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Abstract

Previous electrophysiological research has characterized canonical oscillatory patterns

associated with movement mostly from recordings of primary sensorimotor cortex. Less work

has attempted to decode movement based on electrophysiological recordings from a broader

array of brain areas such as those sampled by stereoelectroencephalography (sEEG). Here we

decoded movement using a linear support vector machine (SVM). We were able to accurately

classify sEEG spectrograms during a keypress movement in a task versus those during the

inter-trial interval. Furthermore, the important time-frequency patterns for this classification

recapitulated findings from previous studies that used non-invasive electroencephalography

(EEG) and electrocorticography (ECoG) and identified brain regions that were not associated

with movement in previous studies. Specifically, we found these previously described patterns:

beta (13 - 30 Hz) desynchronization, beta synchronization (rebound), pre-movement alpha (8 -

15 Hz) modulation, a post-movement broadband gamma (60 - 90 Hz) increase and an

event-related potential. These oscillatory patterns were newly observed in a wide range of brain

areas accessible with sEEG that are not accessible with other electrophysiology recording

methods. For example, the presence of beta desynchronization in the frontal lobe was more

widespread than previously described, extending outside primary and secondary motor cortices.

We provide evidence for a system of putative motor networks that exhibit unique oscillatory

patterns by describing the anatomical extent of the movement-related oscillations that were

observed most frequently across all sEEG contacts.
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Significance Statement

Several major motor networks have been previously delineated in humans, however,

much less is known about the population-level oscillations that coordinate this neural circuitry,

especially in cortex. Therapies that modulate brain circuits to treat movement disorders, such as

deep brain stimulation (DBS), or use brain signals to control movement, such as brain-computer

interfaces (BCIs), rely on our basic scientific understanding of this movement neural circuitry. In

order to bridge this gap, we used stereoelectroencephalography (sEEG) collected in human

patients being monitored for epilepsy to assess oscillatory patterns during movement.
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Introduction

Several spectral power changes in electrophysiological recordings related to the initiation

of movement have been extensively replicated. Beta power (13 - 30 Hz) decreases

(desynchronizes) several hundred milliseconds before movement and subsequently rebounds

immediately following the movement. This has been shown most prominently in the subthalamic

nucleus and globus pallidus local field potentials (Brown & Williams, 2005) and in sensorimotor

electrocorticography (ECoG) recordings (Crone, 1998a; Miller et al., 2007; Stolk et al., 2019). In

sensorimotor areas, broadband gamma (60 - 90 Hz) also increases around the time of

movement and immediately after (Ball et al., 2008; Crone, 1998b), alpha power has been

observed to both increase (Stolk et al., 2019) and decrease/desynchronize (Crone, 1998a)

during movement and a robust movement-related negative evoked potential emerges in the

time domain 1 - 2 seconds before movement (Toro et al., 1994). These studies have focused on

specific brain areas implicated in movement from early electrophysiological and neurosurgical

work (Penfield & Boldrey, 1937) and have studied the most prominent oscillations observed in

those regions. However, recent work in a rodent model has suggested that movement related

activity is highly distributed throughout the brain, perhaps even more so than higher cognitive

processes (Steinmetz et al., 2019). Invasive stereo-electroencephalography (sEEG) recordings

are well-suited for determining the spatial extent of these movement-related oscillations in

humans because they sample more brain areas than electrocorticography (ECoG). In particular,

sEEG extends the sampled region to include both deeper cortical structures as well as

subcortical regions compared to ECoG. Stereo-EEG also can also record from white matter, and

from gray matter without interference from pia and arachnoid mater, which can reduce the signal

amplitude (Avanzini et al., 2016). This makes sEEG recordings a promising avenue of inquiry for

studying whole-brain oscillatory patterns.
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Determining which oscillatory patterns are related to movement is especially suitable for

machine learning. Testing each frequency of oscillation at each time point of the epoch

surrounding the movement to see if it differs from baseline would cause issues of multiple

comparisons. Determining significant time-frequency points using cluster permutations is one

way to address this (Maris & Oostenveld, 2007). The cluster permutation method is ideal for

comparison with a machine learning approach because it has been validated by simulations and

is widely used in electrophysiology research (Pernet et al., 2015). However, cluster permutation

cannot account for complex, non-linear effects that are accessible to machine learning

approaches. By training a machine learning classifier on seperate data than is used to quantify

the accuracies of the classification, more complex patterns can be determined in a way that is

repeatable; if the classifier performs well on unseen data, it is likely to perform well on all data

recorded with that particular experimental configuration. Thus, a machine learning approach has

the potential to quantify complex, higher-order oscillatory patterns that relate to movement.

The ideal machine learning method, in this case, is capable of classification given a

limited amount of training data, and is one for which the strength and direction of

movement-related time-frequencies can be determined. Linear support vector machines (SVM)

are a method of machine learning where a linear hyperplane is iteratively fit to the data to

optimally separate the data in different groups (Buitinck et al., 2013). A coefficient matrix that

determines the relative importance and direction of each time-frequency pixel in the

spectrogram can then be determined from the hyperplane. We chose to use an SVM to classify

spectrograms of sEEG recordings during movement because of this interpretability in order to

understand which oscillations are related to movement. We hypothesized that event-related

potentials and oscillatory patterns would be able to classify periods of movement from inter-trial

periods of rest in a broad array of brain areas recorded from with sEEG.
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Methods

Participants

Eight patients with medically intractable focal epilepsy were surgically implanted with

sEEG electrodes for clinical localization of ictal (seizure) onset and epileptogenic zones. All

patients underwent robotic assisted 0.8 mm diameter stereoencephalography electrodes (PMT,

Chanhassen, MN, USA) with center-to-center pitch of 3.3 to 5 mm for electrode contacts. The

total number of electrode contacts analyzed was 979 with 122 +/- 2 contacts per subject. The

contacts were distributed in the patients’ brains as shown in Figure 2. Patient demographic and

clinical information is shown in Table 1.

Task

Patients performed a forced two-choice reaction time task with the left and right arrow

keys on a laptop as shown in Figure 1. On each trial, patients were presented with a fixation cue

for 300-700 ms and then a left or right arrow was presented. Participants were asked to respond

before the arrow disappeared with the corresponding key on the laptop keyboard, with a total of

300 trials. The duration of the cue varied between 1.5 times and 4 times each participant’s

average reaction time during 10 practice trials. The task was administered using a custom

MATLAB script implementing PsychToolBox (Brainard, 1997; Kleiner et al., 2007; Pelli, 1997).

The laptop was placed on the patients’ laps while reclined in a hospital bed. A photodiode was

attached to the bottom right corner of the screen and was output to the amplifier to synchronize

the task to the electrophysiology. Due to noise in the hospital environment a few photodiode

events were corrupted for most patients (see Table 1), and, due to the patient displacing the

photodiode by shifting in bed, two blocks of 75 trials for one patient and one block of 75 trials for
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another patient were unusable. Accurate timing could not be derived from trials without

photodiode synchronization between the electrophysiology recording and the task so these trials

were excluded. Trials with incorrect responses were also excluded. Participants sub-2 and

sub-11 were left handed and used that hand to perform the task, the rest were right handed and

used their right hand for the task.

Preprocessing

Electrode positions were determined with MNE-Python (Gramfort, 2013) using the

patients’ postoperative computed tomography (CT) image registered to their preoperative

magnetic resonance (MR) image (A. Rockhill et al., 2022). Anatomical labels were assigned to

contacts based on the Deskian-Killiany atlas label of the Freesurfer reconstruction based on that

patient’s individual anatomy (Fischl, 2012). The contact locations were then warped to a

template brain (cvs_avg35_inMNI152) for comparison of their relative spatial locations. The

task-related fixation, cue and response events were synchronized using the photodiode (A. P.

Rockhill et al., 2020). The time-frequency spectrogram for each event was computed via the

Morlet wavelets method with frequencies from 1 to 250 Hz using MNE-Python (Gramfort, 2013;

Harris et al., 2020). The voltage time-series signal, bandpass filtered between 0.1 and 40 Hz,

was appended to the bottom of the spectrogram in order to include the event-related potential in

the classification.

Classification

Movement spectrograms consisted of the period 0.5 seconds before the response key

was pressed to 0.5 seconds after. These were classified as different from an equal length

spectrogram during the inter-trial interval. First, the training spectrograms were dimensionally
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reduced via principal component analysis (PCA). The first 50 principle components were used

so that most of the variance was captured while still decreasing the dimensionality. The PCA

components were used as input to a linear SVM classifier implemented in scikit-learn (Buitinck

et al., 2013). An 80 / 20% training-test split was used. In addition, another equal length period

during a separate part of the inter-trial interval was used instead of the response period as a null

classification as shown in Figure 1. The coefficient matrices from the SVM, which showed the

correlations of time-frequency points with the movement classification, were validated using a

one sample cluster permutation test implemented in MNE-Python (Gramfort, 2013). The

threshold was set at 99% of a T distribution (alpha=0.01) with degrees of freedom one less than

the number of subjects. For each sEEG channel, clusters with T-statistics more extreme than

99% (alpha=0.01) of permuted clusters were considered significant.

The SVM method was compared to common spatial pattern (CSP) decoding, a well-used

approach in electrophysiology signal classification, for further validation (Gramfort, 2013; Koles

et al., 1990). The key difference between the two methods was that the SVM classification was

per-contact and so did not use any information about which patient the contact was recording

from, whereas the CSP classification was per-patient and used the montage of all contacts

implanted in a patient as the basis for classification. For the CSP classification, the voltage

signal was bandpass filtered for each frequency and then the spatial pattern was classified

using a linear discriminant analysis with 5-fold cross-validation. Thus, the linear SVM was

agnostic of the spatial relationship between the sEEG contacts whereas the spatial relationship

was the basis of CSP classification; this difference in approach made CSP an ideal validation

method.
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ID Age Sex Hand Response
Time (s)

Task Accuracy
(Missed trials)

Events
Used

Diagnosis of
Origin

Surgery Based
on sEEG

Notes

sub-1 44 M R 0.447 +/-
0.118

98.6% (0) 202 Left
entorhinal

cortex

None Photodiode
displaced
for one
block

sub-2 47 F L 0.858 +/-
0.245

100.0% (1) 280 Bilateral
middle and

superior
temporal gyri

Bilateral
anterior
thalamic

nucleus DBS

sub-5 33 F R 1.373 +/-
0.624

99.3% (12) 291 Bilateral
temporal

pole,
amygdala,

left
orbitofrontal

Ablation of
right frontal

FCD and right
temporal pole
and bilateral

anterior
thalamic

nucleus DBS

sub-6 31 F R 0.401 +/-
0.058

99.0% (0) 298 No seizures Right anterior
temporal

lobectomy

sub-9 39 M R 0.558 +/-
0.266

97.9% (8) 286 No seizures None

sub-10 31 F R 0.615 +/-
0.276

94.2% (7) 289 Left
hippocampus
, amygdala,
parahippoca
mpal gyrus

Left
amygdalo-

hippocampect
omy

sub-11 30 M L 0.595 +/-
0.485

100.0% (0) 134 Left
amygdala

and
hippocampus

RNS in
bilateral

hippocampus

Photodiode
displaced

for two
blocks

sub-12 26 M R 0.434 +/-
0.118

98.3% (0) 279 Temporal-fro
ntal

neocortical
and mesial

regions

None Previous
surgical

resection of
right

temporal
lobe

Table 1. Patient demographic information and task performance information. Abbreviations:

deep brain stimulation (DBS), responsive neurostimulation (RNS), focal cortical dysplasia

(FCD).
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Figure 1. The task schema is shown per trial. The diagram is to scale in time. A typical response

time (RT) is shown in red. Trials were included if the response was correct and the response

time was within the cue period.
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Figure 2. Surgical lead placements for the eight patients shown in a 3D rendering from three

perspectives. Coverage was generally biased towards unilaterality and temporal lobe, but a

wide range of brain areas were covered.
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Results

The linear SVM using principal components was an effective method of classifying

movement spectrograms from spectrograms during the inter-trial interval. The mean of the

distribution of scores was unlikely to occur by chance (paired t-test, p < 0.001, df = 975)

compared to the null distribution generated from the classification with a separate inter-trial

interval period instead of the period during movement. At an alpha=0.01 relative to the null

distribution, 403/975 contacts had classification probabilities that were significant (Figure 3). The

SVM classification showed that sensorimotor areas had the highest classification accuracy,

followed by prefrontal areas (Figure 4 and in greater detail by specific area in Figure 5). Despite

having a greater amount of coverage, temporal areas generally had lower accuracy of

classifications, but, interestingly, some temporal areas still had contacts with spectrograms that

were able to be classified at accuracies that were unlikely to occur by chance.

Figure 3. A histogram of the classification accuracy for all electrode contacts across all patients

for the SVM classification. Contacts that are significant at an alpha=0.01 level relative to the null
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distribution for pooled across all contacts are shown in red, those that are not are shown in blue.

The mean of the total distribution of scores is indicated with a black line, compared to the mean

of the null distribution which is shown in gray (paired t-test, p < 0.001, df = 975). Note that each

patient had a different number of trials that were used as shown in Table 1 (see Methods for

explanation of missing trials) but the classification accuracies are pooled since accuracy is a

normalized metric.

Figure 4. Electrode contacts which had spectrograms that were classified with accuracies

significant at an alpha=0.01 level by the SVM are colored by accuracy per contact (a) and

averaged per region (b). The number of contacts implanted in each brain region across all

patients for this study is shown in c. The highest accuracy was in sensorimotor regions followed

by frontal areas with notably lower accuracy in temporal contacts. Regions without data are not

shown.
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Figure 5. The classification accuracies of the SVM are shown for anatomical labels using the

Desikan-Killiany atlas parcellation of the individual patient anatomy. Labels within 3 mm of the

center of the electrode contact were assigned to that contact. Note that 22 contacts were

unlabelled and are not shown. Some contacts were unlabelled because Freesurfer’s automated

labeling process failed near lesions from previous epilepsy surgeries, contacts were above the

pial surface (this happened when the deepest contact reached its target when the most

superficial contact was still above the pial surface), or limited resolution of the MR and imperfect

labeling process could not assign a label.

The CSP analysis showed that beta power was an important classification band in 5/8

patients (Figure 6). Additionally, four patients were classified by alpha power, with one patient’s

classification depending exclusively on alpha power (Subject 10), suggesting this is also an

important oscillatory pattern. Two patients (Subjects 11 and 12) were not able to be classified

effectively using this method at all. Notably, the time-frequency features with high classification

accuracy in the CSP analysis, were nearly identical to the features from the SVM coefficient

matrices and cluster permutation analysis (Figures 7 and 8). The CSP classification accuracies

also corresponded well to those of the SVM; patients with worse CSP classification accuracy

had fewer contacts that had significant classifications. For patients without high-accuracy CSP

classifications (Subjects 11 and 12), fewer contacts had significant classification accuracies

using the SVM. Overall, the CSP and SVM classifications were concurrent in that most patients

had coverage of areas that were modulated by movement. This highlighted how widespread

movement-related oscillations are, while, at the same time, suggesting such patterns were

confined to specific neural circuitry that was not well-sampled in every patient.
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Figure 6. SVM and CSP classifier accuracies are shown on the left and right respectively of

each pair of plots per patient. On the left, channels with significant (alpha=0.01) classifications

relative to the null distribution for that patient are plotted in red, over a density plot of the

distribution. On the right is the classification accuracy using the spatial pattern at each

time-frequency bin. Note that patients with more significant classification channels (shown in red

on the left) had greater CSP accuracies (darker red on the right).

The SVM classification was used to determine which features of the spectrograms were

important for classification to elucidate the mechanism of high-accuracy classifications. For each

contact, the linear hyperplane optimized by the SVM was represented as a coefficient matrix

that was used to evaluate the input spectrogram. The SVM classification worked by pointwise

multiplying the coefficient matrix with the input spectrogram (represented in dimensionally

reduced form by its PCA components), and if the sum is greater than zero the spectrogram was
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classified as being during movement. Thus, examining the coefficient matrix allowed us to

explore which features of the spectrogram and the oscillatory patterns that they represented

were related to high-accuracy classifications of movement. The coefficient matrices were

assigned p-values for each time-frequency point using the distribution of coefficient matrices

from the null classification with an alpha=0.01 (uncorrected) threshold.

The three best-classifying contacts using the SVM are shown in Figure 7 to highlight

areas with high classification potential and the differences between the oscillatory patterns that

yielded high accuracies in different brain areas. The first contact, RSMA 7, had a positive

event-related potential, a decrease in alpha power before and after the movement and an

increase in gamma power before the movement. This contact is plotted in black and was in the

right insular cortex. The second contact, LPM 1, had a beta desynchronization and had a large

negative event-related potential that was used to classify movement. Note that the event-related

potential, labeled 0 Hz at the bottom of the spectrogram, was highpass filtered at 0.1 Hz so this

is not the direct current offset. Interestingly, this contact was in white matter near the left

precentral gyrus. The third contact, RSMA 6, was next to the first contact, RSMA 7, and used

similar features in its classification. Overall, contacts with high classification accuracies used

different spectral features to classify based on their anatomical location. The anatomical

locations of different spectral features are explored in the subsequent analyses.

17



18



Figure 7. Electrode contacts with the highest classification accuracies: SVM coefficients from

the spectrogram classification are shown on the left with red contours from the cluster

permutation analysis, and the anatomical location is on the right with the contact colored darker

than the rest of the electrode. Note that LPM 1 is located in white matter and only gray matter

structures are shown.

To interpret the coefficient matrices of the SVM classifications, and the information they

convey about which oscillatory patterns were important for classification, several characteristics

were computed as shown in Figure 8. The relative abundance of significant time-frequency

points was computed to determine which spectral features (i.e. time-frequency points) were the

most widespread among the brain areas sampled in this study for contacts with significant

classifications (Figure 8a and 8b). The oscillatory patterns that these spectral features represent

are likely to be the most widely-used frequencies of movement neural circuits. The proportion of

positive significant coefficients (Figure 8c and 8d) was computed to determine the most

consistent directional patterns across brain areas. Time-frequency points that consistently had

decreased power in movement spectrograms compared to baseline spectrograms are closer to

zero and shown in blue. This measure was used to discriminate oscillatory patterns by their

directionality; beta desynchronization, beta rebound and gamma power increase all had a

consistent directionality. Interestingly, alpha power increased in some brain areas and

decreased in others. Lastly, for each time-frequency point, the average accuracy was computed

for all classifications in which that point was significant (Figure 8e and 8f). Interestingly, all of the

oscillatory patterns had remarkably similar classification accuracies. The SVM coefficient

matrices (Figure 8, left column) were compared with a cluster permutation analysis (Figure 8,

right column); the significant time-frequency points were in almost exact correspondence

between the two analyses. This was an important validation because the determining significant
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time-frequency points from the SVM coefficient matrices used an uncorrected significance level

with multiple comparisons.

Figure 8. Summary feature maps of all the contacts with significant SVM classifications are

shown. a and b) The relative abundance of significant SVM coefficients (a) and clusters (b);

more time-frequency points tended to be significant for pre-response alpha, post-response delta
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or evoked potentials. c and d) The proportion of each of the significant SVM coefficients (c) and

clusters (d) that were positive; pre-response beta coefficients tended to be negative,

post-response beta and gamma tended to be positive and all delta tended to be positive very

strongly. e and f) The average classification accuracy for significant SVM coefficients (e) and

clusters (f); classifications with significant time-frequency points tended to have the same

accuracies regardless of the time-frequency of the point. The cluster permutation analysis (right

column) corresponded nearly perfectly to the SVM coefficient matrices (left column).

To analyze the anatomical locations of oscillatory patterns, important spectral features

were selected by inspection based on the feature maps in Figure 8. The features chosen were

the event-related potential, a movement delta increase before the movement but extending to

slightly after, a beta decrease immediately before movement, both a high- and low-beta

increase after movement and a gamma increase immediately after movement. These

band-based categories are highlighted by a red box surrounding the time-frequency area of a

relevant feature map in the first column Figure 9. The second column shows the distribution of

significant time-frequency points relative to the area of the red box, where -1 represents when

all points within the box are significant and negative and 1 represents when all points are

significant and positive. The histogram was divided into tertiles with the negative tertile in blue

and the positive tertile in yellow. The contacts corresponding to classifications that used these

features are plotted in the final three columns to show their position on the template brain. In

addition, the oscillatory patterns of interest are shown in a different format in Figure 10;

anatomical labels from the Desikan-Killiany atlas for the individual patient are used to highlight

brain structures related to each oscillatory feature. Each feature was observed to have a

specific distribution and may be a single motor network communicating via that particular

oscillatory pattern. These oscillatory patterns and putative motor networks are very likely

interrelated but each may have its own specific functional relevance.
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Figure 9. Anatomical locations of spectral features are shown on the template brain. In the first

column, the time-frequency period in consideration is surrounded by a red box over a cluster

permutation analysis feature map (Figure 8). The choice of which time-frequency areas to

consider was made based on the relative abundance feature map and the proportion of positive

clusters feature map, but only the feature map that shows the pattern more clearly is shown.

The second column has histograms of the proportion of the selected area in a significant cluster

for each contact, with -1 being all points in a significant negative cluster and +1 being all points

in a significant positive cluster. The negative tertile is colored blue and the positive tertile is

colored yellow. Note that the vast majority of contacts are near zero so the y-axis is truncated to

show the rest of the distribution. The final three columns show the anatomical locations of

contacts with each feature (i.e. in the negative and positive tertiles), warped to a template brain.
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Figure 10. a) The Deskian-Killiany atlas labels within 3 mm of each contact with a

significant-accuracy SVM classification that used that oscillatory pattern as determined in Figure

9. b) The labels used in (a) and their locations on the template atlas. Note that the atlas labels

are sorted clockwise by their angle in the sagittal plane, starting with frontal areas and wrapping

around to temporal areas.

Discussion

Classification of sEEG data during periods of movement with an SVM presents a way to

leverage the power of machine learning while maintaining information about what contributes

most to classification. We found that many electrode contacts had high-accuracy

movement-related classifications throughout the brain; not all patients had contacts implanted in

sensorimotor areas but nearly 50% of all contacts had classifications unlikely to be observed by

chance. The contacts with above-chance accuracy are putatively in areas of distributed motor

networks, or at least part of networks that were heavily recruited during a simple motor task. The

locations of these contacts replicate and extend previous results in ECoG and EEG; beta

desynchronization was observed in sensorimotor areas and the inferior frontal gyrus (Swann et

al., 2009) and extended to more superior frontal areas than previously described. Beta-gamma

phase-amplitude coupling (PAC) has been observed to be abnormally elevated in Parkinson’s

disease (de Hemptinne et al., 2015) so understanding the full spatial extent of the beta

oscillations that are aberrantly coupled to gamma could inform the development of medical

interventions that manipulate this neural circuit. Alpha power modulations were observed in

prefrontal, sensorimotor and mid-temporal regions, as were previously reported, but extended to

subcortical and parietal areas that have not been linked with alpha. The areas that have not

been associated with alpha rhythms may help link the many functional correlates of the

alpha/mu oscillation (Pineda, 2005). The positive and negative event-related potentials were
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widely distributed in frontal, parietal and superior temporal areas. Somatosensory-related

potentials have been successfully modeled by increases in excitatory output from the granular

layer of somatosensory cortex (Jones et al., 2007). Interestingly, gamma power, which has also

been associated with a greater balance of excitation compared to inhibition, was observed to

have a different distribution with greater frontal and less temporal activation. Gamma has been

correlated with single-unit spiking, and tends to be biased towards recording large excitatory

neurons (Manning et al., 2009). The timing of gamma compared to the event-related potentials

and their observed distributions suggest different roles in motor networks, and that they are able

to measure excitatory neurons differently, perhaps with event-related potentials being more

related to phase resetting (Sauseng et al., 2007). Lastly, the increase in delta power in almost all

recorded brain areas during the peri-movement period may be related to an increase in

concentration during the task (Harmony, 2013). In general, the relative timing of increases and

decreases in oscillatory power relative to movement provides insight into how oscillations might

travel between brain regions and consequently how information might flow.

Previous studies that have attempted to decode patterns in sEEG data related to

movement without machine learning have had mixed results. Attempts to decode movement

direction (Johnson et al., 2017) and path information (Breault et al., 2017) have found few

modulated areas and correlations that reached statistical significance but were on the order of

r=0.2. A study decoding movement speed that used a more complex classification method, least

absolute shrinkage and selection operator (LASSO) linear regression, had a higher correlation

of r=0.4 on average but with a large range of correlations across subjects and a mean squared

error greater than one (Breault et al., 2019). Unlike these studies, we chose to classify using a

baseline without movement to quantify the extent to which the brain areas recorded by sEEG

were related to movement in general and focused on individual electrode contacts instead of

patient-level data. The greater contrast between the baseline and movement conditions, and

having only these two conditions, increased the rate of learning so that the classifier could be
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more successful with fewer training trials. Additionally, since the majority of sEEG electrodes

were outside primary motor areas, classifying the combined effect from all movement-related

activity is appropriate for characterizing the extent of all movement-related brain networks.

Focusing on a specific property of movement, such as speed, depends on sampling more

specialized motor networks which may not be extensively covered by the sEEG montages of the

patients in the study. By using a simpler comparison, focusing on movement more generally,

and using machine learning, we described the extent of brain networks related to movement

beyond what had been reported in previous studies.

The primary limitations of this study are the lack of a consensus for methodological

choices for sEEG and the simplicity of the machine learning approach. Using an average

reference allowed us to study the activity at individual channels (compared to a bipolar

referencing scheme where activity is localized between two contacts) but was dependent on the

rest of the recording montage which was unique to every patient. However, with over 100

channels per montage, the average reference is likely to be stable and reproducible given a

similar sized montage. All of the patients in this study had similar power spectral density of their

sEEG data, which supports this claim. One potential issue with an average reference is the

introduction of an event-related potential from the average reference. When this analysis was

rerun with a bipolar referencing scheme, a similar number of contacts had significant

classifications relative to the null distribution, which is evidence that this is not the case. Further

methodological work will clarify the optimal referencing scheme and other methodological

choices. Additionally, we chose a machine learning method that prioritized interpretability, which

came at the cost of classification accuracy; a more complex algorithm could have fit the data

better. Future work may use more powerful machine learning approaches which will likely

achieve better accuracies but would very likely have less interpretability compared to this

analysis.
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The results of this analysis suggest several further avenues of inquiry related to the use

of sEEG data to decode movement brain networks. One future direction would be to use

spectral connectivity for classification instead of spectrograms. This would test whether brain

areas that have the same oscillatory patterns are part of the same neural circuit or whether

there are multiple independent circuits that operate at the same oscillatory frequencies. Another

direction that merits further study is the feasibility of adding anatomical targets from our results

to control a brain-computer interface (BCI). Patients with motor deficits are often willing to

undergo invasive surgery to restore function with a BCI. Since ECoG has not yet been able to

fully restore movement (Miller et al., 2020) and since sEEG uses minor 2.4 mm bolt holes, which

are less invasive than the craniotomy required for ECoG, improving BCI control by adding sEEG

to sample different motor network nodes is an option that should be considered. Lastly, our

results are proof-of-concept that intraoperative functional brain mapping could be more efficient

with machine learning. Conventional passive (non-stimulation) mapping of functionally

significant motor areas uses modulation of a predefined frequency band, commonly gamma

(Kreidenhuber et al., 2019). Using an SVM or similar spectrogram-based classification would be

more accurate because it includes a wider range of frequencies, including and extending

beyond the predefined band.

This analysis also provides evidence for the power and reliability of a machine learning

classification of electrophysiology data, specifically sEEG data. Stereo-EEG is implanted for

clinical indications in brain areas that are sparsely and idiosyncratically covered, sampling a

large range of brain networks that perform many different functions. Combining the information

from isolated electrodes in sEEG recordings within and across patients into interpretable

networks without the results being confounded by the cacophony of other networks is a

complicated task. Our results provide preliminary evidence that a machine learning approach

may be more fruitful at decoding this complicated information; previous studies often focused on
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one oscillatory pattern at a time, whereas here, with only eight patients, all of the most

widely-reported oscillatory patterns were replicated.

Finally, we observed a normal distribution of sEEG contact classification accuracies,

rather than a bimodal pattern that would correspond to movement-related and non-movement

related contacts. This suggests that either different patterns of motor network activation are

occurring on each trial, leading to missed classifications, or that only some of the population of

neurons sampled by each sEEG electrode contact are involved in movement. Previous work

has shown that, at a cellular level, stable sequences of activity are observed during simple

motor tasks (Recanatesi et al., 2022). Thus, the more likely explanation is that a large portion of

the population of neurons recorded by an sEEG channel are not involved in movement, causing

classifications to fail on trials where the activity of movement-unrelated neural circuits is more

prominent. Thus, this study provides evidence that movement neural circuitry is distributed such

that there is a continuum from relatively homogenous sensorimotor-dominated areas, like

primary motor cortex, to areas where only a minority of neurons are modulated by movement.

Overall, we identified distinct time-frequency patterns with high-accuracy classifications

using electrophysiological recordings of movement. Contacts with accurate classification are

more widespread in anatomical location than previously described. The specific structural

networks that communicate with these oscillations have yet to be fully determined but this

characterization makes substantial progress toward that goal.
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