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Math 253 (Calc III), Winter 2019
HW 9

1. Basic understanding problems: do exercises 0.2.4, 0.2.5, and 0.2.8 from the Diffy Qs
online textbook.

Solutions: 0.2.4: If x(t) = e4t then x′(t) = 4e4t, x′′(t) = 16e4t, and x′′′(t) = 64e4t. Thus

x′′′ − 12x′′ + 48x′ − 64x = e4t(64− 12 ∗ 16 + 48 ∗ 4− 64) = e4t(0) = 0

as desired.

0.2.5: If x(t) = et then all its derivatives are also et, so

x′′′ − 12x′′ + 48x′ − 64x = et(1− 12 + 48− 64) = et(−27) 6= 0.

0.2.8: If x(t) = Ce−2t then x′(t) = (−2)Ce2t so

x′ + 2x = Ce−2t(−2 + 2) = Ce−2t(0) = 0,

and x is a solution to this differential equation. Also, x(0) = C, so if x(0) = 100 then
C = 100. The solution to this initial value problem is x(t) = 100e−2t.

2. Consider the differential equation y′′ − y′ − y = 0 with initial condition y(−2) = 3 and
y′(−2) = 2.

(a) Compute the degree four Taylor polynomial T4(x) for a solution to this initial
value problem.

(b) Find a recursive formula for the general solution centered at −2.

(c) Verify your computation of T4(x) using the recursive formula.

Solution: a) Starting with
y′′ = y′ + y

we have
y′′(−2) = y(−2) + y′(−2) = 2 + 3 = 5.

Taking the derivative we get
y′′′ = y′′ + y′

so
y′′′(−2) = y′′(−2) + y′(−2) = 5 + 2 = 7.

Taking the derivative we get
y′′′′ = y′′′ + y′′

so
y′′′′(−2) = y′′′(−2) + y′′(−2) = 7 + 5 = 12.

Thus the degree four Taylor polynomial (which should be centered at −2) is

T4(x) =
3

0!
+

2

1!
(x+2)+

5

2!
(x+2)2+

7

3!
(x+2)3+

12

4!
(x+2)4 = 3+2(x+2)+

5

2
(x+2)2+

7

6
(x+2)3+

1

2
(x+2)4.
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b) If y(x) =
∑

an(x+ 2)n then

y′(x) =
∑

n=0

an+1(n+ 1)(x+ 2)n

and
y′′(x) =

∑

n=0

an+2(n+ 2)(n+ 1)(x+ 2)n.

(We’ve already done the reindexing for these formulas, see the assignment for a write-
up of that.) Thus

y′′ − y′ − y =
∑

n=0

(an+2(n+ 2)(n+ 1)− an+1(n+ 1)− an)(x+ 2)n = 0.

Setting each coefficient to zero we get

an+2(n+ 2)(n+ 1)− an+1(n+ 1)− an = 0

or

an+2 =
(n+ 1)an+1 + an

(n+ 2)(n+ 1)
.

This formula holds for all n ≥ 0.

The base case for the recursion is the initial conditions y(−2) = a0 and y′(−2) = a1.

c) Let a0 = 3 and a1 = 2. The recursive formula for n = 0 gives

a2 =
1a1 + a0

(2)(1)
=

5

2
.

The recursive formula for n = 1 gives

a3 =
2a2 + a1

(3)(2)
=

5 + 2

6
=

7

6
.

The recursive formula for n = 2 gives

a4 =
3a3 + a2

(4)(3)
=

21
6 + 5

2

12
=

36
6

12
=

6

12
=

1

2
.

This matches our answer in part a).

3. Consider the differential equation y′′ + 3y′ + y = 0 with initial condition y(0) = 1 and
y′(0) = 1.

(a) Compute the degree four Taylor polynomial T4(x) for a solution to this initial
value problem.

(b) Find a recursive formula for the general solution centered at 0.

(c) Verify your computation of T4(x) using the recursive formula.
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Solution: This one is very similar to the previous one. I’ll be a little less wordy.

a) We have
y′′(0) = −3y′(0)− y(0) = −4,

y′′′(0) = −3y′′(0)− y′(0) = 11,

y′′′′(0) = −3y′′′(0)− y′′(0) = −29.

So

T4(x) =
1

0!
+

1

1!
x+

−4

2!
x2 +

11

3!
x3 +

−29

4!
x4 = 1 + x− 2x2 +

11

6
x3 −

29

24
x4.

b) b) If y(x) =
∑

anx
n then

y′(x) =
∑

n=0

an+1(n+ 1)xn

and
y′′(x) =

∑

n=0

an+2(n+ 2)(n+ 1)xn.

Thus y′′ +3y′ + y =
∑

n=0((n+2)(n+1)an+2 +3(n+1)an+1 + an)x
n = 0. Setting each

coefficient to zero, we get

an+2 =
−3(n+ 1)an+1 − an

(n+ 1)(n+ 2)

for all n ≥ 0.

The base of the recursion is the initial conditions y(0) = a0 and y′(0) = a1.

c) Let a0 = 1 and a1 = 1. The recursive formula for n = 0 gives

a2 =
−3a1 − a0

(2)(1)
= −2.

The recursive formula for n = 1 gives

a3 =
−3(2)a2 − a1

(3)(2)
=

12− 1

6
=

11

6
.

The recursive formula for n = 2 gives

a4 =
−3(3)a3 − a2

(4)(3)
=

−33
2 + 2

12
=

−29

24
.

This matches.

4. Consider the differential equation y′ − y = 1
1−x

with initial condition y(0) = 4.

(a) Compute the degree three Taylor polynomial T3(x) for a solution to this initial
value problem.

(b) Find a recursive formula for the general solution centered at 0.
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(c) Verify your computation of T3(x) using the recursive formula.

Solution: a) y′ = y + 1
1−x

so y′(0) = 4 + 1
(1−0) = 5. Taking the derivative we get

y′′ = y′ +
1

(1− x)2

so

y′′(0) = 5 +
1

12
= 6.

Taking the derivative we get

y′′′ = y′′ +
2

(1− x)3

so

y′′′(0) = 6 +
2

13
= 8.

Thus T3(x) = 4 + 5x+ 6
2x

2 + 8
6x

3.

b) If y(x) =
∑

anx
n then

y′(x) =
∑

n=0

an+1(n+ 1)xn.

Also,
1

1− x
=

∑

n=0

xn.

Thus

y′ − y −
1

1− x
=

∑

n=0

((n+ 1)an+1 − an − 1)xn = 0.

Setting each coefficient to zero we get

an+1 =
an + 1

n+ 1

for all n ≥ 0.

The base of the recursion is the initial condition y(0) = a0.

c) Let a0 = 4. The recursive formula for n = 0 gives

a1 =
4 + 1

1
= 5.

For n = 1 it gives

a2 =
5 + 1

2
= 3.

For n = 2 it gives

a3 =
3 + 1

3
=

4

3
.

This matches.

5. Consider the differential equation y′′ + x2y = 0 with initial condition y(0) = 4 and
y′(0) = −1.
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(a) Compute the degree four Taylor polynomial T4(x) for a solution to this initial
value problem. (Be careful! What is the derivative of x2y?)

(b) Find a recursive formula for the general solution centered at 0.

(c) Use this recursive formula to find T8(x). (If you did things correctly to this point,
this is not as bad as it sounds.)

Solution: a) Using y′′ = −x2y we get

y′′(0) = −024 = 0.

Taking the derivative we get
y′′′ = −2xy − x2y′

so
y′′′(0) = −2 · 0 · 4− 02(−1) = 0.

Taking the derivative we get

y′′′′ = −2y − 2xy′ − 2xy′ − x2y′′ = −2y − 4xy′ − x2y′′

so
y′′′′(0) = −2(4)− 0− 0 = −8.

Thus

T4(x) = 4− x+ 0x2 + 0x3 +
−8

24
x4 = 4− x−

1

3
x4.

b) If y(x) =
∑

anx
n then

y′(x) =
∑

n=0

an+1(n+ 1)xn

and
y′′(x) =

∑

n=0

an+2(n+ 2)(n+ 1)xn.

Also
x2y =

∑

n=2

an−2x
n,

a sum which starts at n = 2 (we already did the reindexing). Thus

y′′+x2y =
∑

n=0

an+2(n+2)(n+1)xn+
∑

n=2

an−2x
n = 2a2x

0+6a3x
1+

∑

n=2

((n+1)(n+2)an+2+an−2)x
n = 0.

(We separate the first two terms and combined the rest of the sum starting at n = 2.)
Setting each coefficient to zero we get

2a2 = 0, 6a3 = 0,

and

an+2 =
−an−2

(n+ 2)(n+ 1)

for all n ≥ 2.
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The base of our recursion is the initial condition y(0) = a0 and y′(0) = a1, together
with the special values a2 = 0 and a3 = 0. The recursive formula is an+2 = −an−2

(n+2)(n+1)

for all n ≥ 2.

c) Let a0 = 4 and a1 = −1. We know that a2 = a3 = 0. From the recursive formula for
n = 2 we get

a4 =
−a0

(4)(3)
=

−1

3
.

From the recursive formula for n = 3 we get

a5 =
−a1

(5)(4)
=

1

20
.

From the recursive formula for n = 4 we get

a6 =
−a2

(6)(5)
= 0,

and similarly for n = 5 we get a7 = 0. Then for n = 6 we get

a8 =
−a4

(8)(7)
=

1
3

8 · 7
=

1

3 · 8 · 7
.
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Now for the optional extra exercises.

1. Repeat the standard problem for y′ − (2 + 3x)y = 0, centered at 0, with y(0) = 3.

Solution: a)
y′(0) = 2y(0) = 6

y′′ = (2 + 3x)y′ + 3y

y′′(0) = 2y′(0) + 3y(0) = 21

y′′′ = (2 + 3x)y′′ + 3y′ + 3y′ = (2 + 3x)y′′ + 6y′

y′′′(0) = 2y′′(0) + 6y′(0) = 42 + 36 = 78.

So

T3(x) = 3 + 6x+
21

2
x2 +

78

6
x3.

I didn’t bother to do T4 here.

b) y(x) =
∑

0 anx
n so

y′(x) =
∑

n=0

an+1(n+ 1)xn

and

(2+3x)y =
∑

0

2anx
n+

∑

0

3anx
n+1 =

∑

0

2anx
n+

∑

1

3an−1x
n = 2a0x

0+
∑

1

(2an+3an−1)x
n.

Thus

y′ − (2 + 3x)y = (a1 − 2a0)x
0 +

∑

1

((n+ 1)an+1 − 2an − 3an−1)x
n = 0.

Hence
a1 = 2a0

and

an+1 =
2an + 3an−1

n+ 1

for n ≥ 1.

The base case is a0 = y(0) and a1 = 2a0.

c) If a0 = 3 then a1 = 6 and

a2 =
2a1 + 3a0

2
=

21

2

and

a3 =
2a2 + 3a1

3
=

21 + 18

3
= 13.

2. Consider the differential equation y′′ + x2y = 0 with initial condition y(1) = 4 and
y′(1) = −1.

(a) Compute the degree four Taylor polynomial T4(x) for a solution to this initial
value problem.
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(b) Suppose you try to find a recursive formula for the general solution centered at
1. What makes this problem subtle, and different from the previous problem? (If
you don’t get it, keep reading.)

(c) Find b0, b1, b2 such that

x2 = b0 + b1(x− 1) + b2(x− 1)2.

(d) Find the recursive formula for the general solution to the differential equation

y′′ + b0y + b1(x− 1)y + b2(x− 1)2y

centered at 1. (Is this doable? Is this the same differential equation as before?)

Partial Solution: a) you can do this. y′′(1) = −12y(1) = −4. and so forth.

b) Well, if we write y(x) =
∑

an(x − 1)n then what is the formula for x2y? It’s not∑
anx

2(x− 1)n, that’s not a power series.

c) Let g(x) = x2. Then g(1) = 1, g′(1) = 2, g′′(1) = 2, and all further derivatives are
zero. So

g(x) =
1

0!
+

2

1!
(x− 1) +

2

2!
(x− 1)2 = 1 + 2(x− 1) + (x− 1)2.

d) So we should rewrite the differential equation as y′′ + (1+ 2(x− 1)+ (x− 1)2)y = 0.
Now we can write each term as a power series, for example

(x− 1)2y =
∑

0

an(x− 1)n+2 =
∑

2

an−2(x− 1)n.

I’ll leave the rest as a further exercise. But it is doable, and it is the same differential
equation as before, just written in a way which is more convenient for centering at 1.

3. Repeat the standard problem for y′ − (2 + 3x)y = 0, centered at 1, with y(1) = 3.

Sketch: The interesting part is that we should rewrite 2 + 3x as a power series centered
at 1. We have 2 + 3x = 3(x− 1) + 5, so the ODE is better written as

y′ − (3(x− 1) + 5)y = 0.

Now when y(x) =
∑

an(x− 1)n we have

y′(x) =
∑

n=0

an+1(n+ 1)(x− 1)n

and

(3(x−1)+5)y =
∑

0

5an(x−1)n+3
∑

1

an−1(x−1)n = 5a0(x−1)0+
∑

1

(5an+3an−1)(x−1)n.

From this we get the formula

y′ − (2 + 3x)y = (a1 − 5a0)(x− 1)0 +
∑

1

((n+ 1)an+1 − 5an − 3an−1)(x− 1)n.

So the base case is a0 = y(1) and a1 = 5a0, and the recursive formula is

an+1 =
5an + 3an−1

n+ 1

for n ≥ 1.
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4. Consider the differential equation y′′ − y′ = 0, with general initial condition y(0) = a0
and y′(0) = a1.

(a) Find a recursive formula for the general solution centered at 0.

(b) What can you say about the specific solution with y(0) = 6 and y′(0) = 0? Have
you seen this function before?

(c) What can you say about the specific solution with y(0) = 6 and y′(0) = 6? Have
you seen this function before?

Solution a) The recursive formula ends up being

an+2 =
(n+ 1)an+1

(n+ 2)(n+ 1)
=

an+1

n+ 2

for all n ≥ 0. The base case is a0 = y(0) and a1 = y′(0).

b) When a0 = 6 and a1 = 0 we get a2 = a1

2 = 0 and a3 = a2

3 = 0 and a4 = a4

4 = 0 and
so forth. So an = 0 for all n ≥ 1, and the solution is just y(x) = 6, a constant function.

c) When a0 = 6 and a1 = 6 we get a2 = 6
2 and a3 = 6

3·2 and a4 = 6
4·3·2 and so forth. So

an = 6
n! for all n ≥ 0, and the solution is just y(x) = 6ex.

Aside: In fact, the general solution is C1 +C2e
x for any numbers C1 and C2. You learn

why in MAT256.


