic graphs—or more precisely, to the subclass of normal plabic graphs
defined below.
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Definition 7.5.7. We say that a plabic graph G is normal if the coloring
of its internal vertices is bipartite, all white vertices in G are trivalent, and
each boundary vertex is adjacent to a black vertex. See Figure 7.24.

1 2

3

4

5

Figure 7.24. A normal plabic graph G. This graph was obtained from
the one in Figure 7.1(a) by inserting several bivalent black vertices.

Remark 7.5.8. Since a normal plabic graph does not have white leaves, it
cannot contain a tree that collapses to a white lollipop. Therefore, in the
case of normal graphs, there is no need to decorate the trip permutation.

Definition 7.5.9. The triple diagram X(G) associated to a normal plabic
graph G is constructed as follows. To each trip in G—either a one-way trip
or a roundtrip—we associate a strand in the ambient disk D by slightly
deforming the trip, as shown in Figure 7.25, so that the strand

• runs along each edge of the trip, keeping the edge on its left,

• makes a U-turn at each black internal leaf (a vertex of degree 1);

• ignores black vertices of degree 2,

• makes a right turn (as sharp as possible) at each other black vertex, and

• makes a left turn at each white vertex v along the trip, passing through v.

This collection of strands forms a triple diagram X(G), see Figure 7.26 and
Lemma 7.5.10.

Figure 7.25. Constructing a triple diagram from a normal plabic graph.
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Figure 7.26. Left: A normal plabic graph G (cf. Figure 7.24) together
with the associated triple diagram X = X(G). Conversely, G = G(X).
Right: The triple diagram X = X(G). The trip permutation of G and
the strand permutation of X are equal: πG = πX = (3, 4, 5, 1, 2).

Lemma 7.5.10. The diagram X(G) associated to a normal plabic graph G
as in Definition 7.5.9 is a triple diagram.

Proof. Since the white vertices in G are trivalent, X(G) has a triple point
for every white vertex in G, and no other crossings. We need to check that
X = X(G) is connected, or more precisely, that the union of the strands and
the boundary of the disk is connected, as required by Definition 7.5.1.

Let us ignore any component consisting of a single black vertex which is
adjacent only to boundary vertices (e.g. a black lollipop), as the correspond-
ing strands are clearly connected to the boundary of the disk. Consider any
other strand S in X. By construction, S passes through at least one white
vertex of the (bipartite) graph G, which is a triple point on S. It therefore
suffices to show that every triple point in X is connected to the boundary
within X (i.e., via strand segments of X).

Let u be a k-valent black vertex in G and let v1, . . . , vk be the white or
boundary vertices adjacent to u. The strands of X that run along the k edges
ofG incident to u cyclically connect the triple points v1, . . . , vk to each other.
(If the list v1, . . . , vk includes boundary vertices, then the corresponding
strand segments are connected via the boundary.) We conclude that for any
two-edge path v −−u−−v′ in G connecting two white or boundary vertices
v and v′ via a black vertex u, the triple (or nearby boundary) points v
and v′ are connected within X. It follows that for any path in the bipartite
graph G connecting a white vertex v to the boundary, there is a path in X

that connects the triple point v to the boundary.

It remains to note that by Definition 7.1.1, any white vertex v in G is
connected by a path in G to some boundary vertex. �
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We now go in the opposite direction, from a triple diagram to a normal
plabic graph.

Definition 7.5.11. The normal plabic graph G = G(X) associated to a
triple diagram X is constructed as follows. Place a white vertex of G at
each triple crossing in X. Treat each boundary vertex of X as a boundary
vertex of G. For each region R of X whose boundary is oriented counter-
clockwise, place a black vertex in the interior of R and connect it to the
white and boundary vertices lying on the boundary of R, so that each white
(resp., boundary) vertex is trivalent (resp., univalent). The resulting plabic
graph G=G(X) is normal by construction.

Proposition 7.5.12. The maps G 7→ X(G) and X 7→ G(X) described in
Definitions 7.5.9 and 7.5.11 are mutually inverse bijections between normal
plabic graphs and triple diagrams with the same number of boundary ver-
tices. The trip permutation πG of a normal graph G is equal to the strand
permutation πX of the corresponding triple diagram X = X(G).

Proof. Starting from a normal graph G, let us decompose it into star-
shaped subgraphs Sv each of which includes a black vertex v, all the edges
incident to v, and the endpoints of those edges. Each of these stars will
give rise to a fragment of the triple diagram X(G) that “hugs” the edges
of Sv and whose boundary is oriented counterclockwise (looking from Sv).
Moreover, X(G) is obtained by stitching these fragments together. Applying
the map X 7→ G(X) to X(G) will recover the original graph G.

One similarly shows that if we start from a triple diagram X, construct
the normal graph G(X), and then apply the map G 7→ X(G) to G(X), then
we recover the original triple diagram X. The key property to keep in mind
is that each face of X is homeomorphic to an open disk.

The strands of X run alongside the trips of G, implying that πX=πG. �

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

Figure 7.27. The six reduced normal plabic graphs with three bound-
ary vertices, shown together with the corresponding triple diagrams, cf.
Definition 7.5.9. The associated trip (resp., strand) permutations are
precisely the six permutations of {1, 2, 3}.

In Theorem 7.7.3, we will characterize triple diagrams that correspond,
under the bijection of Proposition 7.5.12, to reduced normal plabic graphs.
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The bijective correspondence between triple diagrams and normal plabic
graphs can be used to translate the move equivalence of triple diagrams
(under the swivel moves, see Definition 7.5.5) into a version of the move
equivalence of plabic graphs (cf. Definition 7.1.3) formulated entirely within
the setting of normal plabic graphs:

Definition 7.5.13. The (normal) urban renewal move is the local trans-
formation of normal plabic graphs described in Figure 7.28. (This differs
slightly from Definition 2.5.2. In this chapter, we will consistently use the
new definition.) Unlike the square move (M1), the normal urban renewal
move does not require the vertices of the square to be trivalent. They can
even be bivalent, see Figure 7.29.

←→

Figure 7.28. Normal urban renewal replaces one of these configura-
tions by the other. In contrast to the square move of Figure 7.2, where
each of the four vertices of the quadrilateral face must have exactly one
incident edge leading outside the configuration, we allow each black ver-
tex of the quadrilateral face to have 0 or more incident edges leading
outside the configuration. Cf also Figure 7.29.

←→

Figure 7.29. Special case of normal urban renewal: one of the black
vertices is not incident to any edges leading outside the configuration.

Definition 7.5.14. The normal flip move is the local transformation shown
in Figure 7.30. Ignoring the bivalent black vertices, this local move is the
same as the (white) flip move for trivalent plabic graphs.

Figure 7.30. The normal flip move.
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Lemma 7.5.15. Let G and G′ be normal plabic graphs related via a sequence
of normal urban renewal moves and normal flip moves. Then G ∼ G′.

Proof. Each instance of normal urban renewal can be expressed as a square
move (M1) together with (M2) and/or (M3) moves. Each normal flip move
can be expressed as a combination of (M2) and (M3) moves. �

Theorem 7.5.16. Let G and G′ be normal plabic graphs and let X = X(G)
and X

′ = X(G′) be the corresponding triple diagrams. Then the following
are equivalent:

• G and G′ are related via a sequence of urban renewal moves and normal
flip moves;

• X and X
′ are move-equivalent (i.e., related via swivel moves).

Proof. Figure 7.31 shows how one can translate back-and-forth between

• an arbitrary swivel move in a triple diagram and

• either an urban renewal move or the normal flip move in the correspond-
ing normal plabic graph.

The latter choice depends on the orientations of the strands involved. �

(a) (b)

Figure 7.31. Depending on the orientations of the strands involved, a
swivel move in a triple diagram may correspond to (a) an urban renewal
move or (b) a normal flip move in the associated normal plabic graph.

We next generalize Definition 7.5.9 to arbitrary plabic graphs.

Definition 7.5.17. Let G be a plabic graph (not necessarily normal).
The generalized triple diagram X(G) associated to G is defined as follows.
(To be precise, we define X(G) up to move equivalence.) The recipe is es-
sentially the same as in Definition 7.5.9, with the following additional rules
dealing with non-trivalent white vertices:

• at a univalent white vertex in G, make a U-turn, see Figure 7.32;

• at a bivalent white vertex in G, go straight through, see Figure 7.32;

• at a white vertex v of degree ≥ 4, replace v by a trivalent tree (with
white vertices); then, at each of the vertices of the tree, apply the rule
shown in Figure 7.25 on the right. See Figure 7.33.
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Although the trivalent tree replacing v is not unique, all these trees are
related to each other by flip moves, cf. Figure 7.12. Hence all triple diagrams
constructed from them are move-equivalent to each other, cf. Figure 7.31(b)
(remove the black vertex in the center).

Figure 7.32. Constructing a triple diagram around a white vertex of
degree 1 or 2 in a general plabic graph.

−→ −→

Figure 7.33. Constructing a triple diagram around a high-degree white
vertex in a general plabic graph. We first replace this vertex by a
trivalent tree, then construct the corresponding fragment of the triple
diagram following the rule shown in Figure 7.25.

The following statement is immediate from the definitions.

Lemma 7.5.18. Let G be a plabic graph. If the union of the strands in X(G)
and the boundary ∂D is connected, then X(G) is a triple diagram in the sense
of Definition 7.5.1.

The connectedness condition in Lemma 7.5.18 does not hold in general.
To be concrete, if G contains a cycle C all of whose vertices are black, then
the strands located inside C are disconnected from the rest of X(G).

Remark 7.5.19. Unfortunately, the extension of the definition of the triple
diagram X(G) described in Definition 7.5.17 does not allow a straightforward
generalization of Theorem 7.5.16: move-equivalent plabic graphs do not
necessarily yield move-equivalent triple diagrams. The only problematic
local move is the one shown in Figure 7.34: contracting an edge connecting
a white internal leaf to a white vertex of degree ≥ 3 removes a triple point
in the associated triple diagram, thereby altering its move equivalence class.

This last complication prompts the following definition.

Definition 7.5.20. Let G and G′ be plabic graphs. We write G ◦∼ G′

if G and G′ can be related to each other via a sequence of local moves
(M1)–(M3) that does not include an instance of the (M3) move shown in
Figure 7.34, cf. Remark 7.5.19.
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←→

Figure 7.34. Contracting (or decontracting) an edge that connects a
white internal leaf to a white vertex of degree ≥ 3 produces a move-
inequivalent triple diagram.

Lemma 7.5.21. Let G and G′ be plabic graphs such that G ◦∼ G′. Then
the corresponding (generalized) triple diagrams X(G) and X(G′) are move
equivalent (i.e., related to each other via swivel moves).

We note that X(G) and X(G′) are defined up to move equivalence, so
the statement that they are move-equivalent to each other makes sense.

Proof. It is straightforward to verify, case by case, that each of the local
moves (M1)–(M3), with the exception of the move shown in Figure 7.34,
either leaves the associated (generalized) triple diagram invariant or applies
a swivel move to it (more precisely, to any of the possible diagrams obtained
using the construction in Definition 7.5.17). To be specific:

• a square move (M1) translates into a swivel move, see Figure 7.31(a);

• both the move (M2) and a black (de)contraction move (M3) leave the
triple diagram invariant (up to isotopy);

• a white (de)contraction move (M3), other than the instance shown in
Figure 7.34, translates into a swivel move, see Figure 7.31(b) (remove
the black vertex in the center). �

Corollary 7.5.22. Let G and G′ be normal plabic graphs. The following
are equivalent:

(1) G ◦∼ G′;

(2) G and G′ are related via a sequence of normal urban renewal moves
and normal flip moves;

(3) X(G) and X(G′) are move-equivalent (in the sense of Definition 7.5.5).

Proof. The implication (2)⇒(1) is an easy enhancement of Lemma 7.5.15.
The equivalence (2)⇔(3) was established in Theorem 7.5.16. The implica-
tion (1)⇒(3) was proved in Lemma 7.5.21. �

We note the similarity between Corollary 7.5.22 and Theorem 7.3.5.
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7.6. Minimal triple diagrams

Definition 7.6.1. A triple diagram is called minimal if it has no more triple
points than any other triple diagram with the same strand permutation.

We will show in Section 7.7 that minimal triple diagrams are the natural
counterparts of reduced normal plabic graphs.

Much of this section is devoted to the proof of the following key result.

Theorem 7.6.2. Any two minimal triple diagrams with the same strand
permutation are move-equivalent to each other.

Lemma 7.6.3. If a triple diagram X is minimal, then so is every triple
diagram move-equivalent to X.

Proof. It is easy to see that a swivel move preserves both the number of
triple points and the strand permutation. The claim follows. �

We next describe certain “bad features” (of a triple diagram) and show
that they cannot occur in a minimal triple diagram.

Definition 7.6.4. A strand in a triple diagram that intersects itself forms
a monogon. A pair of strands that intersect at two points x and y form
either a parallel or anti-parallel digon, depending on whether their segments
connecting x and y run in the same or opposite direction, see Figure 7.35.
We use the term badgon to refer to either a monogon or a parallel digon.

x

y

x

y

Figure 7.35. A monogon, a parallel digon, and an anti-parallel digon.
The actual picture will contain (potentially many) additional strands
and intersections.

Lemma 7.6.5. A triple diagram without badgons has no closed strands.

Proof. Let X be a triple diagram without badgons. Since X does not con-
tain monogons, no strand of X can intersect itself. Suppose that X contains
a closed strand S. Let T be another strand of X intersecting S at points x
and y; such T exists since X must be connected to the boundary ∂D. Then
the segment of T between x and y together with one of the segments of S
connecting x and y form a parallel digon, which is a contradiction. �
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Lemma 7.6.6. A minimal triple diagram does not contain badgons. There-
fore (cf. Lemma 7.6.5) it does not contain closed strands.

Proof. Let X be a triple diagram containing a monogon, i.e., a strand S
with a self-intersection at a triple point v. Construct the triple diagram X

′

by deformingX around v so that S “spins off” a closed strand while the triple
point disappears, see Figure 7.36. (If the spun-off portion is disconnected
from the rest of X, then remove it altogether.) The triple diagram X

′ has the
same strand permutation as X but fewer triple points; thus X is not minimal.

Figure 7.36. In the presence of a monogon, we can reduce the number
of triple points while keeping the same strand permutation. The triple
diagram may contain additional strands intersecting the monogon, as
well as additional points of self-intersection.

Now suppose that X does not contain monogons but does contain two
strands S and T that form a parallel digon. Say, S and T contain seg-
ments S and T that run from a triple point x to a triple point y. Let U
(resp., V ) be the third strand passing through x (resp., y). We then deform
X around both x and y by smoothing each of the two triple points: the
strands U and V continue to go straight through, whereas the endpoints
of S (resp., T ) get connected to T (resp., S). Thus, the strands S and T
swap their segments S and T with each other (with appropriate smooth-
ings), the overall connectivity (i.e., the strand permutation) is preserved,
and the triple points at x and y disappear. (If the diagram becomes discon-
nected from ∂D, then remove the disconnected portion.) We then conclude
that X was not minimal. �

Definition 7.6.7. Let S be an arc in a triple diagram, i.e., a strand whose
endpoints s and t lie on the boundary of the ambient disk D. We call S
boundary-parallel if it runs along a segment I of the boundary ∂D between
s and t (in either direction), so that every other strand with an endpoint
inside I runs directly to or from S, without any triple crossings in between.
See Figure 7.37.

S

I
s t

Figure 7.37. A boundary-parallel strand S in a triple diagram.

We next describe a particular way to construct, for any given permuta-
tion π, a triple diagram whose strand permutation is π.
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Definition 7.6.8. Let π be a permutation of b letters 1, . . . , b. A triple
diagram in the disk D is called standard (for π) if it can be constructed
using the following recursive process. (The process involves some choices,
so a standard diagram for π is not unique.)

We place b boundary vertices on the boundary ∂D and label them
1, . . . , b clockwise. Next to each boundary vertex v, we mark two endpoints
of the future strands: a source endpoint that precedes v in the clockwise
order and a target endpoint that follows v in this order. We know which
source is to be matched to which target by the strand permutation π. Each
such pair of endpoints divides the circle ∂D into two intervals. Let us par-
tially order these 2b intervals by inclusion and select a minimal interval I
with respect to this partial order.

We start constructing the triple diagram by running a boundary-parallel
strand S along the interval I, introducing a triple crossing for each pair of
strands that need to terminate in the interior of I, as shown in Figure 7.37.
There will always be an even number (possibly zero) of strands to cross
over, so the construction will proceed without a hitch.

Let D′ be the disk obtained from D by removing the region between the
boundary segment I and the strand S together with a small neighborhood
of S; so D′ is the shaded region in Figure 7.37. We accordingly remove S
and its endpoints from the original pairing of the in- and out-endpoints, and
swap each pair that S crossed over. This yields 2(b − 1) endpoints on the
boundary of D′; note that the in- and out-endpoints alternate, as before.
We then determine the new pairing of these endpoints (thus, a new strand
permutation, after an appropriate renumbering) and recursively continue
the process in D′ until the desired (standard) triple diagram is constructed.

We shall keep in mind that a standard triple diagram is constructed by
choosing a sequence of minimal intervals.

Exercise 7.6.9. For each of the three pairs of triple diagrams shown below,
demonstrate that the two diagrams are move-equivalent to each other, i.e.,
related via a sequence of swivel moves.

(7.6.1)

(7.6.2)

(7.6.3)

(In each of the three cases, the central section can involve an arbitrary
number of repetitions.)
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Exercise 7.6.10. Use (7.6.3) to prove the move equivalence (7.6.4) below:

(7.6.4)

S

U

←→

Lemma 7.6.11. Let X be a triple diagram such that no triple diagram move-
equivalent to X contains a monogon. Then the following statements hold:

(i) No triple diagram move-equivalent to X has a badgon or a closed strand.

(ii) Let I be a minimal interval for the strand permutation associated with X.
Then X is move-equivalent to a diagram X

′ in which the strand connect-
ing the endpoints of I is boundary-parallel along I.

Proof. We will simultaneously prove statements (i) and (ii) by induction
on the number of triple points in X. Thus, we assume that both (i) and (ii)
hold for triple diagrams that have fewer triple points than X.

We first prove (i). Suppose that a triple diagram X
′ ∼ X contains (non-

self-intersecting) strands S and U forming a parallel digon. The strand S
cuts the disk D into two regions. Let R be the region containing the digon,
with a small neighbourhood of S removed. Since the boundaries of the faces
of X′ are consistently oriented, the same is true for the portion of X′ con-
tained inside R, so this portion can be viewed as a (smaller) triple diagram.
Suppose that U bounds a minimal interval within S (viewed as a portion of
the boundary of R). Then by the induction assumption, U can be moved
to be boundary-parallel to S. Since S and U are co-oriented, we get the
picture on the left-hand side of (7.6.4) (with U running horizontally at the
bottom). Applying (7.6.4), we obtain a monogon, a contradiction.

If the subinterval of S cut out by U is not minimal, then there is a
strand T that cuts across S twice, creating a minimal interval within S and
forming a digon inside R. We may assume that this digon is anti-parallel
(or else replace U by T and repeat). By the induction assumption, we can
apply swivel moves inside R to make T boundary-parallel to S. We then
apply (7.6.1) to remove the digon, as shown in Figure 7.38. Repeating this
operation if necessary, we obtain a triple diagram in which U bounds a min-
imal interval within S; we then argue as above to arrive at a contradiction.

S T R

I

Figure 7.38. Removing double intersections with S.
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Thus, no triple diagram X
′ ∼ X contains badgons. By Lemma 7.6.5,

we conclude that any such X
′ does not contain closed strands either. This

completes the induction step for statement (i).

We now proceed to proving statement (ii). In addition to the induction
assumption for (ii), we may assume that neither X nor any triple diagram
move-equivalent to X contains a badgon or a closed strand.

Let S be the strand connecting the endpoints of the minimal interval I.

Step 1: Removing double intersections with S, see Figure 7.38. Let R be the
region between the strand S and the interval I, with a small neigborhood
of S removed. Suppose there is a strand that intersects S more than once.
Among such strands, take one that cuts out a minimal interval along the
boundary of R. Let T denote the segment of this strand contained in R. The
portion of X contained inside R has fewer triple crossings than X, so by the
induction assumption, we can make T boundary-parallel to S by applying
swivel moves inside R. Now T and S form a (necessarily anti-parallel) digon,
which we then remove using (7.6.1). We repeat this procedure until there
are no strands left that intersect S more than once. Since the number of
triple points along S decreases each time, the process terminates.

Step 2: Combing out the triple crossings. At this stage, no strand crosses
S more than once. Since I is minimal, no strand has both ends at I. Since
X contains no closed strands, every (non-self-intersecting) strand appearing
between S and I must start or end at a point in I and cross S. Suppose that
S is not boundary-parallel. Then there exists a strand T with an endpoint
at I that passes through a triple point before hitting S. Among all such T ,
choose the one with the leftmost endpoint along I, cf. Figures 7.39 and 7.40
on the left. Let R be the part of the region between I and S that lies to the
right of any strand T ′ located to the left of T . (By our choice of T , all such
strands T ′ run directly from I to S, with no crossings in between.) As we
have eliminated all double intersections with S, the interval corresponding
to T (looking to the left) is minimal inside R. We can therefore use the
induction assumption inside R to make T boundary-parallel.

What we do next depends on the orientation of T relative to S. If T is
anti-parallel to S, as in Figure 7.39, then we apply (7.6.2) to make T run
directly to S. If T is parallel to S, as in Figure 7.40, then we apply (7.6.3).

We repeat this step until S is boundary-parallel. �

Lemma 7.6.12. For a triple diagram X, the following are equivalent:

(a) Any diagram X
′ move-equivalent to X does not contain a monogon.

(b) X is move-equivalent to any standard triple diagram with the same
strand permutation.

(c) X is minimal.

In particular, any standard triple diagram is minimal.
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R

S

T

S

T

S

T

Figure 7.39. Combing out the triple crossings: the anti-parallel case.

S

R

T

S

T

S

T

Figure 7.40. Combing out the triple crossings: the parallel case.

Proof. The implication (c)⇒(a) follows from Lemmas 7.6.3 and 7.6.6. To
prove the implication (a)⇒(b), choose a sequence of minimal intervals and
repeatedly apply Lemma 7.6.11. We have now established (c)⇒(b), so any
minimal triple diagram is move-equivalent to any standard triple diagram
with the same strand permutation. It follows by Lemma 7.6.3 that any
standard triple diagram is minimal, hence so is any diagram move-equivalent
to a standard one. Thus (b)⇒(c) is proved. �

Proof of Theorem 7.6.2. By Lemma 7.6.12, any two minimal triple di-
agrams with strand permutation π are move-equivalent to any standard
diagram with strand permutation π, and therefore to each other. �

Lemma 7.6.13. Let X and X
′ be triple diagrams related by a swivel move.

If X contains a badgon, then so does X
′.

Proof. We label the strands and the triple points involved in this swivel
move by a, b, c, d, and x, y, as shown in Figure 7.41.

a

a

b

b

cc

dd

x

y

a

a

b

b

c c

d d

Figure 7.41. A swivel move relating X and X
′.

If X contains a badgon that involves neither x nor y, then this badgon
persists in X

′.
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Suppose X contains a monogon whose self-intersection point is (say) x.
Thus, two of the strands {a, b, c} coincide. If a = c (resp., b = c), then the
same monogon persists in X

′ because in Figure 7.41, strands a and c (resp.,
b and c) intersect in both X and X

′.

If, on the other hand, a = b, then X
′ has a parallel digon, see Figure 7.42.

a

a

b

b

cc

dd

x

y

a

a

b

b

c c

d d

Figure 7.42. A monogon in X results in a parallel digon in X
′.

From now on, we can assume that there is no monogon in X. Suppose
X has a parallel digon whose two intersection points include x but not y.
The sides of this parallel digon are either {a, b} or {a, c} or {b, c}. The last
two cases are easy because such a parallel digon will persist in X

′, since the
strands a and c (resp., b and c) intersect in both X and X

′.

Now suppose that our parallel digon has sides a and b, see Figure 7.43 on
the left. (If the strands a and b go to the left and meet again there, then we
get the same picture but with the roles of x and y interchanged.) Note that
the end of strand a shown inside the digon must extend outside of it, but
it cannot intersect a, as this would create a monogon. So strand a must
intersect strand b again, see Figure 7.43 in the middle. Then, after the
swivel move, we get a parallel digon as shown in Figure 7.43 on the right.

Finally, suppose there is a parallel digon in X whose two intersection
points are x and y. We can assume it is oriented from x to y. The two arcs
of the parallel digon should come from the following list:

(aa) the arc along a from x to y;

(bb) the arc along b from x to y;

(cd) an arc leaving x along c, and returning to y along d (so c = d);

(cb) an arc leaving x along c, and returning to y along b (so c = b);

(bd) an arc leaving x along b, and returning to y along d (so b = d).

In case (bb), we get a closed strand; it will persist in X
′ and yield a badgon

by Lemma 7.6.5. In cases (cb) and (bd), we get a monogon, contradicting
our assumption. The remaining case is when the parallel digon has sides
(aa) and (cd), in which case we get a monogon in X

′. (The picture is like
Figure 7.42, with the roles of X and X

′ swapped and some strands relabeled.)
�
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Figure 7.43. Persistence of parallel digons under swivel moves.

Theorem 7.6.14. A triple diagram is minimal if and only if it has no
badgons.

Proof. The “only if” direction is Lemma 7.6.6. The “if” direction follows
from Lemma 7.6.13 and Lemma 7.6.12 (implication (a)⇒(c)). �

Lemma 7.6.15. Assume that a triple diagram X is not minimal. Then there
exists a diagram X

′ move-equivalent to X that contains a hollow monogon.

Proof. We will argue by induction on the number of faces in X. If this
number is 1 or 2, then the claim is vacuously true.

By Lemma 7.6.12, there exists X′ ∼ X such that X′ has a monogon. Let
M be the segment of a strand in X

′ that forms a monogon; we may assumeM
does not intersect itself except at its endpoints (or else replace M by its sub-
segment). If the monogon encircled byM is hollow, we are done. Otherwise,
consider the disk D◦ obtained by removing a small neighborhood of M from
the interior of the monogon. Let X

′
◦ denote the portion of X

′ contained
in D◦; this is a triple diagram with fewer faces than X

′ (or equivalently X).

The rest of the argument proceeds by showing that either we can apply
local moves to X

′
◦ to create a hollow monogon inside D◦ or we can apply

moves to reduce the number of faces inside the monogon encircled by M
(eventually producing a hollow monogon). If X′

◦ is not minimal, then the
induction assumption applies, so we can transform X

′
◦ (thus X

′ or X) into
a move-equivalent triple diagram containing a hollow monogon. Therefore,
we may assume that X

′
◦ is minimal. Let M◦ denote the interval obtained

from the boundary of D◦ by removing a point located near the vertex of
our monogon. Let I ⊂ M◦ be a minimal interval of the triple diagram X

′
◦.

Since this triple diagram is minimal, we can, by virtue of Lemma 7.6.12
(or Lemma 7.6.11), apply local moves insideD◦ to transform X

′
◦ into a triple

diagram in which the strand T connecting the endpoints of I is boundary-
parallel to I. Let us now look at the digon formed by T and the portion ofM
that runs along I. If this digon is anti-parallel, then we can push T outside
the monogon as in Figure 7.38, reducing the number of faces enclosed by M .
If, on the other hand, the digon is parallel, then we can use (7.6.4) to create
a hollow monogon. �
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7.7. From minimal triple diagrams to reduced plabic graphs

In this section, we use the machinery of triple diagrams and normal plabic
graphs to prove Proposition 7.4.22 and Theorem 7.4.25.

Lemma 7.7.1. A normal plabic graph contains no collapsible trees.

Proof. All internal leaves in a normal plabic graph G are black. Whatever
(M2)–(M3) moves we apply to a tree, it will always have a black leaf (so it
can’t collapse to a white root or lollipop), and it will always have a white
vertex of degree at least 3 (so it can’t collapse to a black root or lollipop).
�

Lemma 7.7.2. Let G be a non-reduced normal plabic graph. Then there
exists a plabic graph G′ ◦∼ G (cf. Definition 7.5.20) containing one of the
forbidden configurations shown in Figure 7.18.

Proof. Suppose G has an internal (necessarily black) leaf u that is not
a lollipop. Let v be the unique (white, trivalent) vertex adjacent to u.
This gives us a forbidden configuration as in Figure 7.18(d). (Note that by
Lemma 7.7.1, G has no collapsible trees.)

If, on the other hand, G has no such internal leaves, then by Proposi-
tion 7.4.9, G can be transformed, via local moves that do not create leaves,
into a graph containing a hollow digon. �

Recall that by Proposition 7.5.12, the map G → X(G) defined in Defi-
nition 7.5.9 gives a bijection between normal plabic graphs and triple dia-
grams with the same number of boundary vertices; moreover, this bijection
preserves the associated (resp., trip or strand) permutation.

Theorem 7.7.3. A normal plabic graph G is reduced if and only if the triple
diagram X(G) is minimal. Thus the map G 7→ X(G) restricts to a bijection
between reduced normal plabic graphs and minimal triple diagrams.

Proof. Suppose X(G) is not minimal. By Lemma 7.6.15, there is a triple di-
agram X

′∼X(G) such that X′ has a hollow monogon. By Proposition 7.5.12,
we have X

′=X(G′) for some normal plabic graph G′. Moreover, by Corol-
lary 7.5.22, G and G′ are move equivalent. The hollow monogon in X

′

corresponds in the normal graph G′ to one of the configurations shown in
Figure 7.44: either a hollow digon or a black leaf adjacent to a white triva-
lent vertex. Either way, G′ contains one of the forbidden configurations
from Figure 7.18 (cf. Lemma 7.7.1), so G is not reduced.

Going in the other direction, suppose that a normal plabic graph G is
not reduced. By Lemma 7.7.2, there exists G′ ◦∼ G containing a forbidden
configuration. By Lemma 7.5.21, the triple diagram X(G) is move-equivalent
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x

e

x

Figure 7.44. A hollow monogon in a triple diagram yields a forbidden
configuration in the corresponding normal plabic graph, cf. Figure 7.18.

to the (generalized) triple diagram X(G′). Since X(G) is connected, so
is X(G′). It follows by Lemma 7.5.18 that X(G′) is an honest triple diagram.

The remaining argument depends on the type of a forbidden configura-
tion present in G′. Since G is normal and G′ ◦∼ G, it follows that G′ has no
white leaves. IfG′ contains a digon whose vertices are of the same color, then
X(G′) has a closed strand; hence X(G′) is not minimal (by Lemma 7.6.6)
and neither is X(G). Finally, if G′ contains one of the configurations shown
in Figure 7.44, then X(G′) contains a monogon, hence is not minimal. �

Lemma 7.7.4. Let G be a reduced plabic graph that does not contain a
white lollipop, nor a tree that collapses to a white lollipop. Then G is move-
equivalent to a normal plabic graph.

See Figure 7.45.

Figure 7.45. A reduced plabic graph G and a normal plabic graph
move-equivalent to G.

Proof. We use induction on the number of faces of G. Note that each local
move keeps this number invariant. We begin by collapsing all collapsible
trees (cf. Definition 7.4.1) and removing all bivalent vertices. The resulting
plabic graph has no white leaves, since a white leaf would either be a lollipop
or else be adjacent to a black vertex of degree ≥ 3, which is impossible since
the plabic graph at hand is reduced and has no collapsible trees.

We then split each white vertex of degree≥ 4 into a tree made of trivalent
white vertices. After that, we insert a bivalent black vertex in the middle of
each edge with both endpoints white, as well as near each boundary vertex
connected to a white vertex. By an abuse of notation, we keep calling our
plabic graph G, even as it undergoes these and subsequent transformations.

It remains to contract the edges with both endpoints black to make the
graph bipartite. This step may however be problematic if such an edge e is
a loop connecting some black vertex v to itself. We will demonstrate that
this in fact cannot happen.
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If e encloses a face (i.e., there are no other vertices/edges of G inside e),
then we can insert a black vertex into e and obtain a double edge, con-
tradicting the fact that G is reduced. Now suppose that e encloses some
nontrivial subgraph of G. Let D′ be the region bounded by e. We split v
into two vertices v1 and v2 using an (M3) move, so that v1 stays incident
to e and to the edges located outside D′ whereas v2 is incident to the edges
inside D′. See Figure 7.46.

We thus obtain a subgraph G′, viewed as a plabic graph in D′ with a
single boundary vertex v1. The plabic graph G′ must be reduced, or else
G would not be. Moreover G′ has fewer faces than G. Also, G′ does not
collapse to a white lollipop (even if v2 is bivalent), because this would result
(after the collapse) in a forbidden configuration in G. (We note that G
has no collapsible trees.) Thus, the induction hypothesis applies, so we can
transform G′ via local moves into a normal graph G′′. Since G′′ is reduced,
its triple diagram X(G′′) must be minimal by Theorem 7.7.3. Given that
X(G′′) only has one in- and one out-endpoint, this means that X(G′′) consists
of a single strand connecting these endpoints to each other, with no triple
points. In other words, the normal graph G′′ is a black lollipop at v1. We
then contract it into v1, creating a loop enclosing a face, and arrive at a
contradiction with G being reduced. �

· · · · · ·

· · · · · ·

D′

v

e · · · · · ·

· · · · · ·

D′

v1

v2
G′

Figure 7.46. Excluding a loop e based at a black vertex v.

Proof of Proposition 7.4.22. Let G be a reduced plabic graph such that
πG(i)= i. We need to show that the connected component of G containing
the boundary vertex i collapses to a lollipop at i, cf. Definition 7.4.1.

Suppose otherwise. Without loss of generality, we can assume that G has
no trees collapsing to other lollipops either. Since G is reduced, Lemma 7.7.4
applies, so G is move-equivalent to a normal plabic graph G′. The trip per-
mutations ofG and G′ coincide with each other (by Exercise 7.4.19) and with
the strand permutation of the triple diagram X(G′) (by Proposition 7.5.12).
Since G is reduced, so is G′; hence X(G′) is minimal by Theorem 7.7.3.

Let d be the degree of the black vertex adjacent to the boundary ver-
tex i in G′. If d= 1, then there is a sequence of local moves relating the
component of G containing i to the black lollipop at i in G′. Since local
moves preserve the number of internal faces, and a black lollipop has no



7.7. From minimal triple diagrams to reduced plabic graphs 43

internal faces, no (M1) move appears in the sequence of moves. Therefore
this component must be a (collapsible) tree and we are done. If d = 2 (see
Figure 7.47 on the left), then πG(i)= i implies that X(G′) has a monogon, so
it cannot be minimal, cf. Lemma 7.6.6. If d ≥ 3, then we get a parallel digon
(see Figure 7.47 on the right), again contradicting the minimality of X(G′).
�

Figure 7.47. The vicinity of i in G′.

Proof of Theorem 7.4.25. Let G and G′ be reduced plabic graphs. If
G ∼ G′, then π̃G = π̃G′ by Exercise 7.4.24. We need to show the converse.

Let G and G′ be reduced plabic graphs such that π̃G = π̃G′ . If this
decorated permutation has a fixed point at some vertex i, then by Propo-
sition 7.4.22, after applying local moves if needed, both G and G′ have a
lollipop (of the same color) in position i. We can delete this lollipop in
both graphs; the resulting graphs are still reduced, and their decorated trip
permutations still coincide. So without loss of generality, we may assume
that π̃G = π̃G′ has no fixed points and correspondingly G and G′ have no
trees collapsing to lollipops. Applying local moves as needed, we can fur-
thermore assume, in light of Lemma 7.7.4, that both G and G′ are normal.
Since they are also reduced, Theorem 7.7.3 implies that the triple diagrams
X(G) and X(G′) are minimal. By Proposition 7.5.12, we moreover have
πX(G) = πG = πG′ = πX(G′). Invoking Theorem 7.6.2, we conclude that

X(G) and X(G′) are move-equivalent. Then by Corollary 7.5.22, G and G′

are move-equivalent as well. �

Remark 7.7.5. As we have seen, A. Postnikov’s theory of plabic graphs
[21] is closely related to D. Thurston’s theory of triple diagrams [24]. In
particular, reduced plabic graphs are essentially minimal triple diagrams
in disguise. While we have not discussed it here, there are some reduction
moves that can be repeatedly applied to a non-reduced plabic graph (resp.,
a non-minimal triple diagram) in order to—eventually—make it reduced
(resp., minimal). Here the two theories diverge: reduction moves for triple
diagrams preserve the strand permutation, but reduction moves for plabic
graphs do not preserve the trip permutation. In spite of that, reduction
moves for plabic graphs fit into the theory of the totally nonnegative Grass-
mannian, as they are compatible with its cell decomposition, cf. [21, Sec-
tion 12]. We will discuss this in the next chapter.
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7.8. The bad features criterion

Here we provide an algorithm for deciding whether a plabic graph is reduced
or not. We first explain (see Definition 7.8.2) how to transform an arbitrary
plabic graph G into a normal plabic graph N(G) move-equivalent to G
(or conclude that G is not reduced). We then use a criterion based on
Theorem 7.7.3 to determine whether N(G) (hence G) is reduced or not.

Lemma 7.8.1. Let G be a reduced plabic graph. Then G has no roundtrips.
Also, G has no loops, i.e., edges whose endpoints coincide.

Proof. We can assume that G does not contain white lollipops or trees that
collapse to white lollipops. (Collapsing such trees and removing lollipops
does not affect whether a graph is reduced or whether it has a roundtrip.)
Now by Lemma 7.7.4, G is move-equivalent (up to the removal of some
white lollipops) to a normal plabic graph G′. Since G′ is reduced, X(G′)
is minimal (see Theorem 7.7.3). Hence X(G′) has no closed strands (see
Lemma 7.6.6), so G′ has no roundtrips. Since roundtrips persist under local
moves, G has no roundtrips either.

Suppose G has a loop e based at a black (resp., white) vertex. (Some
edges and vertices might be enclosed by e.) Then the trip that traverses e
clockwise (resp., counterclockwise) is a roundtrip, a contradiction. �

Definition 7.8.2. Let G be a plabic graph. The following algorithm is
similar to the procedure employed in the proof of Lemma 7.7.4. It either
determines that G is not reduced, or outputs a normal plabic graph N(G)
which, up to the addition/removal of lollipops, is move-equivalent to G.
In the latter scenario, the plabic graph N(G)—hence the original graph G—
may be either reduced or not.

At each stage of the algorithm, the plabic graph G undergoes some
transformations that do not affect whether it is reduced.

Stage 1. Use moves (M2)–(M3) to collapse all collapsible trees in G.

Stage 2. Use moves (M2) to remove all bivalent vertices.

Stage 3. Remove all lollipops.

Stage 4. If G has an internal leaf u, then let v be the vertex adjacent to u.
By construction, deg(v) ≥ 3. Since G has no collapsible trees, we conclude
that u and v are of different color and G is not reduced.

If G has no internal leaves, then each internal vertex has degree ≥ 3.

Stage 5. Use moves (M3) to contract all edges with both endpoints black.
If at any point G has a loop, then it is not reduced, by Lemma 7.8.1.

Stage 6. Use moves (M3) to replace each white vertex by a trivalent tree
with white vertices.
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Stage 7. Use moves (M2) to insert a black vertex into every edge with no
black endpoints. The resulting plabic graph N(G) is normal.

Definition 7.8.3. If a trip passes through an edge e of a plabic graph twice
(in the opposite directions), we call this an essential self-intersection.

If the edges e1 and e2 are such that there are two distinct trips each of
which passes first through e1 and then through e2, we call this a bad double
crossing.

We use the term bad features to collectively refer to

• roundtrips (see Definition 7.4.12),

• essential self-intersections, and

• bad double crossings.

These notions are illustrated in Figure 7.48.

e

e
e1 e2

(a) (b) (c)

Figure 7.48. Plabic graph fragments representing “bad features:”
(a) a roundtrip; (b) essential self-intersection; (c) bad double crossing.

Lemma 7.8.4. A normal plabic graph G has a bad feature if and only if
the associated triple diagram X(G) has a badgon.

Proof. Let G be a normal plabic graph. The strands in the triple diagram
X = X(G) closely follow the trips in G. Therefore X has a closed strand if
and only if G has a roundtrip.

If G has an essential self-intersection (resp., a bad double crossing), then
X has a monogon (resp., a parallel digon). To see that, take each edge e
involved in a bad feature and consider the white end v of e. The strands
corresponding to the trips involved in the bad feature will intersect at v; thus
v will be a vertex of the corresponding badgon. Cf. Figures 7.44 and 7.49.

Conversely, suppose that X has a monogon with self-intersection corre-
sponding to the white vertex v of G. There are three strand segments of
X that pass through v, each running along two distinct edges incident to v;
because we have a self-intersection, two of these strands segments are part
of the same strand s. Since v is trivalent, the pigeonhole principle implies
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e1 e2
e1

e2

Figure 7.49. A bad double crossing in G yields a parallel digon in X(G).

that two of the four edges that s runs along must coincide. This yields an
essential self-intersection in G. A similar argument shows that if X has a
parallel digon, then G has a bad double crossing. �

Corollary 7.8.5. Let G be a normal plabic graph. Let X = X(G) be the
corresponding triple diagram. Then the following are equivalent:

• G is reduced;

• X is minimal;

• G has no bad features;

• X has no badgons.

Proof. By Theorem 7.7.3, G is reduced if and only if X is minimal. By The-
orem 7.6.14, X is minimal if and only if X has no badgons. By Lemma 7.8.4,
X has no badgons if and only if G has no bad features. �

Corollary 7.8.5 provides the following criterion, which is a version of [21,
Theorem 13.2].

Theorem 7.8.6. A normal plabic graph is reduced if and only if it does not
contain any bad features.

For example, any plabic graph containing one of the fragments shown
in Figure 7.48 is necessarily not reduced.

Remark 7.8.7. For any plabic graph G, Theorem 7.8.6 can be used in
conjunction with the procedure described in Definition 7.8.2 to determine
whether G is reduced or not.

Remark 7.8.8. Recall from Remark 2.3.4 that a factorization (not nec-
essarily reduced) of an element of a symmetric group into a product of
simple reflections can be represented by (a version of) a wiring diagram.
As plabic graphs can be viewed as generalizations of wiring diagrams (see
Example 7.2.4), reduced plabic graphs may be viewed as a generalization of
reduced expressions. In this context, the criterion of Theorem 7.8.6 corre-
sponds to the condition that each pair of lines in the wiring diagram intersect
at most once.
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7.9. Affine permutations

By Theorem 7.4.25, move equivalence classes of reduced plabic graphs are
labeled by decorated permutations. An alternative (sometimes more use-
ful) labeling utilizes ((a, b)-bounded) affine permutations, introduced and
studied in this section.

Definition 7.9.1. For a decorated permutation π̃ on b letters, we say that
i ∈ {1, . . . , b} is an anti-excedance of π̃ if either π̃−1(i) > i or if π̃(i) = i.
The number of anti-excedances of π̃ (which we usually denote by a) is equal
to the number of values i ∈ {1, . . . , b} such that π̃(i) < i or π̃(i) = i.

Example 7.9.2. The decorated permutation π̃ = (5, 2, 3, 6, 4, 1) on b = 6
letters (see Figure 7.59) has a = 3 anti-excedances, namely, 1, 4, and 3.
Indeed, π̃−1(1) = 6 > 1, and π̃−1(4) = 5 > 4.

Definition 7.9.3. Let π̃ be a decorated permutation on b letters with a
anti-excedances. The affinization of π̃ is the map π̃aff : Z → Z constructed
as follows. For i ∈ {1, . . . , b}, we set

π̃aff(i) =























π̃(i) if π̃(i) > i,

i if π̃(i) = i,

π̃(i) + b if π̃(i) < i,

i+ b if π̃(i) = i.

We then extend π̃aff to Z so that it satisfies

(7.9.1) π̃aff(i+ b) = π̃aff(i) + b (i ∈ Z).

We note that

(7.9.2) i ≤ π̃aff(i) ≤ i+ b (i ∈ Z)

and

(7.9.3)

b
∑

i=1

(π̃aff(i)− i) = b ·#{i ∈ {1, . . . , b} | π̃(i) < i or π̃(i) = i} = ab.

Example 7.9.4. Continuing with π̃ = (5, 2, 3, 6, 4, 1) from Example 7.9.2,
we get π̃aff(1)=5, π̃aff(2)=2, π̃aff(3)=9, π̃aff(4)=6, π̃aff(5)=10, π̃aff(6)=7,
or more succinctly,

π̃aff = (. . . , 5, 2, 9, 6, 10, 7, . . . ) = (· · · 5 2 9 6 10 7 11 8 15 12 16 13 · · · ).

(The boxed terms are the values at 1, . . . , b. They determine the rest of the
sequence by virtue of (7.9.1).) In accordance with (7.9.3), we have

(5 + 2 + 9 + 6 + 10 + 7)− (1 + · · ·+ 6) = 39− 21 = 18 = 3 · 6 = ab.
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With the above construction in mind, we introduce the following notion.

Definition 7.9.5. Let a and b be positive integers. An (a, b)-bounded affine
permutation is a bijection f : Z→ Z satisfying the following conditions:

• f(i+ b) = f(i) + b for all i ∈ Z;

• i ≤ f(i) ≤ i+ b for all i ∈ Z;

• ∑b
i=1(f(i)− i) = ab.

Lemma 7.9.6. [15] The correspondence π̃ 7→ π̃aff described in Defini-
tion 7.9.3 restricts to a bijection between decorated permutations on b letters
with a anti-excedances and the (a, b)-bounded affine permutations.

Proof. If π̃ is a decorated permutation on b letters with a anti-excedances,
then (7.9.1)–(7.9.3) show that π̃aff is an (a, b)-bounded affine permutation.

Conversely, given an (a, b)-bounded affine permutation f : Z → Z, we
can define the decorated permutation π̃ on b letters by

π̃(i) =























i if f(i) = i;

i if f(i) = i+ b;

f(i) if f(i) ≤ b and f(i) 6= i;

f(i)− b if f(i) > b and f(i) 6= i+ b.

We claim that π̃ has a anti-excedances. Using the inequality i ≤ f(i) ≤ i+b,
we conclude that the anti-excedances of π̃ are in bijection with the values
i ∈ {1, . . . , b} such that f(i) > b. The claim follows from the observation

that ab =
∑b

1(f(i)− i) = b ·#{i ∈ {1, . . . , b} | f(i) > b}. �

Lemma 7.9.6 is illustrated in Figure 7.50 (the first two columns).

π̃ π̃aff ℓ(π̃aff)

1 2 3 · · · 4 2 3 7 5 6 · · · 2

1 2 3 · · · 1 5 3 4 8 6 · · · 2

1 2 3 · · · 1 2 6 4 5 9 · · · 2

2 1 3 · · · 2 4 3 5 7 6 · · · 1

1 3 2 · · · 1 3 5 4 6 8 · · · 1

3 2 1 · · · 3 2 4 6 5 7 · · · 1

2 3 1 · · · 2 3 4 5 6 7 · · · 0

Figure 7.50. Decorated permutations π̃ on b=3 letters with a=1 anti-
excedance; the corresponding (a, b)-bounded affine permutations π̃aff ;
and the lengths ℓ(π̃aff) of these affine permutations.
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Recall from Exercise 7.4.21 that the number of decorated permutations

on b letters is equal to b!
∑b

k=0
1
k! . The following result, stated here with-

out proof, refines this count by taking into account the number of anti-
excedances.

Proposition 7.9.7 ([25, Theorem 4.1], [21, Proposition 23.1]). Let Da,b be
the number of decorated permutations on b letters with a anti-excedances (or
the number of (a, b)-bounded affine permutations, cf. Lemma 7.9.6). Then

Da,b =
a−1
∑

i=0

(−1)i
(

b

i

)

((a− i)i(a− i+ 1)b−i − (a− i− 1)i(a− i)b−i),

∑

0≤a≤b

Da,b x
a yb

b!
= exy

x− 1

x− ey(x−1)
.

Definition 7.9.8. Let π̃aff be an (a, b)-bounded affine permutation, an
affinization of a decorated permutation π̃, cf. Lemma 7.9.6. We refer to a
position i ∈ Z such that π̃aff(i) ≡ i mod b (in other words, π̃aff(i) ∈ {i, i+b};
and if 1 ≤ i ≤ b then π̃(i) ∈ {i, i}) as a fixed point of π̃aff . If every i ∈ Z

is a fixed point of π̃aff , then we say that π̃aff is equivalent to the identity
modulo b (or that π̃ is a decoration of the identity).

Lemma 7.9.9. If π̃aff is not equivalent to the identity modulo b, then there
exist i, j ∈ Z such that

1 ≤ i < j ≤ b,(7.9.4)

π̃aff(i) < π̃aff(j),(7.9.5)

every position h such that i < h < j is a fixed point of π̃aff , and(7.9.6)

neither i nor j are fixed points of π̃aff .(7.9.7)

Proof. Suppose such a pair (i, j) does not exist. Let i1 < · · · < im be the
elements of {1, . . . , b} that are not fixed points of π̃aff . Then

i1 < · · · < im < π̃aff(im) ≤ · · · ≤ π̃aff(i1).

We conclude that none of the values π̃aff(ij) is of the form iℓ and conse-
quently is of the form iℓ+ b. In particular, π̃aff(ij) = im+ b for some j 6= m.
This implies π̃aff(ij) > ij + b, a contradiction. �

Definition 7.9.10. An inversion of π̃aff is a pair of integers (i, j) such that
i < j and π̃aff(i) > π̃aff(j). Two inversions (i, j) and (i′, j′) are equivalent if
i′ − i = j′ − j ∈ bZ. The length ℓ(π̃aff) of π̃aff is the number of equivalence
classes of inversions. (These classes correspond to the alignments of π̃, as
defined in [21].) This number is finite since for any inversion (i, j), we have
i < j < i + b. Indeed, if j ≥ i + b, then π̃aff(j) ≥ j ≥ i + b ≥ π̃aff(i).
See Figure 7.50.
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Lemma 7.9.11. Let π̃aff be an (a, b)-bounded affine permutation that is
equivalent to the identity modulo b. Then ℓ(π̃aff) = a(b− a).

Proof. Let I = {i ∈ {1, . . . , b} | π̃aff(i) = i + b} and I = {i ∈ {1, . . . , b} |
π̃aff(i) = i}. Then |I| = a and |I| = b − a. The equivalence classes of
inversions of π̃aff are described by the following list of representatives:

{(i, j) ∈ I × I | 1 ≤ i < j ≤ b} ∪ {(i, j + b) | (i, j) ∈ I × I, 1 ≤ j < i ≤ b}.

The cardinality ℓ(π̃aff) of this set is equal to |I × I| = a(b− a). �

We next describe an algorithm for factoring affine permutations.

Definition 7.9.12. Let π̃aff be an (a, b)-bounded affine permutation. If
π̃aff is not equivalent to the identity modulo b, then by Lemma 7.9.9, there
exist positions i, j ∈ Z satisfying (7.9.4)–(7.9.7). We then swap the values
of π̃aff in positions i and j (and more generally, in positions i + mb and
j +mb, for all m ∈ Z). We repeat this procedure until we obtain an affine
permutation that is equivalent to the identity modulo b. The algorithm
terminates because each swap increases the length of the affine permutation
by 1; this number is bounded by Definition 7.9.10. See Figure 7.51.

(i, j) 1 2 3 4 5 6

(34) 4 6 5 7 8 9

(23) 4 6 7 5 8 9

(12) 4 7 6 5 8 9

(56) 7 4 6 5 8 9

(45) 7 4 6 5 9 8

(34) 7 4 6 9 5 8

(46) 7 4 9 6 5 8

(24) 7 4 9 8 5 6

7 8 9 4 5 6

Figure 7.51. Factoring π̃aff = (4, 6, 5, 7, 8, 9). The entries correspond-
ing to the fixed points of π̃aff are boxed. Here π̃ = (4, 6, 5, 1, 2, 3).

Remark 7.9.13. In view of (7.9.3), the affine permutation at hand remains
(a, b)-bounded after each step of the algorithm in Definition 7.9.12. It then
follows from Lemma 7.9.11 that among all (a, b)-bounded affine permuta-
tions π̃aff , the ones that have the maximal possible length ℓ(π̃aff) = a(b− a)
are precisely the ones that are equivalent to the identity modulo b.
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7.10. Bridge decompositions

Bridge decompositions [2, Section 3.2] provide a useful recursive construc-
tion of reduced plabic graphs with a given decorated trip permutation.

Definition 7.10.1. A bridge is a graph fragment shown in Figure 7.52 on
the left. Let π̃ be a decorated permutation on b letters that has a anti-
excedances, and let π̃aff be the corresponding affine permutation. To build
a plabic graph associated to π̃aff , we begin by introducing a white (resp.,
black) lollipop in each position i with π̃(i) = i (resp., π̃(i) = i). If π̃ is a
decoration of the identity, we are done. Otherwise, we generate a sequence
of transpositions (i, j) following the algorithm in Definition 7.9.12, then
attach successive bridges in the corresponding positions, as in Figure 7.52.
The resulting graph is called a bridge decomposition of π̃aff , or sometimes a
BCFW bridge decomposition, due to its relation with the Britto-Cachazo-
Feng-Witten recursion in quantum field theory, see [2].

1 2 3 4 5 6

Figure 7.52. Left : a single bridge. Right : the bridge decomposition
associated to the factorization constructed in Figure 7.51. The result-
ing plabic graph has trip permutation π̃ = (4, 6, 5, 1, 2, 3). Moreover, we
have π̃ = (24)(46)(34)(45)(56)(12)(23)(34), the product of the transpo-
sitions (i, j) generated by the algorithm (reading right to left).

Proposition 7.10.2. A bridge decomposition of an (a, b)-bounded affine
permutation π̃aff uses a(b− a)− ℓ(π̃aff) bridges.

Proof. See Lemma 7.9.11 and Definitions 7.9.12 and 7.10.1. �

Theorem 7.10.3. Let π̃ be a decorated permutation on b letters that has a
anti-excedances. Let π̃aff be the associated (a, b)-bounded affine permutation.
Then any bridge decomposition of π̃aff is a reduced plabic graph with the
decorated trip permutation π̃.

Proof. We use induction on the number of bridges β = a(b − a)− ℓ(π̃aff).
If β = 0, then π̃ is a decoration of the identity (see Remark 7.9.13), so the
bridge decomposition consists entirely of lollipops, and we are done.

Now suppose that π̃ is not a decoration of the identity. Proceeding as in
Definition 7.9.12, we construct a sequence of transpositions σ1, σ2, . . . , σβ ,
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where σ1 = (ij) satisfies (7.9.4)–(7.9.7). Let G be the plabic graph ob-
tained by attaching bridges according to σ1, . . . , σβ (from top to bottom).
By the induction assumption, attaching bridges according to σ2, . . . , σβ as
in Definition 7.10.1 produces a reduced plabic graph G′ with the trip per-
mutation π̃′ = σβ · · · σ2. This graph has β − 1 bridges and is obtained by
removing the topmost horizontal edge e from G and applying local moves
(M2) to remove the endpoints of e.

Conversely, G is obtained from G′ by attaching a bridge in position
(i, j) at the top of G′. (To illustrate, in Figure 7.52 we have (i, j) = (3, 4).)
When we add this bridge to G′, the trips starting at i and j get their “tails”
swapped: the trip Ti (resp., Tj) in G that begins at i (resp., at j) traverses e
and continues along the trip that used to begin at j (resp., at i) in G′; all
other trips remain the same. Hence the trip permutation of G is π̃′σ1 = π̃.

It remains to show that G is reduced. It is tempting to try to use for
this purpose the “bad features” criterion of Theorem 7.8.6. However, this
theorem requires the plabic graph to be normal, so we will need to replace G
by a suitable normal graph N(G). It will also be more convenient to utilize
the triple diagram version of the criterion, cf. Corollary 7.8.5.

We begin by constructing the normal graph N(G) using Definition 7.8.2.
(Note that stages 1, 4 and 6 of the algorithm are not needed since every
vertex in G has degree 2 or 3, or is a lollipop that gets removed.) Up to
the addition/removal of lollipops, the triple diagram X(N(G)) is isotopic to
the triple diagram X(G) constructed directly from G as in Definition 7.5.17.
The graph G is reduced if and only if N(G) is reduced, which is equivalent
to the triple diagram X = X(N(G)) = X(G) being minimal, or to X having
no badgons, see Corollary 7.8.5. Thus, our goal is to show X has no badgons.

By the induction assumption, the triple diagram X
′ = X(G′) has no

badgons. It follows that any potential badgon in X must involve the white
endpoint w of edge e; otherwise this feature would have already been present
in X

′. In particular, this means that w is trivalent, i.e., not an elbow of G.

A monogon in X would have to have its vertex at w. Three of the six half-
strands at w run straight to or from the boundary, so we need to use two of
the remaining three; moreover, those two half-strands have to be oppositely
oriented. There are two such cases to consider. In one case, i would be a
fixed point of π̃, contradicting our choice of (i, j). In the other case, i would
be a fixed point of π̃′ = π̃(G′), which can also be ruled out since in that
case, i would not participate in any bridge in G′, making it impossible to
produce the bottom vertex of the vertical edge pointing downwards from w.

Finally, suppose that X contains a parallel digon. One of the vertices of
the digon has to be w; let w′ denote the other vertex. Since the two sides of
the digon are oriented in the same way at w, it follows that these sides lie
on the strands Si and Sj that start near the vertices i and j, respectively.
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By our choice of bridge (i, j), every h with i < h < j is a fixed point
of π̃, but i and j are not fixed points. It follows that Si (resp. Sj) does
not terminate at i (resp. j), and neither terminates between the boundary
vertices i and j. We explained in the monogon case that Sj cannot terminate
at i; one can similarly argue that Si cannot terminate at j. Also, neither Si

nor Sj intersects itself. Moreover the “tails” of Si and Sj that start at the
second vertex w′ of the digon do not intersect each other (since otherwise a
parallel digon would have been present in X

′). It follows that either π̃(i) < i
and π̃(j) > j, or π̃(i) > π̃(j) > j, or π̃(j) < π̃(i) < i. In each case, we get
π̃aff(i) > π̃aff(j), which contradicts the way we chose i and j. �

Corollary 7.10.4. Let π̃ be a decorated permutation on b letters. Then
there exists a reduced plabic graph whose decorated trip permutation is π̃.

Proof. Use either Theorem 7.10.3 or the construction in Definition 7.6.8
(together with Proposition 7.5.12 and Theorem 7.7.3). �

Corollary 7.10.5. Let G be a reduced plabic graph with the decorated trip
permutation π̃. If π̃ has b letters and a anti-excedances, then the number of
faces in G is a(b− a)− ℓ(π̃aff) + 1.

Proof. The number of faces is invariant under local moves. Therefore, by
Theorem 7.4.25, it suffices to establish this formula for a particular reduced
plabic graph with decorated trip permutation π̃. By Theorem 7.10.3, we
can use a bridge decomposition of π̃aff . Since each bridge adds one face to
the graph, the claim follows by Proposition 7.10.2. �

Let π̃a,b denote the decorated permutation on b letters defined by

(7.10.1) π̃a,b = (a+ 1, a + 2, . . . , b, 1, 2, . . . , a).

Exercise 7.10.6. Let π̃ be a decorated permutation on b letters that has
a anti-excedances. Show that if ℓ(π̃aff) = 0, then π̃ = π̃a,b.

Corollary 7.10.7. Let G be a reduced plabic graph whose decorated trip
permutation π̃G has b letters and a anti-excedances. Then G has at most
a(b−a)+1 faces. Moreover it has a(b−a)+1 faces if and only if π̃G = π̃a,b.

Proof. Immediate from Corollary 7.10.5 and Exercise 7.10.6. �

Remark 7.10.8. The permutohedron Pn [23, Exercise 4.64a] is a polytope
whose n! vertices are labeled by permutations in the symmetric group Sn.
Shortest paths in the 1-skeleton of Pn encode reduced expressions in Sn, and
its 2-dimensional faces correspond to their local (braid) transformations,
cf. Exercise 7.4.7. Similarly, paths in the 1-skeleton of the bridge poly-
tope [26] encode bridge decompositions of the decorated permutation π̃a,b;
its 2-dimensional faces correspond to local moves in plabic graphs.
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7.11. Edge labels of reduced plabic graphs

Definition 7.11.1. Let G be a plabic graph. Let us label the edges of G by
subsets of integers that indicate which one-way trips traverse a given edge;
more precisely, for each boundary vertex i, we include i in the label of every
edge contained in the trip that starts at i. By Remark 7.4.15, each edge
will be labeled by at most two integers. See Figure 7.53.

We say that G has the resonance property if after labeling the edges of G
as in Definition 7.11.1, the following condition is satisfied at each internal
vertex v that is not a lollipop:

• there exist numbers i1 < · · · < im such that the edges incident to v are
labeled by the two-element sets {i1, i2}, {i2, i3}, . . . , {im−1, im}, {i1, im},
appearing in clockwise order.

In particular, each edge of G that is not incident to a lollipop is labeled by
a two-element subset. See Figure 7.53.

1 2

3

4

5

6

14
12

v v′
25

6 25

24 15

45
14

13342335

24

Figure 7.53. A reduced plabic graph from Figures 7.1(b) and 7.21.
Its edge labeling exhibits the resonance property, see Definition 7.11.1.
For example, the edge labels around the vertex v (resp., v′), listed in
clockwise order, are {1, 2}, {2, 4}, {1, 4} (resp., {1, 2}, {2, 5}, {1, 5}).

Remark 7.11.2. If a plabic graph has an internal leaf that is not a lollipop,
then the resonance property fails. At a bivalent vertex v, the resonance
condition is satisfied if and only if the two trips passing through v are
distinct and none of them is a roundtrip.

Remark 7.11.3. If a plabic graph G is trivalent (apart from lollipops),
then the resonance property is equivalent to the following requirement at
each interior vertex v (other than a lollipop):

• the three edges incident to v have labels {a, b}, {a, c}, and {b, c}, for
some a < b < c, and moreover this (lexicographic) ordering of labels
corresponds to the counterclockwise direction around v.
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For example, in Figure 7.53, the edge labels around the vertex v (resp., v′)
are, in lexicographic order, {1, 2}, {1, 4}, {2, 4} (resp., {1, 2}, {1, 5}, {2, 5}).
The three edges carrying these labels appear in the counterclockwise order
around v (resp., v′).

Exercise 7.11.4. Verify that none of the plabic graphs shown in Figure 7.48
(draw a disk around each of the fragments) satisfy the resonance property.

Theorem 7.11.5 ([16, Theorem 10.5]). Let G be a plabic graph without
internal leaves other than lollipops. Then G is reduced if and only if it has
the resonance property.

Theorem 7.11.5 is proved below in this section, following a few remarks
and auxiliary lemmas.

Remark 7.11.6. Theorem 7.11.5 can be used to test whether a given plabic
graph (potentially having internal leaves) is reduced or not. To this end,
use the moves (M2) and (M3) to get rid of collapsible trees. If an internal
leaf (not a lollipop) remains, then the graph is not reduced. Otherwise, one
can apply the criterion in Theorem 7.11.5.

Remark 7.11.7. We find the resonance criterion of Theorem 7.11.5 easier
to check than the “bad features” criterion of Theorem 7.8.6.

Remark 7.11.8. Certain reduced plabic graphs were realized as tropical
curves in [16], where it was shown that the resonance property corresponds
to the balancing condition for tropical curves.

Lemma 7.11.9. The resonance property is preserved under the local moves
(M1)–(M3), except when the decontraction move (M3) creates a new leaf.

Proof. The square move (M1) only changes the labels of the sides of the
square, see Figure 7.54. Moreover, the labels around each vertex match
the labels around the opposite vertex after the square move, with the same
cyclic order. Hence this move preserves the resonance property.

The case of the local move (M2) is easy, cf. Remark 7.11.2.

For the case of the local move (M3), see Figure 7.55. �

ik jℓ
ij

jk iℓ

kℓ
jℓ ik

←→

ik jℓ
kℓ

iℓ jk

ij
jℓ ik

Figure 7.54. Transformation of edge labels under a square move (M1).
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ij jℓ

kℓ

jk

iℓ

←→ ij

kℓ

jk

iℓ

←→ ij ik

kℓ

jk

iℓ

Figure 7.55. Transformation of edge labels under a local move (M3)
at a 4-valent black vertex. (Alternatively, make all the vertices white.)

Lemma 7.11.10. Any plabic graph obtained via the bridge decomposition
construction (see Definition 7.10.1) has the resonance property.

Proof. We will show that, more concretely, the edge labels around trivalent
vertices in such a plabic graph G follow one of the patterns described in
Figure 7.56. We will establish this result by induction on β, the number of
bridges, following the strategy used in the proof of Theorem 7.10.3.

ir

ij

jr

ij
js

is

Figure 7.56. Edge labels near trivalent vertices in a bridge decomposi-
tion. At a white vertex, shown on the left, either r < i < j or i < j < r.
At a black vertex, shown on the right, either s < i < j or i < j < s.

Let G be a bridge decomposition of π̃aff , associated to the sequence of
transpositions σ1, . . . , σβ . Thus π̃ = π̃G = σβ · · · σ1. Here σ1 = (ij), where i
and j satisfy (7.9.4)–(7.9.7). Let G′ be the bridge decomposition associated
to σ2, . . . , σβ , so that G is obtained from G′ by adding a single bridge in
position (i, j) at the top of G′.

Suppose the result is true for G′. We need to verify it for G. Let
r = π̃−1(i) and s = π̃−1(j). Adding the bridge in position (i, j) at the
top of G′ adds at most two trivalent vertices: it adds a white (respectively,
black) trivalent vertex provided that r 6= j (respectively, s 6= i). The cases
when one of the vertices on the bridge is bivalent are easy to verify, so we are
going to assume that r 6= j and s 6= i. In this case, the local configuration
around positions i and j in G′ and G is as shown in Figure 7.57.

G′

1 2 ... i j ... b

ir js

G

1 2 ... i j ... b

ir js

jr is

ij

Figure 7.57. The local configuration around positions i and j in G′ and G.
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Recall that i < j and moreover any h such that i < h < j is a fixed point
of π̃. For the reasons indicated in the proof of Theorem 7.10.3, adding the
bridge (i, j) at the top of G′ has the effect of replacing the label i (resp., j)
by j (resp., i) in every edge label outside of the bridge.

If G′ has an edge with the label ij, then G has a bad double crossing
involving the trips originating at i and j. This however is impossible since
G is reduced, by Theorem 7.10.3. Therefore G′ has no edge with label ij.
Furthermore, G′ has no edge with a label h for i < h < j. Since all
trivalent vertices of G′ satisfy the resonance condition of Figure 7.56, the
same remains true after switching the labels i and j. Thus, all trivalent
vertices of G that were present in G′ satisfy this resonance condition.

Finally, the two new trivalent vertices in G satisfy this condition because
i < j and we can exclude i < r < j and i < s < j because of (7.9.6). �

Proof of Theorem 7.11.5. We first establish the “if” direction. Let G be
a plabic graph without internal leaves that are not lollipops. Suppose that
G has the resonance property. We want to show that G is reduced.

Assume the contrary. By Proposition 7.4.9, G can be transformed by
local moves that don’t create internal leaves into a plabic graph G′ con-
taining a hollow digon. Since G has the resonance property, so does G′,
by Lemma 7.11.9. This yields a contradiction because the labels around a
hollow digon do not satisfy the resonance property, see Figure 7.58.

ij ij
i

j

i j
ij

ij

ij ij
j

i

Figure 7.58. A plabic graph containing a hollow digon fails to satisfy
the resonance property.

We next establish the “only if” direction. Suppose that G is reduced,
with π̃G = π̃. We know from Theorem 7.10.3 that there is a bridge de-
composition G′—a reduced plabic graph—with trip permutation π̃. By
Lemma 7.11.10, G′ has the resonance property. By Theorem 7.4.25, G ∼ G′.

Since G has no internal leaves, there exists a trivalent plabic graph
G3 ∼ G, see Lemma 7.3.2. Moreover it can be seen from the proof of this
lemma that G and G3 are related via moves that do not create internal
leaves, so by Lemma 7.11.9 G has the resonance property if and only if G3

does. Similarly, by removing bivalent vertices from G′, we obtain a trivalent
graph G′

3 ∼ G′ that has the resonance property. Since G3 and G′
3 are

trivalent and move-equivalent to each other, they are related via a sequence
of (M1) and (M4) moves, see Theorem 7.3.5. By Lemma 7.11.9, these local
moves preserve the resonance property, so G3 has the resonance property
and therefore G has it as well. �
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7.12. Face labels of reduced plabic graphs

In this section, we use the notion of a trip introduced in Definition 7.4.12 to
label each face of a reduced plabic graph by a collection of positive integers.
These face labels generalize the labeling of diagonals in a polygon by Plücker
coordinates (cf. Section 1.2) as well as the labeling of faces in (double or
ordinary) wiring diagrams by chamber minors (cf. Sections 1.3–1.4). In the
following chapter, we will relate the face labels of reduced plabic graphs to
Plücker coordinates that form an extended cluster for the standard cluster
structure on a Grassmannian or, more generally, on a Schubert or positroid
subvariety within it.

Remark 7.12.1. Let G be a reduced plabic graph. Let Ti be the one-
way trip in G that begins at a boundary vertex i and ends at a boundary
vertex j.

If i 6= j, then we claim that there are two kinds of faces in G: those on
the left side of the trip Ti and those on the right side of it. If G is normal,
then this claim follows from the fact (see Theorem 7.8.6) that G does not
contain essential self-intersections. For a general reduced plabic graph, the
claim can be deduced from the case of normal graphs using the procedure
described in Definition 7.8.2.

If i = j, then by Proposition 7.4.22, the boundary vertex i is the root
of a tree that collapses to a lollipop. If this lollipop is white (resp., black),
then we declare that all faces of G lie on the left (resp., right) side of the
trip Ti.

Definition 7.12.2. Let G be a reduced plabic graph with boundary vertices
1, . . . , b. We define two natural face labelings of G, cf. Figure 7.59:

• in the source labeling Fsource(G), each face f of G is labeled by the set

Isource(f) = {i | f lies to the left of the trip starting at vertex i};

• in the target labeling Ftarget(G), each face f of G is labeled by the set

Itarget(f) = {i | f is to the left of the trip ending at vertex i}.

Remark 7.12.3. The edge labeling and the face labeling of a reduced plabic
graph G are related as follows: if two faces f and f ′ of G are separated by
a single edge whose edge label is {i, j}, then the face label of f ′ is obtained
from that of f by either removing i and adding j, or removing j and adding i.

Theorem 7.12.4. Let G be a reduced plabic graph with b boundary vertices.
Let a denote the number of anti-excedances in the trip permutation πG. Let
us label the faces of G using either the source or the target labeling. Then
every face of G will be labeled by an a-element subset of {1, . . . , b}.
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(a) (b)

Figure 7.59. (a) The source labeling Fsource(G) of a reduced plabic
graph G. (b) The target labeling Ftarget(G). Here π̃G = (5, 2, 3, 6, 4, 1).
Every face is labeled by a subset of cardinality 3, in agreement with
Theorem 7.12.4, cf. Example 7.9.2.

Proof. By Theorem 7.11.5, every reduced plabic graph G has the resonance
property, which in particular means that every edge label of G consists of
two distinct numbers. It then follows from Remark 7.12.3 that every face
label of G has the same cardinality. It remains to show that this cardinality
is a, the number of anti-excedances of π̃ = π̃G.

Furthermore, it is sufficient to establish the latter claim for one partic-
ular reduced plabic graph with the trip permutation π̃G, e.g., for a bridge
decomposition of π̃aff . Indeed, any two reduced plabic graphs with the same
trip permutation are related by local moves, and any such move preserves
all labels except at most one, see Exercise 7.12.5.

To prove the theorem for bridge decompositions, we use induction on the
number of bridges β. In the base case β = 0, the bridge decomposition G
consists of a white lollipops, b− a black lollipops, and no bridges. Thus G
has a single face, labeled by the a-element subset indicating the positions
of the white lollipops.

Consider a bridge decomposition G built from a bridge decomposition G′

by adding a bridge in position (i, j) at the top of G′, as in Figure 7.57. Both
G and G′ have trip permutations with a anti-excedances (cf. Remark 7.9.13),
so by the induction assumption, the faces in G′ have cardinality a. Since
G inherits most of its faces from G′, and all face labels of G have the same
cardinality, this cardinality is equal to a. �

Exercise 7.12.5. Verify that applying a move (M2) or (M3) does not affect
the face labels of a plabic graph, whereas applying the square move (M1)
changes the face labels as shown in Figure 7.60.
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i

jk

l

ilS

ijS

jkS

klS

ikS ←→

i

jk

l

ilS

ijS

jkS

klS

jlS

Figure 7.60. The effect of the square move (M1) on the face labeling.
Here i, j,k, l are the (source or target) labels of the trips that traverse
the outer edges towards the central square; S is an arbitrary set of labels
disjoint from {i, j, k, l}; and abS is a shorthand for the set {a, b} ∪ S.

The face labelings of plabic graphs can be used to recover the labelings
of diagonals in a polygon by Plücker coordinates as well as the labelings of
chambers in (ordinary or double) wiring diagrams by minors:

Exercise 7.12.6. Let T be a triangulation of a convex m-gon Pm, and let
G(T ) be the plabic graph defined in Example 7.2.1. Explain how to label
the boundary vertices of G(T ) in such a way that the face labeling of G(T )
recovers the labeling of diagonals of Pm by pairs of integers. Cf. Figure 7.61.
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Figure 7.61. A triangulation T of an octagon and the corresponding
plabic graph G(T ), cf. Figure 2.2.

Exercise 7.12.7. Let D be a wiring diagram with m wires. Let G(D) be
the plabic graph defined in Example 7.2.4, see also Figure 7.62. Label the
boundary vertices of G(D) by the numbers 1, . . . , 2m in the clockwise order,
starting with a 1 at the lower left boundary vertex of G(D). Label the faces
of G(D) using the source labeling Fsource(G). Show that intersecting each
face label with the set {1, 2, . . . ,m} recovers the labeling of D by chamber
minors. See Figure 7.62.
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Figure 7.62. A wiring diagram D and the plabic graph G(D) with the
source labeling of its faces.

Exercise 7.12.8. Let D be a double wiring diagram with m pairs of wires.
Let G(D) be the plabic graph defined in Example 7.2.8. Label the boundary
vertices of G(D) by the numbers

1, 2, . . . ,m− 1,m,m′, . . . , 2′, 1′

in clockwise order, starting with the label 1 at the lower left boundary
vertex of G(D). Label the faces of G = G(D) using the source labeling
Fsource(G), so that each face gets labeled by I ′ ∪ J , where I ′ ⊂ {1′, . . . ,m′}
and J ⊂ {1, . . . ,m}. Let I denote the set obtained from I ′ by replacing each
i′ by i. Show that mapping each face label I ′ ∪ J to the pair ([1,m] \ I),J)
recovers the labeling of D by chamber minors. See Figure 7.63.
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Figure 7.63. Double wiring diagram labeling from plabic graphs.
The labeling of a double wiring diagram D is obtained from the source
labeling of the associated plabic graph G(D) using the recipe described
in Exercise 7.12.8.
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7.13. Grassmann necklaces and weakly separated collections

Fix two nonnegative integers b and a ≤ b. We denote by
([b]
a

)

the set of all
a-element subsets of {1, . . . , b}.

In this section, we provide an intrinsic combinatorial characterization of

the subsets of
([b]
a

)

that arise as sets of face labels of reduced plabic graphs.
The proofs are omitted.

Definition 7.13.1 ([18]). We say that two a-element subsets I, J ∈
([b]
a

)

are weakly separated if there do not exist i, j, i′, j′ ∈ {1, . . . , b} such that

• i < j < i′ < j′ or j < i′ < j′ < i or i′ < j′ < i < j or j′ < i < j < i′;

• i, i′ ∈ I \ J and j, j′ ∈ J \ I.
Put differently, I and J are weakly separated if and only if, after drawing the
numbers 1, 2, . . . , b clockwise around a circle, there exists a chord separating
the sets I \ J and J \ I from each other.

Theorem 7.13.2 ([5, 19]). Let I and J be target face labels of two faces
in a reduced plabic graph. Then I and J are weakly separated.

Definition 7.13.3. A collection C ⊂
(

[b]
a

)

of a-element subsets of [b] is called
weakly separated if any I, J ∈C are weakly separated. Thus, Theorem 7.13.2
asserts that the collection of target face labels of a reduced plabic graph is
weakly separated. A weakly separated collection C is called maximal if it is
not contained in any other weakly separated collection. See Figure 7.64.
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Figure 7.64. The target face labeling of the reduced plabic graph G

from Figure 7.1(a). The set of labels {12, 23, 34, 45, 15, 24, 14} is a max-

imal weakly separated collection in
(
[5]
2

)
. Here π̃G = π̃2,5 = (3, 4, 5, 1, 2).

Theorem 7.13.4 ([5, 19]). For C ⊂
([b]
a

)

, the following are equivalent:

• C is a maximal weakly separated collection;

• C is the set of target face labels of a reduced plabic graph G with π̃G= π̃a,b
(see (7.10.1)).

In that case, the cardinality of C is equal to |C| = a(b− a) + 1.
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Remark 7.13.5. A general formula for the number of maximal weakly sep-

arated collections in
(

[b]
a

)

is unknown. For a = 2, the maximal weakly sepa-

rated collections in
([b]
2

)

are in bijection with triangulations of a convex b-gon,

so they are counted by the Catalan numbers Cb−2, where Cn = 1
n+1

(2n
n

)

.
For a = 3 and b = 6, . . . , 12, the number of maximal weakly separated col-

lections in
([b]
3

)

is equal to 34, 259, 2136, 18600, 168565, 1574298, 15051702.
See [6] for more data.

Theorem 7.13.4 can be generalized to arbitrary reduced plabic graphs.
To state this result, we will need the following notion.

Definition 7.13.6 ([21, Definition 16.1]). A Grassmann necklace of type

(a, b) is a sequence I = (I1, . . . , Ib) of subsets Ii ∈
([b]
a

)

such that, for
i = 1, . . . , b, we have Ii+1 ⊃ Ii \ {i}. (Here the indices are taken modulo b,
so that I1 ⊃ Ib \ {b}.) Thus, if i /∈ Ii, then Ii+1 = Ii.

In other words, either Ii+1 = Ii or Ii+1 is obtained from Ii by deleting
i and adding another element. Note that if Ii+1 = Ii, then either i belongs
to all elements Ij of the necklace, or i belongs to none of them.

Example 7.13.7. The sequence I = (126, 236, 346, 456, 156, 126) is a Grass-
mann necklace of type (3, 6).

Definition 7.13.8. For ℓ ∈ {1, . . . , b}, we define the linear order <ℓ on
{1, . . . , b} as follows:

ℓ <ℓ ℓ+ 1 <ℓ ℓ+ 2 <ℓ · · · <ℓ b <ℓ 1 <ℓ · · · <ℓ ℓ− 1.

For a decorated permutation π̃ on b letters, we say that i ∈ {1, . . . , b} is
an ℓ-anti-excedance of π̃ if either π̃−1(i) >ℓ i or if π̃(i) = i. Thus, a 1-anti-
excedance is the same as an (ordinary) anti-excedance, as in Definition 7.9.1.

It is not hard to see that the number of ℓ-anti-excedances does not
depend on the choice of ℓ ∈ {1, . . . , b}, so we simply refer to this quantity
as the number of anti-excedances.

Lemma 7.13.9. Decorated permutations on b letters with a anti-excedances
are in bijection with Grassmann necklaces I of type (a, b).

Proof. To go from I to the corresponding decorated permutation π̃ = π̃(I),
we set π̃(i) = j whenever Ii+1 = (Ii \ {i}) ∪ {j} for i 6= j. If i /∈ Ii = Ii+1

then π̃(i) = i, and if i ∈ Ii = Ii+1 then π̃(i) = i.

Going in the other direction, let π̃ be a decorated permutation. For
ℓ ∈ {1, . . . , b}, we denote by Iℓ the set of ℓ-anti-excedances of π̃. Then
I = I(π̃) = (I1, . . . , Ib) is the corresponding Grassmann necklace. �
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Example 7.13.10. Let I=(126, 236, 346, 456, 156, 126), cf. Example 7.13.7.
Then π̃(I) = (3, 4, 5, 1, 2, 6).

Example 7.13.11. Let π̃G = π̃a,b, cf. (7.10.1). The corresponding Grass-
mann necklace (cf. Lemma 7.13.9) is given by

(7.13.1) I(π̃a,b) = ({1, 2, . . . , a}, {2, 3, . . . , a, a+1}, . . . , {b, 1, 2, . . . , a−1}).

Definition 7.13.12. We extend the linear order<ℓ on {1, . . . , b} to a partial
order on

([b]
a

)

, as follows. Let

I = {i1, . . . , ia}, i1 <ℓ i2 <ℓ · · · <ℓ ia;

J = {j1, . . . , ja}, j1 <ℓ j2 <ℓ · · · <ℓ ja.

Then, by definition, I ≤ℓ J if and only if i1 ≤ℓ j1, . . . , ia ≤ℓ ja.

Definition 7.13.13. For a Grassmann necklace I = (I1, . . . , Ib) of type
(a, b), we define the associated positroid MI by

MI = {J ∈
([b]
a

)

| Iℓ ≤ℓ J for all ℓ ∈ {1, . . . , b}}.

As we will see in Chapter 8, positroids are the (realizable) matroids that
arise from full rank a× b matrices with all Plücker coordinate nonnegative.
Abstractly, one may also define a positively oriented matroid to be an ori-
ented matroid on {1, 2, . . . , b} whose chirotope takes nonnegative values on
any ordered subset {i1 < · · · < ia}. By [1], these two notions are the same,
in other words, every positively oriented matroid is realizable.

Example 7.13.14. Let I = I(π̃a,b), see (7.13.1). Then MI =
([b]
a

)

, i.e.,
the positroid associated with I contains all a-element subsets of {1, . . . , b}.
Definition 7.13.15. Two reduced plabic graphs are called strongly equiv-
alent if they have the same sets of face labels.

We note that two plabic graphs which are connected via moves (M2)
and (M3) are strongly equivalent.

Recall that Ftarget(G) denotes the collection of target-labels of faces of
a reduced plabic graph G.

Theorem 7.13.16 ([19, Theorem 1.5]). Fix a decorated permutation π̃ on b
letters with a anti-excedances. Let I be the corresponding Grassmann neck-
lace of type (a, b), cf. Lemma 7.13.9. LetMI be the associated positroid, cf.
Definition 7.13.13. Then the map G 7→ Ftarget(G) gives a bijection between

• the strong equivalence classes of reduced plabic graphs G with decorated
trip permutation π̃G = π̃ and

• the collections C ⊂
([b]
a

)

that are maximal (with respect to inclusion)
among the weakly separated collections satisfying I ⊆ C ⊆MI .
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Remark 7.13.17. Let I = I(π̃a,b). Then I = I(π̃a,b) is given by (7.13.1).
Each of the b cyclically consecutive subsets in (7.13.1) is weakly separated
from every other a-element subset of {1, . . . , b}, so every maximal weakly

separated collection C ⊂
(

[b]
a

)

must contain I. Furthermore, MI =
(

[b]
a

)

(see Example 7.13.14), so any such C automatically satisfies the inclusions
I ⊆ C ⊆ MI . We thus recover Theorem 7.13.4 as a special case of Theo-
rem 7.13.16.
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