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Chapter 5. Series Solutions of Second Order Linear Equationg

28. Determine the a, so that the equation
o0 oo
Z:mz,,x"‘1 +2 Zanx" =0
n=1 n=0

o0
is satisfied. Try to identify the function represented by the series Y a,x".
) n=0

3.2 Series Solutions Near an Ordinary Point, Part |

In Chapter 3 we described methods of solving second order linear differential equa- .

tions with constant coefficients. We now consider methods of solving second order
linear equations when the coefficients are functions of the independent variable. In
this chapter we will denote the independent variable by x. It is sufficient to consider
the homogeneous equation
d’y dy

P(x)gx—z + Q(X)E + R(x)y =0, @

since the procedure for the corresponding nonhomogeneous equation is similar.
Many problems in mathematical physics lead to equations of the form (1) having
polynomial coefficients; examples include the Bessel equation
xzy// +xy/ + (x2 _ v2)y =0,

where v is a constant, and the Legendre equation

A = 2%y — 22y’ + a(a + 1)y =0,

where o is a constant. For this reason, as well as to simplify the algebraic computations,
we primarily consider the case in which the functions P, Q, and R are polynomials.
However, as we will see, the method of solution is also applicable when P, Q, and R
are general analytic functions.

For the present, then, suppose that P, Q, and R are polynomials and that there is
no factor (x — ¢) that is common to all three of them. If there is such a factor (x — ¢),
then divide it out before proceeding. Suppose also that we wish to solve Eq. (1) in
the neighborhood of a point xg. The solution of Eq. (1) in an interval containing xg
is closely associated with the behavior of P in that interval.

A point xq such that P(x,) # 01is called an ordinary point. Since P is continuous, it
follows that there is an interval about x, in which P(x) is never zero. In that interval
we can divide Eq. (1) by P(x) to obtain

V' +p®)y +qx)y =0, @

where p(x) = Q(x)/P(x) and g(x) = R(x)/P(x) are continuous functions. Hence,
according to the existence and uniqueness Theorem 3.2.1, there exists in that inter-

‘val a unique solution of Eq. (1) that also satisfies the initial conditions y(xo0) = yo,

Y'(x0) = y; for arbitrary values of y, and ¥Yo- In this and the following section, we
discuss the solution of Eq. (1) in the neighborhood of an ordinary point.

On the other hand, if P(xo) = 0, then x; is called a singular point of Eq. (1). In
this case at least one of Q(xo) and R(xo) is not zero. Consequently, at least one of
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1

the coefficients p and g in Eq. (2) becomes unbounded as x — xo, and therefore
Theorem 3.2.1 does not apply in this case. Sections 5.4 through 5.7 deal with finding
solutions of Eq. (1) in the neighborhood of a singular point.

We now take up the problem of solving Eq. (1) in the neighborhood of an ordinary
point xo. We look for solutions of the form

Y = g+ a1(x — Xo) + -+ + an(x —X0)" 4+ = ) aa(x = X0)" 3)
0

and assume that the series converges in the interval |x —xo| < o for some p > 0.
While at first sight it may appear unattractive to seek a solution in the form of a
power series, this is actually a convenient and useful form for a solution. Within their
intervals of convergence, power series behave very much like polynomials and are
easy to manipulate both analytically and numerically. Indeed, even if we can obtain
a solution in terms of elementary functions, such as exponential or trigonometric
functions, we are likely to need a power series or some equivalent expression if we
want to evaluate them numerically or to plot their graphs.

The most practical way to determine the coefficients a,, is to substitute the series
(3) and its derivatives for y,y’,and y" in Eq. (1). The following examples illustrate this
process. The operations, such as differentiation, that are involved in the procedure
are justified so long as we stay within the interval of convergence. The differential
equations in these examples are also of considerable importance in their own right.

Find a series solution of the equation
y'+y=0, —00 < X < 00. ' 4)

. As we know, sinx and cosx form a fundamental set of solutions of this equation, so
series methods are not needed to solve it. However, this example illustrates the use of
power series in a relatively simple case. For Eq. @), Px)=1,0(x) =0, and R(x) = 1; hence
every point is an ordinary point.

We look for a solution in the form of a power series about xo = 0

oo
Y=o+ mx+ @t ax = an” &)

n=0

and assume that the series converges in some interval |x| < p. Differentiating Eq. (5) term by
term, we obtain

(o8]
yr=a1—|—2a2x+...+nan_xn—l+...=Znanxn—1 (6)
n=1
and "
o
¥ =202+"'+n(n—1)anx”“2+~- =Z”(n—1)ﬂnxn_2. | )
=2

Substituting the series (5) and (7) for y and y" in Eq. (4) gives

in(n — Dax 2+ ianx” =0.
=

T n=0
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To combine the two series, we need to rewrite at least one of them so that both series display
the same generic term. Thus, in the first sum, We shift the index of summation by replacing n
byn+2and starting the sum at 0 rather than 2. We obtain

3+ 2) 1+ Dansa” + Y ax" =0

n=0 n=0

or

3 [+ D1+ Dansa + @)X =0
n=0

For this equation to be satisfied for all x,the coefficient of each power of x must be zero; hence
we conclude that

» n+2) 4 Dama +a =0, n=0123,... ®)

Equation (8) is referred to as a recurresce relation. The successive coefficients can be
evaluated one by one by writing the recurrence relation first for n.=0, then for n =1, and
so forth. In this example Eq. (8) relates each coefficient to the second one before it. Thus
the even-numbered coefficients (@0, 2,04 - - .) and the odd-numbered ones (a1,as,0s, - - -) aT€
determined separately. For the even-numbered coefficients we have

a—_—__a_o.—:_.a_o a=_i2__=+_a_0 a:—ﬂ—:._gg
, 2= 2 4= T30 Ay 6= 76. 6"

y ‘ These results suggest that in general, if n = 2k, then |
| T |
i 4 ‘: (-D*

o ‘ , an=02k=mao, k=123,.... Q)

We can prove Eq. (9) by mathematical induction. First, observe that it is true for k = 1. Next,
assume that it is true for an arbitrary value of and consider the case k + 1. We have

i . __’_“&,,__,/(;Dk__,—a _=H
\ i w2 = Ty )k + D 2k + 2)2k + DH(2K)! 0=k

: ‘ Hence Eq. (9) is also true for k +1,and consequently it is true for all positive integers k.
Similarly, for the odd-numbered coefficients

ay ai as ay : as ai

©="33" 3

and in general,ifn = 2k + 1,then*

(—=DF

a, = Qo+l = mm, k=1,23,.... : (10)

g Substituting these coefficients into Eq. (5), we have

ot

5, -

2The result given in Eq. (10) and other gimilar formulas in this chapter can be proved by an induction
argument resembling the one just given for Eq. (9). We assume that the results are plausible and omit the
inductive argument hereafter.
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o G o, 41 3 Gy 4  aG1 5
)lay y—ao—f-alx—ax —g Z yx
g n
o (=1)"ao ny D% a0y
2n)! 2n+ 1)
x2 x4 (_ )n o
_a"[ Attt eyt ]
¥ X D"
+a1|:x—§+5—!+---+(2n—+1)!x +:|
>nce = 1y = 1y -
i - AT o A 2n+1. ) 11
; — “Onz_; et +”1;(2n+1)!x | (11)
& = —
®) ; | |
) be & Now that we have formally obtained two series solutions of Eq. (4), we can test them for
and * convergence. Using the ratio test, we can show that each of the series in Eq. (11) converges
Mhus - for all x, and this justifies retroactively all the steps used in obtaining the solutions. Indeed,
) are ; we recognize that the first series in Eq. (11) is exactly the Taylor series for cosx about x = 0
and that the second is the Taylor series for sin x about x = 0. Thus, as expected, we obtain the
solution y = aq cos x + g sin x.

Notice that no conditions are imposed on a, and a;; hence they are arbitrary. From Eqs. (5)
and (6) we see that y and y' evaluated at x = 0 are ap and ay, respectively. Since the initial
conditions y(0) and y’(0) can be chosen arbitrarily, it follows that a; and a; should be arbitrary
until specific initial conditions are stated.

Figures 5.2.1 and 5.2.2 show how the partial sums of the series in Eq. (11) approximate

9) cos x and sin x. As the number of terms increases, the interval over which the approximation is
satisfactory becomes longer, and for each x in this interval the accuracy of the approximation
improves. However, you should always remember that a truncated power series provides only

Next, a local approximation of the solution in a neighborhood of the initial point x = 0; it cannot
adequately represent the solution for large |x]|.
s
(10)
. n=2 n=6 n=10 n=14 n=18
E;ti(t)lz ' FIGURE 5.2.1 Polynomial approximations to cosx. The value

of nis the degree of the approximating polynomial.
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FIGURE 5.2.2 Poiynormal approximations to sinx. The value
of n is the degree of the approximating polynomial.

- ‘ In Example 1 we knew from the start that sin x and cosx form a fundamental set of
. solutions of Eq. (4). However, if we had not known this and had simply solved Eq. (4)
i using series methods, we would still have obtained the solution (11). In recognition

t ~ of the fact that the differential equation (4) often occurs in applications, we might
1 '_‘:33 decide to give the two solutions of Eq. (11) special names, perhaps
o . 00 00
=n" , D" o
Cx) = " =Y X 12
x) };0 T S(x) X:(:) e (12)

Then we might ask what properties these functions have. For instance, can we be sure
that C(x) and S(x) form a fundamental set of solutions? It follows at once from the
series expansions that C(0) =1and SQO) = 0. By differentiating the series for C(x)

e ‘ and S(x) term by term, we find that
; S =Ckx, CH= —S(x). (13)
i Thus, at x = 0 we have 5§y =1and C 0) =0. Consequently, the Wronskian of C
5 and Satx =01is
e 10
X WEHO =, =1 (14)

so these functions do indeed form a fundamental set of solutions. By substituting —*
for x in each of Egs. (12), we obtain C(—x) = C(x) and S(—x) = —S(x). Moreover,
‘ by calculating with the infinite series3 we can show that the functions C(x) and Sx)
ko have all the usual analytical and algebraic properties of the cosine and sine functions,
respectively.

g . 3Such an analysis is given in Section 24 of K. Knopp, Theory and Applications of Infinite Series (New York:
K Hafner, 1951).
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2

Although you probably first saw the sine and cosine functions defined in a more
elementary manner in terms of right triangles, it is interesting that these functions
can be defined as solutions of a certain simple second order linear differential equa-
tion. To be precise, the function sinx can be defined as the unique solution of the
initial value problem y” +y =0, y(0) = 0, ¥'(0) = 1; similarly, cos x can be defined
as the unique solution of the initial value problem y'+y=0,y0)=1,y'(0)=0.
Many other functions that are important in mathematical physics are also defined
as solutions of certain initial value problems. For most of these functions there is no
simpler or more elementary way to approach them.

Find a series solution in powers of x of Airy’s* equation
Y —xy =0, —00 < X < 00. (15)

For this equation P(x) = 1, Q(x) = 0,and R(x) = =x;hence every pointis an ordinary point.
We assume that

y= i anx" (16)
n=0

and that the series converges in some interval [x| < p-The series for y” is given by Eq. (7); as
explained in the preceding example, we can rewrite it as

Y'= " +2)( + Dayox”. , (17

n=0

Substituting the series (16).and (17) for y and y” in Eqg. (15), we obtain

Z n+2)(n+ Dayx® =x Z anx" = Z a,x™t, (18)
n=0 n=0 n=0

Next, we shift the index of summation in the series on the right side of Eq. (18) by replacing
n by n — 1 and starting the summation at 1 rather than zero. Thus we have ‘

2-la, + Z(n +2)(n+ Da,x" = Z a1 x".

n=1 n=1

Again, for this equation to be satisfied for all x in some interval, the coefficients of like powers
of x must be equal; hence a, = 0, and we obtain the recurrence relation

n+2)n+ Da,p =a, 4 for n=1,2,3,.... (19)

Since a,,, is givenin terms of a,_;, the a’s are determined in steps of three. Thus a, determines
as, which in turn determines ag, . . .; a; determines a,, which in turn determines as, ... ;and ap
determines as, which in turn determines as, ... Since a; = 0, we immediately conclude that
as=ag =ay =---=0.

4Sir George Biddell Airy (1801-1892), an English astronomer and mathematician, was director of the
Greenwich Observatory from 1835 to 1881. He studied the equation named for him in an 1838 paper on
optics. One reason why Airy’s equation is of interest is that for x negative the solutions are similar to

trigonometric functions, and for x positive they are similar to hyperbolic functions. Can you explain why
it is reasonable to expect such behavior?
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For the sequence dy, a3, ds, s, - - - WE S€tn = 1,4,7,10,... in the recurrence relation:

ap as ag ag ap
a3 = —=» g= —— =<2 7

23 56-2356 ©T89 23568097

" These results suggest the general formula

Uz, = i V n>4
= 573.5.6..-(3n—1)(3n)’ =

For the sequence aq, a4, a7, dio, - - - » W 86t n=2,5,8,11,...1in the recurrence relation:
a_d_l a-—a4— a a_tl7_ a1
‘T3 7T 6.7 3-4-6-7 V=910 3.4-6.7-9.1077""

In general, we have

a
A3n+l = 3.4.6-7---3m)@Bn+1)’

Thus the general solution of Airy’s equation is

x3 X6 x3n §
—al1e = ..
Y “0[ +t33%33567 T23 G006 ]

x4 . x7 x3n+1 ]

satiaeq T ia eyl @0)

+a1|:x+

Having obtained these two series solutions, we can now investigate their convergence.
Because of the rapid growth of the denominators of the terms in the series (20), we might
expect these series to have a large radius of convergence. Indeed, it is easy to use the ratio test
to show that both of these series converge for all x; see Problem 20.

Assuming for the moment that the series do converge for all x, let y; and y, denote the
functions defined by the expressions in the first and second sets of brackets, respectively,
in Eq. (20). Then, by choosing first gg = 1, @, = 0 and then ap = 0,41 = 1, it follows that y;
and y, are individually solutions of Eq. (15). Notice that y; satisfies the initial conditions
y1(0) =1, ¥1(0) =0 and that y, satisfies the initial conditions y,(0) =0, y5(0) = 1. Thus
W(y1,y2)(0) =1 # 0, and consequently y; and y, are a fundamental set of solutions. Hence
the general solution of Airy’s equation is

y = agy1(x) + ary2(x), —00 < X < 00.

In Figures 5.2.3 and 5.2.4, respectively, we show the graphs of the solutions y; and y2 of
Airy’s equation, as well as graphs of several partial sums of the two series in Eq. (20). Again,
the partial sums provide local approximations to the solutions in a neighborhood of the origin.
Although the quality of the approximation improves as the number of terms increases, 00
polynomial can adequately represent y; and y, for large |x|. A practical way to estimate the
interval in which a given partial sum is reasonably accurate is to compare the graphs of that
partial sum and the next one, obtained by including one more term. As soon as the graphs
begin to separate noticeably, we can be confident that the original partial sum is no longer
accurate. For example, in Figure 5.2.3 the graphs for n = 24 and n = 27 begin to separate
at about x = —9/2. Thus, beyond this point, the partial sum of degree 24 is worthless as ai
approximation to the solution.
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FIGURE 5.2.3 Polynomial approximatidns to the solution )ﬁ(x) of Aify’s eqﬁétion.
The value of n is the degree of the approximating polynomial.

Y .
Hns4y
oL

FIGURE 5.2.4 Polynomial approxirﬂations to thé solution y, (x) of Airy’s éqﬁation.
The value of 7 is the degree of the approximating polynomial.

Observe that both y; and y, are monotone for x > 0 and oscillatory for x < 0. You can
also see from the figures that the oscillations are not uniform but, rather, decay in amplitude
and increase in frequency as the distance from the origin increases. In contrast to Example 1,
the solutions y; and y, of Airy’s equation are not elementary functions that you have already
encountered in calculus. However, because of their importance in some physical applications,

these functions have been extensively studied, and their properties are well known to applied
mathematicians and scientists.

Find a solution of Airy’s equation in powers of x — 1.

EXAMPLE The point x = 1 s an ordinary point of Eq. (15), and thus we look for a solution of the form

3 .
Y= anx—1",
n=0
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where we assume that the series converges in some interval |x — 1| < p. Then

Y = Ym0 = Y0+ Dapa =17

n=1 n=0
and o -
Yo=Y nm = Dax = 1" =)+ 2+ Dana® ="
n=2 n=0
Substituting for y and y” in Eq. (12), we obtain
Y 42+ Dapalx - 1" =x > a1 L(21)
n=0 - n=0

Now to equate the coefficients of like powers of (x — 1), we must express x, the coefficient of y
in Eq. (15),in powers of x — 1; that is, we write x = 1 + (x — 1). Note that this is precisely the
Taylor series for x about x = 1. Then Eq. (21) takes the form

S+ D0+ Vg = D' = [+ @ = DI Y a0 —1)"

n=0 n=0

o] o0 .
= Zan(x -+ Zan(x — 1t
n=0 n=0

Shifting the index of summation in the second series on the right gives

S+ D0+ Dagp 6= D" = Y ap(r = 1"+ apalx— 1"
' n=1

=0 n=0
Equating coefficients of like powers of x — 1, we obtain
2a, = ag,
(3-2)as = a1 +ao,
@4-ay=a +a,
(5 -das =as +a,

The general recurrence relation is

n+2)(n+ Dapr =+ @y for n>1. (22)
Solving for the first few coefficients a, in terms of ay and a;, we find that
a_ao a_a_l o @ 4 G 4 a3+az_ao+_ﬂ1_
2T "% 6’ TR TR 41 5T20720 30 1200
Hence
_ -1 @-1D -1 (- 1°
y__ao[1+ 3 + 6 + A + 30 + -

=17 @=1* @-1° |
+a1[(x—1)+ G + 7 + 120 +:| (23)

In general, when the recurrence relation has more than two terms, as'in Eq. (22), the deter-
mination of a formula for a, in terms g and a; will be fairly complicated, if not impossible. In
this example such a formula is not readily apparent. Lacking such a formula, we cannot test the
two series in Eq. (23) for convergence by direct methods such as the ratio test. However, weé
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shall see in Section 5.3 that even without knowing the formula for a,, it is possible to establish
that the two series in Eq. (23) converge for all x. Further, they define functions y; and y, that
are a fundamental set of solutions of the Airy equation (15). Thus

¥ = apy3(x) + arya(x)

is the general solution of Airy’s equation for —oo < x < co.

It is worth emphasizing, as we saw in Example 3, that if we look for a solution

of Eq. (1) of the form y = " a,(x — xo)", then the coefficients P(x), O(x), and R(x)
n=0

in Eq. (1) must also be expressed in powers of x — x;. Alternatively, we can make

the change of variable x — xo = ¢, obtaining a new differential equation for y as a

o0
function of ¢, and then look for solutions of this new equation of the form ) a,".
n=0

When we have finished the calculations, we replace ¢ by x — Xy (see Problem 19).

In Examples 2 and 3 we have found two sets of solutions of Airy’s equation. The
functions y; and y, defined by the series in Eq. (20) are a fundamental set of solutions
of Eq. (15) for all x, and this is also true for the functions y3 and y4 defined by the series
in Eq. (23). According to the general theory of second order linear equations, each
of the first two functions can be expressed as a linear combination of the latter two
functions, and vice versa—a result that is certainly not obvious from an examination
of the series alone. '

Finally, we emphasize that it is not particularly important if, as in Example 3, we are
unable to determine the general coefficient a, in terms of ag and a;. What is essential
is that we can determine as many coefficients as we want. Thus we can find as many
terms in the two series solutions as we want, even if we cannot determine the general
term. While the task of calculating several coefficients in a power series solution is
not difficult, it can be tedious. A symbolic manipulation package can be very helpful
here; some are able to find a specified number of terms in a power series solution in
response to a single command. With a suitable graphics package we can also produce

_ plots such as those shown in the figures in this section.

—_—

P

ROBLEMS

In each of Problems 1 through 14:

(a) Seek power series solutions of the given differential equation about the given point x;
find the recurrence relation.

(b) Find the first four terms in each of two solutions y1 and y, (unless the series terminates
sooner).

(c) By evaluating the Wronskian W (y,, y2)‘(x0), show that y; and y, form a fundamental set
of solutions. o

(d) If possible, find the general term in each solution.

1. y"—y=0, x=0 2.9 —xy —y=0, x=0

3.y —xy —y=0, x=1 4.y + k*x%y =0, xo =0, kaconstant
50A=%y"+y=0, x=0 6. Q+xD)y —xy +4y=0, x=0

7. ¥ +xy +2y =0, x=0 8 xy'+y +xy=0, x=1

9. (1+x2)y" — dxy' 4 6y = 0, =0 10. 4—xD)y" +2y=0, x=0
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1. G-y —3xy —y=0, x=0
12. 1 =x)y" +xy —y=0, X =0
13. 2y" +xy +3y =0, % =0

14. 2y" + (x+ Dy +3y =0, Xp=2

In each of Problems 15 through 18:
(a) Find the first five nonzero terms in the solution of the given initial value problem.
(b) Plot the four-term and the five-term approximations to the solution on the same axes.
(¢) From the plot in part (b) estimate the interval in which the four-term approximation is
reasonably accurate.

‘Q 15. ¥ —xy' =y =0, yoy=2, yO =15 see Problem 2

.'{& 16. 2+ xH)y" —xy +4y =0, y) =-1, y© =3 = see Problem 6

.'Q, 17. y" +xy +2y =0, y0 =4, yO0)= —1; see Problem 7

."?, 18. (1 —x)y" +xy —y=0, y(0) = -3, ‘y’(O) =72 see Problem 12
19. (a) By making the change of variable x — 1 = ¢ and assuming that y has a‘Taylor series in

powers of ¢, find two series solutions of

Y4 =1 + 6=y =0

in powers of x — 1.
(b) Show that you obtain the same result by assuming that y has a Taylor series in powers
of x — 1 and also expressing the coefficient %2 —1in powers of x — 1.

20. Show directly, using the ratio test, that the two series solutions of Airy’s equation about
x = 0 converge for all x; see Eq. (20) of the text.

1. The Hermite Equation. The equation
» y'—2xy +iy=0, =~ —00<X <00

where A is a constant, is known as the Hermite’ equation. It is an important equation in
mathematical physics.

(a) Find the first four terms in each of two solutions about x = 0 and show that they form
a fundamental set of solutions.

(b) Observe thatif Aisa nonnegative even integer, then one or the other of the series
solutions terminates and becomes 2 polynomial. Find the polynomial solutions for 4 = 0,
2.4, 6,8, and 10. Note that each polynomial is determined only up to a multiplicative
constant.

(c) The Hermite polynomial Hy(x) is defined as the polynomial solution of the Hermite
equation with & = 271 for which the coefficient of x” is 2%, Find Hy(x), . . ., Hs(x).

79. Consider the initial value problem y' = J1—y%,y0) =0.
(a) Show thaty = sinx is the solution of this initial value problem.

(b) Look for a solution of the initial value problem in the form of a power series about
x = 0. Find the coefficients up to the term in x3 in this series.

5Charles Hermite (1822-1901) was an influential French analyst and algebraist. An inspiring teacher, he
was professor at the Ecole Polytechnique and the Sorbonne. He introduced the Hermite functions in 1864
and showed in 1873 thateis a transcendental number (that is, e is not a root of any polynomial equation
with rational coefficients). His name is also associated with Hermitian matrices (see Section 7.3), some of
whose properties he discovered.

7
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In each of Problems 23 through 28, plot several partial sums in a series solution of the given

initial value problem about x = 0, thereby obtaining graphs analogous to those in Figures5.2.1
through 5.2.4. '

& 3.y —xy—y=0 y0)=1, y(0) =0, see Problem 2

.’Q 24. 243y —xy + 4y =0, yO =1, y©0) =0 see Problem 6
.’Q 25. ' +xy +2y =0, y©0) =0, y@0) =1; see Problem 7
6226 4-D)y +2y=0, yO)=0, y©) =1 seeProblem 10
27y +3%y =0,  y0)=1, y©)=0; secProblem4

6 28 A—x)y +xy—2y=0, 0 =0, y(0) =1

5.3 Series Solutions Near an Ordinary Point, Part II
O “Catan rdinary Tom, rart 11

In the preceding section we considered the problem of finding solutions of
P()y" + Q)Y + R@)y = 0, )

where P, Q, and R are polynomials, in the neighborhood of an ordinary point x;.
Assuming that Eq. (1) does have a solution ¥ = ¢(x) and that ¢ has a Taylor series

o0
y=¢@) =" ay(x—x)" 2)
n=0
that converges for |x — xo| < p,where © > 0,we found that the a,, can be determined
by directly substituting the series (2) for y in Eq. ().

Let us now consider how we might Justify the statement that if x, is an ordinary
point of Eq. (1), then there exist solutions of the form (2). We also consider the
question of the radius of convergence of such a series. In doing this, we are led to a
generalization of the definition of an ordinary point.

Suppose, then, that there is a solution of Eq. (1) of the form (2). By differentiating
Eq. (2) m times and setting x equal to x;, we obtain

My, = ¢ (x).

Hence, to compute a,, in the series (2), we must show that we can determine & (x0)
forn=0,1,2,... from the differential equation (D).

Suppose that y = ¢(x) is a solution of Eq. (1) satistying the initial conditions
y&o) = yo,y'(x0) = y;. Thenag = Yoand a; = y;. If we are solely interested in finding
a solution of Eq. (1) without specifying any initial conditions, then ay and a; remain
arbitrary. To determine ¢™ (x;) and the corresponding a, forn = 2,3,..., we turn to
Eq. (1). Since ¢ is a solution of Eq. (1), we have

Px)¢"(x) + Q(x)¢'(x) + R(x)p(x) = 0.
For the interval about x for which P is nonzero, we can write this equation in the form
¢"(x) = —p0)¢' (x) — ()¢ (x), v &)
where p(x) = Q(x)/P(x) and q(x) = R(x)/P(x). Setting x equal to xq in Eq. (3) gives
¢"(x0) = ~p(x0)¢' (x0) — g(x0)(xp).
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Hence a, is given by
ay = ¢ (xg) = —pxo)a1 — q(x0)do. @)
To determine as, we differentiate Eq. (3) and then set x equal to xp, obtaining
3las = ¢ (x) = —[p¢” + (@' + ¥ +d'9]
xX=xg

= —2p(xo)a — [P/ (x0) + q(x0)la1 — g’ (Xo)do- (%)

Substituting for a, from Eq. (4) gives a3 in terms of a; and ag. Since P, Q,and R are
polynomials and P(xo) # 0, all the derivatives of p and g exist at xo. Hence, we can
continue to differentiate Eq. (3) indefinitely, determining after each differentiation

. the successive coefficients ag, as, . . . by setting x equal to xp.

Notice that the important property that we used in determining the a, was that
we could compute infinitely many derivatives of the functions p and g. It might seem
reasonable to relax our assumption that the functions p and ¢ are ratios of polyno-
mials and simply require that they be infinitely differentiable in the neighborhood of
xo. Unfortunately, this condition is too weak to ensure that we can prove the conver-
gence of the resulting series expansion for y = ¢(x). What is needed is to assume that
the functions p and g are analytic at xo; that is, they have Taylor series expansions that
converge to them in some interval about the point xo:

p(x) =po+p1(x — %) + -+ +Palx —x0)" + - = > palx = x0)", (6)
=0

g(x) = go + q1(x — %0) + - - + gulx —X0)" + - = > gnlx = x0)". (™)
' n=0

With this idea in mind, we can generalize the definitions of an ordinary point and a
singular point of Eq. (1) as follows: if the functions p = Q/P andq = R/P are analytic
at xo, then the point x is said to be an ordinary point of the differential equation (1);
otherwise, it is a singular point.

Now let us turn to the question of the interval of convergence of the series solution.
One possibility is actually to compute the series solution for each problem and then
to apply one of the tests for convergence of an infinite series to determine its radius
of convergence. Unfortunately, these tests require us to obtain an expression for the
general coefficient a, as a function of n, and this task is often quite difficult, if not
impossible; recall Example 3 in Section 5.2. However, the question can be answered
at once for a wide class of problems by the following theorem.

If x, is an ordinary point of the differential equation (1)
P(x)y" + Q@)Y + Ry =0,

that is, if p = Q/P and g = R/P are analytic at xo, then the general solution of
Eq-(1)is

y = an(x = x)" = aoy1(x) + a1y2(x), ®)

n=0
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EXAMPLE

1

where ag and a; are arbitrary, and y; and Y2 are two power series solutions that are
analytic at xo. The solutions y; and y, form a fundamental set of solutions, Further,
the radius of convergence for each of the series solutions y1 and y; is at least as
large as the minimum of the radii of convergence of the series forp andg. -~

To see that y; and y, are a fundamental set of solutions, note that they have the
form y;(x) =1+ by(x —x¢)2+--- and y2(x) = (x — x0) + c2(x — x0)> + - - -, where
by + ¢z = ay. Hence y; satisfies the initial conditions y1(x0) = 1, yi(x0) =0, and y,
satisfies the initial conditions y,(xg) = 0, Y5 (x0) = 1. Thus W(y1, y2) (%) = 1.

Also note that although calculating the coefficients by successively differenti-
ating the differential equation is excellent in theory, it is usually not a practical
computational procedure. Rather, you should substitute the series (2) for y in the dif-
ferential equation (1) and determine the coefficients so that the differential equation
is satisfied, as in the examples in the preceding section. «

We will not prove this theorem, which in a slightly more general form was estab-
lished by Fuchs. What is important for our purposes is that there is a series solution
of the form (2) and that the radius of convergence of the series solution cannot be
less than the smaller of the radii of convergence of the series for p and g; hence we
need only determine these.

This can be done in either of two ways. Again, one possibility is simply to compute
the power series for p and g and then to determine the radii of convergence by
using one of the convergence tests for infinite series. However, there is an easier
way when P, Q, and R are polynomials. It is shown in the theory of functions of a
complex variable that the ratio of two polynomials, say, Q/P,has a convergent power
series expansion about a point x = xg if P(xy) # 0. Further, if we assume that any

factors common to Q and P have been canceled, then the radius of convergence of .

the power series for Q/P about the point xq is precisely the distance from x; to the
nearest zero of P. In determining this distance, we must remember that P(x) = Omay
have complex roots, and these must also be considered. ‘

What is the radius of convergence of the Taylor series for (1 + x%)~! about x = 0?
One way to proceed is to find the Taylor series in question, namely,

1

m=1—x2+x4—x6+~~+(—1)"x2"+---.

Then it can be verified by the ratio test that p = 1. Another approach is to note that the zeros of
14 x? are x = =+i. Since the distance in the complex plane from 0 to i or to —i is 1, the radius
of convergence of the power series about x = 0 is 1. '

Lazarus Immanuel Fuchs (1833-1902), a German mathematician, was a student and later a professor at
the University of Berlin. He proved the result of Theorem 5.3.1 in 1866. His most important research was
onsingular points of linear differential equations. He recognized the significance of regular singular points

(Section 5.4), and equations whose only singularities, including the point at infinity, are regular singular
points are known as Fuchsian equations.
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2

EXAMPLE

3

EXAMPLE

4

What is the radius of convergence of the Taylor series for (x? — 2x +2)"! about x = 0? about

x=17

First notice that
W¥—24+2=0

Otoeitherle—Fior

has solutions x = 1 = i. The distance in the complex plane from x =
: oo
3" a,.x" about

— iis +/2: hence the radius of convergence of the Taylor series expansion

x=1
x=0is /2. =0
The distance in the complex plane from x = {toeitherx = 1 +iorx=1—iis1;hence the

i b,(x — 1)" aboutx = 1is 1.

n=0

radius of convergence of the Taylor series expansion

According to Theorem 5.3.1, the series solutions of the Airy equation in Examples
2 and 3 of the preceding section converge for all values of x and x — 1, respectively,

since in each problem P(x) =1 and hence is never zero. -

A series solution may converge for a wider range of x than indicated by Theorem
5.3.1, so the theorem actually gives only a lower bound on the radius of convergence
of the series solution. This is illustrated by the Legendre polynomial solution of the

Legendre equation given in the next example.

Determine a lower bound for the radius of convergence of series solutions about x = 0 for the

Legendre equation
1 -x2)y —2xy +al+Dy= 0,

where « is a constant.
Note that P(x) =1 —x%, Q(x)
zeros of P, namely, x = x1,are a distance 1 from x =

= —2x, and R(x) = a(a+ 1) are polynomials, and that the
0. Hence a series solution of the form

o0
Y a,x" converges atleast for x| < 1,and possibly for larger values of x. Indeed, it can be shown

n=0
that if o is a positive integer,one of the series solutions terminates after a finite number of terms
[x] < 1 but for all x. For example, if o = 1, the polynomial

and hence converges not just for
solution is y = x. See Problems 22 through 29 at the end of this section for a further discussion

of the Legendre equation.

series solutions of the differential

©

Determine a lower bound for the radius of convergence of

equation
A+ 32y’ +2xy +4x’y =0

about the point x = 0; about the pointx = — L )
Again P, Q,and R are polynomials, and P has zeros at x = i. The distance in the complex

plane from 0 to =i is 1, and from ~3toiis /1+ ! = 4/5/2. Hence in the first case the

o0 oo

. . . n

series Y a,x" cONverges at least for |x| < 1, and in the second case the series Y by (x + %)
n=0 R

n=0
converges at least for x + 3| < S50
An interesting observation that we can make about Eq. (9) follows from Theorems 321
and 5.3.1. Suppose that initial conditions y(0) = yo and y'(0) = y, are given. Since 14x*#0
for all x, we know from Theorem 3.2.1 that there exists a unique solution of the initial value
problem on —00 < X < 00 On the other hand, Theorem 5.3.1 only guarantees a series solution
of the form Y a.x" (with ag = yo,th = ypfor—1<x <1l The unique solution on the interval

n=0
_ 00 < x < 00 may not have a power series about x = 0 that converges for all x.
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rons
i Can we determine a series solution about x = 0 for the differential equation
ibout EXAMPLE
5 Y'+ (sinx)y + (1 +x7)y =0, .
and if so, what is the radius of convergence?

. For this differential equation, p(x) = sinx and g(x) = 1 + x2. Recall from calculus that sinx
tior has a Taylor series expansion about x = 0 that converges for all x. Further, q also has a Taylor
about ; ) series. expansion about x = 0, namely, g(x) = 1 + x?, that convetrges for all x. Thus there is

a scries solution of the form y = Y~ a,x" with a, and a; arbitrary, and the series converges
ce the for all x. n=0
mples i
tively, ---nnr e ...
. PROBLEMS In each of Problems 1 through 4, determine ¢ (xo), ¢" (xo), and-¢® (x,) for the given point x
.orem pF- s=————=  if y = ¢(x) is a solution of the given initial value problem.
gence 1 Ly +xy+y=0, y0) =1, y©) =0
of the - 2. y" + (sinx)y’ + (cosx)y = 0; y©0)=0, y0) =1
3.x' +A+x0y +3(nxy=0  y1) =2, yd)=0
4. Y +x%y + im0y =0, yO0)=a, YO =a
for the
In each of Problems 5 through 8, determine a lower bound for the radius of convergence of
series solutions about each given point x, for the given differential equation.
5. y"+4y +6xy =0 xo=0, xx=4
hat the 6. (2 —2x=3)y" +xy +4y=0; x9=4, xg=-4, x=0
e form 7. A+3)y" + dxy' +y=0; X =0, x3=2
> shown 8 0" +y=0;, x=1
of terms 9. Determine alower bound for the radius of convergence of series solutions about the given
ynomial ‘ xo for each of the differential equations in Problems 1 through 14 of Section 5.2.
cussion 10. The Chebyshev Equation. The Chebyshev’ differential equation is
(1 _ x2)y// _ xy/ + aZy — 0,
erential where « is a constant. _
(a) Determine two solutions in powers of x for |x| < 1, and show that they form a
©) fundamental set of solutions.
) (b) Show that if « is a nonnegative integer n, then there is a polynomial solution of
complex , degree n. These polynomials, when properly normalized, are called the Chebyshev
the ' polynomials. They are very useful in problems that require a polynomial approximation
case 3 to a function definedon —1 < x < 1.
v \
(x + %)" , (¢) Find a polynomial solution for each of the casesa = n = 0,1,2, 3.
ms 3.2.1 ‘
2 £ D ‘
_,‘— X ?ue 7Pafnuty L. Chebyshev (1821-1894), the most influential nineteenth-century Russian mathematician, was
ial va. ] for 35 years professor at the University of St. Petersburg, which produced a Jong line of distinguished
 solution mathematicians. His study of Chebyshev polynomials began in about 1854 as part of an investigation of
= interval the approximation of functions by polynomials. Chebyshev is also known for his work in number theory

and probability.
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For each of the differential equations in Problems 11 through 14, find the first four nonzero
terms in each of two power series solutions about the origin. Show that they form a fundamental
set of solutions. What do you expect the radius of convergence to be for each solution?

11. y" + (sinx)y =0 12. &y"+xy =0
13. (cosx)y” +xy —2y =0 14. ey +In(L +x)y —xy=0

15. Let x and x2 be solutions of a differential equation P(x)y" + Q)Y + Rx)y =0.Canyou
say whether the point x = 0 is an ordinary point or a singular point? Prove your answer.

. First Order Equations. The serieé methods discussed in this section are directly applicable
O to the first order linear differential equation P(x)y’ + O(x)y = 0 at a point x, if the function
] p = Q/P has a Taylor series expansion about that point. Such a point is called an ordinary

. o0
point, and further, the radius of convergence of the series y = Y a,(x — xo)" is at least as large

: as the radius of convergence of the series for Q/P.In each of Pro%lems 16 through 21, solve the
'i | given differential equation by a series in powers of x and verify that a, is arbitrary in each case.
e , ' Problems 20 and 21 involve nonhomogeneous differential equations to which series methods
‘ can be easily extended. Where possible, compare the series solution with the solution obtained
by using the methods of Chapter 2.

i: 16. y —y=0 17. ¥y —xy =0
18. y =€y, ‘three terms only 19. A —x) =y
: 20. ¥y —y = x* 21 Yy +xy=1+x

|
~=; | -
y The Legendre Equation. Problems 22 through 29 deal with the Legendre® equation

1 =22y —2xy +a(@+1)y =0.

Asindicated in Example 3, the point x = 0is an ordinary point of this equation, and the distance
- o from the origin to the nearest zero of P(x) =1 — %% is 1. Hence the radius of convergence of
118K ‘ series solutions about x = 0 is at least 1. Also notice that we need to consider only a > -1
: because if o < —1, then the substitution o = —(1 +y), where y > 0, leads to the Legendre
4% equation (1 —x2)y” —2xy' 4+ y(y + 1)y =0.

22. Show that two solutions of the Legendre equation for |x| < 1 are

yix) =1— o+ sz + oo =2+ 1)(OH_B)JC“ ‘

2! 4!

ad ;2 2 - (a+2m—-1
.
m=3
@-D@+2) 5 (@-DE@-Na+D@+d s
3 7 51 *

yax) = x —

@D @=2mtDe+2) - @ 2m)
+ 2D 2m+ D! S

m=3

' 8 Adrien-Marie Legendre (1752-1833) held various positions in the French Académic des Sciences from
1783 onward. His primary work was in the fields of elliptic functions and number theory. The Legeﬂf1re
functions, solutions of Legendre’s equation, first appeared in 1784 in his study of the attraction of spheroids.
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NZETo 23. Show that if « is zero or a positive even integer 2#, the series solution y1 reduces to a
nental polynomial of degree 2n containing only even powers of x. Find the polynomials corre-
| sponding to « = 0, 2, and 4. Show that if « is a positive odd integer 2n + 1, the series
solution y; reduces to a polynomial of degree 2n + 1 containing only odd powers of x.
Find the polynomials corresponding to o = 1,3, and 5.
m you , ﬁ 24. The Legendre polynomial P,(x) is defined as the polynomial solution of the Legendre
swer ‘ equation with & = n that also satisfies the condition P,(1) = 1.
| ) (a) Using the results of Problem 23, find the Legendre polynomials Py(x),.. ., Ps(x).
hcat‘,‘gﬁ , : (b) Plot the graphs of Py(x),. .., Ps(x) for -1 < x < 1.
cti ' : :
filinary 3 ‘ (c) Find the zeros of Py(x),. .., Ps(x).
! 1 25. Tt can be shown that the general formula for P,(x) is
s large é :
lve the Y 1'& —vken-200
h case Py =5, o
- 0 d- ‘ 27 = k'(n — k)l(n — 2k)!
ethods .
tained where |n/2| denotes the greatest integer less than or equal to n/2. By observing the form
of P, (x) for n even and n odd, show that P,(—1) = (=1)".

26. The Legendre polynomials play an important role in mathematical physics. For example,in
solving Laplace’s equation (the potential equation) in spherical coordinates, we encounter
the equation

d’F dF
(w)—l—cot(pﬁ +nn+ 1DF(p) =0, 0<g¢<um,
dg? dy

where 7 is a positive integer. Show that the change of variable x = cos ¢ leads to the

Legendre equation with & = 7 for y = f(x) = F(arccos x).
listance 27. Show that for n = 0,1,2, 3, the corresponding Legendre polynomial is given by
ence of ‘ "
o Py = L2 gy
egendre ‘ 2n! dxr

This formula, known as Rodrigues’s formula,” is true for all positive integers n.

28. Show that the Legendre equation can also be written as
[T ~x)yT = —ala+ 1)y.
Then it follows that
[A~2)P,®]) = —n(n+ DPyx) and [(1 — )P, x)] = —m(m + 1)P,(x).
By multiplying the first equation by P,,(x) and the second equation by P,(x), integrating
by parts, and then subtracting one equation from the other, show that
1
/ P,(xX)P,,(x)dx =0 if n#m.
-1

This property of the Legendre polynomials is known as the orthogonality property. If

m = n, it can be shown that the value of the preceding integral is 2/(2n + 1).
nces from 9Benjamin Olinde Rodrigues (1795-1851) published this result as part of his doctoral thesis from the
;Legenfidre University of Paris in 1815. He then became a banker and social reformer but retained an interest in
spheroids.

mathematics. Unfortunately, his later papers were not appreciated until the late twentieth century.




