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Math 253 (Calculus III), Winter 2019

Practice Final Solutions

1. (28 pts) Does the sequence converge or diverge? WHY? If it converges, what is the
limit?

(a) an = cos(
3n3 + 16n

16n3 + 12n2 + 3
)

Solution: By examination of leading terms, lim 3n3+16n
16n3+12n2+3

= lim 3n3

16n3 = 3
16 . Since

cos is a continuous function, we get lim an = cos( 3
16), and the sequence converges.

(b) b = (
1

2
, 0,

1

3
, 0, 0,

1

4
, 0, 0, 0,

1

5
, 0, 0, 0, 0, . . .)

Solution: This sequence converges to zero. There are many reasonable explana-
tions, and most of them use words! Something naive like “It switches (after vary-
ing amounts of time) between two sequences which both converge to zero” would
be fine. I would probably accept anything reasonable and not erroneous.

It does NOT “alternate” between the sequence 1
n

and the sequence 0. The word
“alternate” really implies taking turns.

One can NOT use the following argument: we have 0 ≤ bn ≤ 1
n

so the squeeze
theorem implies that lim bn = 0. Why not? (Answer: because b6 = 1

4 > 1
6 .) One

could use 0 ≤ bn ≤ 1√
n

but that is tricky!

(c) cn =
n2

en

Solution: By extension to a function and L’Hopital’s rule we have

lim
n2

en
= lim

2n

en
= lim

2

en
= 0,

since 2 is bounded and en increases to infinity.

(d) dn =
n− 20

n+ 3
+ (−1)n

Solution: This diverges. By examining leading terms, n−20
n+3 converges to 1. How-

ever, (−1)n diverges, and by the 2/3 rule, the sum of convergent and divergent is
divergent.
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2. (21 pts) Does the series converge or diverge? WHY?

(a)
∞
∑

n=3

n25n

32n+4

Solution: We do the ratio test. lim
∣

∣

∣

(n+1)2

n2
5n+1

5n
32n+4

32(n+1)+4

∣

∣

∣
= lim

∣

∣

∣

(n+1)2

n2
5
32

∣

∣

∣
= 5

9 . Since

this is less than 1, the sequence converges.

(b)
∞
∑

n=1

sin(n5)

n
√
n

Solution: We have −1 ≤ sin(n5) ≤ 1 so | sin(n5)| ≤ 1. Now
∑

n=1
| sin(n5)|
n
√
n

con-

verges by the comparison test, since
∑

n=1
| sin(n5)|
n
√
n

≤ ∑

n=1
1

n
√
n

which converges

by the p-test, p = 1.5. So the original sequence converges by the absolute conver-
gence test.

(c)
∞
∑

n=0

(−1)n
n3 + 1

n3 + 2

Solution: Since lim n
3+1

n3+2
= 1, the sequence (−1)n n

3+1
n3+2

diverges (it alternates be-
tween a sequence converging to 1 and a sequence converging to −1, so it never
stays close to either one). By the divergence test, this series diverges.
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3. (21 pts) Does the series converge or diverge? WHY?

(a)
∞
∑

n=15

n+ 2

13n2 + 12

Solution: Looking at leading terms, we expect this to behave like
∑ 1

13n , which
diverges. To prove it diverges, we use the comparison test:

n+ 2

13n2 + 12
≥ 1

2
· 1

13n

for large enough n, and
∑ 1

2 · 1
13n diverges by the p-test.

(b) 1− 1

2
− 1

4
+

1

8
− 1

16
− 1

32
− 1

64
+

1

128
− . . .

Solution: This converges because it absolutely converges. The sum of the absolute
values is

∑∞
n=0

1
2n , which is a convergent geometric series with r = 1

2 .

(c)
∞
∑

n=2

1

n lnn
(Hint: what is the derivative of ln(ln(t))?)

Solution: The derivative of ln(ln(t)) is 1
t ln t

. Since limt→∞ ln(ln(t)) = ∞, we ex-
pect this series to diverge. In fact, by the integral test

∑∞
n=2

1
n lnn

≥
∫∞
2

1
t ln t

dt =
ln(ln(t)) |∞2 = ∞.

4. (14 pts) If the series converges, find the sum, and justify your answer. If it diverges,
explain why.

(a)
∞
∑

n=5

6(
11

10
)n

Solution: This is a geometric series with a = 6(1110)
5 and r = 11

10 . Since r > 1, the
series diverges.

(b) 3 + 2 +
4

3
+

8

9
+

16

27
+ . . .

Solution: This is a geometric series with a = 3 and r = 2
3 . Since r < 1, the series

converges to a

1−r
= 3

1− 2
3

= 9.
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5. (16 pts) Consider the convergent series
∞
∑

n=1

1

n4
.

(a) Find an upper bound for the difference between 1 +
1

24
+

1

34
and the sum of the

series.

Solution: By the integral test,

∞
∑

n=4

1

n4
≤

∫ ∞

3

1

t4
dt =

−1

3t3
|∞3 =

1

3 · 33 =
1

81
.

(b) How many terms of the series must one add to approximate the sum to within
1

300?

Solution: By the same argument,

∞
∑

n=N+1

1

n4
≤

∫ ∞

N

1

t4
dt =

1

3N3
.

When N = 5 we have N3 > 100 so 3N3 > 300 so 1
3N3 < 1

300 . Five terms is
sufficient.

It’s also fine to solve for N and say that N is greater than the cube root of 100.

6. (20 pts) Consider the series − 3

11
+

3

14
− 3

17
+

3

20
− . . ..

(a) Find an explicit formula for this series.

Solution: This is
∑∞

n=1(−1)n 3
8+3n . (One could also do

∑∞
n=0(−1)n−1 3

11+3n .)

(b) Is the series convergent? WHY?

Solution: Yes, by the Alternating Series Test, because lim 3
8+3n = 0.

(c) Is the series absolutely convergent? WHY?

Solution: No, by the comparison test, because
∑ 3

3n+8 ≥ ∑ 1
2 · 1

n
which diverges

by p-test, p = 1.

(d) How many terms should one add to approximate the sum to within .01?

Solution: The error is bounded by the absolute value of the next term. We have
3

11+3(N+1) <
1

100 if and only if 300 < 11+3(N+1) = 14+N if and only if N > 286
3 .

(So N = 96 terms will do.)
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7. (27 pts) Find the interval of convergence for the following power series.

(a)
∞
∑

n=0

√
n(6.3)nxn

Solution: Doing the ratio test, we have r = lim
√
n+1√
n

· 6.3x = 6.3x. So the sequence

converges when |x| < 1
6.3 , and diverges when |x| > 1

6.3 .

When x = 1
6.3 the series is

∑√
n which diverges by the divergence test.

When x = − 1
6.3 the series is

∑

(−1)n
√
n which diverges by the divergence test.

So the interval of convergence is (− 1
6.3 ,+

1
6.3).

(b)
∞
∑

n=0

(x− 6)n

2n · n!

Solution: Doing the ratio test, we have r = lim (x−6)
2

n!
(n+1)! = lim (x−6)

2(n+1) = 0. Since

r < 1 always, this sequence converges everywhere.

(c)
∞
∑

n=0

(x+ 4)n

n+ 2

Solution: Doing the ratio test, we have r = lim(x+4)n+2
n+3 = x+4. So the sequence

converges when |x+ 4| < 1 and diverges when |x+ 4| > 1.

When x = −3 the series is
∑ 1

n+2 which diverges by (comparison to) p-test, p = 1
(or by the integral test).

When x = −5 the series is
∑ (−1)n

n+2 which converges by the alternating series test.

So the interval of convergence is [−5, 3).
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8. (13 pts) Compute derivatives to find the Taylor series for g(t) = 2t3 − 5t2 + 2 centered
at t = 2.

Solution: We have

g(t) = 2t3 − 5t2 + 2, g(2) = 16− 20 + 2 = −2,

g′(t) = 6t2 − 10t, g′(2) = 24− 20 = 4,

g′′(t) = 12t− 10, g′′(2) = 24− 10 = 14,

g′′′(t) = 12, g′′′(2) = 12.

All higher derivatives are zero. So the taylor series is equal to the third taylor polyno-
mial, which is

−2

0!
+

4

1!
(t− 2) +

14

2!
(t− 2)2 +

12

3!
(t− 2)3(+

0

4!
(t− 2)4 + 0 + 0 + . . .)

= −2 + 4(t− 2) + 7(t− 2)2 + 2(t− 2)3.

9. (20 pts) Find the second degree Taylor approximation of ln(x) centered at x = 10.
Bound the error on the interval (8, 12).

Solution: Letting f(x) = ln(x) we have f(10) = ln 10, and

f ′(x) =
1

x
, f ′(10) =

1

10
,

f ′′(x) =
−1

x2
, f ′′(10) =

−1

100
.

So the second degree Taylor polynomial is

ln 10 +
1

10
(x− 10) +

−1

200
(x− 10)2.

Computing one more derivative we have

f ′′′(x) =
2

x3

which is a decreasing function. On the interval [8, 12] the maximal value of f ′′′(x) is
obtained at x = 8, and is 2

83
. We can let this be M .

The Taylor Remainder Theorem states that the error RN (x) is less than M d
N+1

(N+1)! on the

interval [c− d, c+ d]. Here N = 2, d = 2, c = 10, and M = 2
83

, so the error is bounded

by 2·23
3!·83 = 1

192 .
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10. (18 pts) Find a power series centered at zero for the following functions. Write out the
first three nonzero terms explicitly.

(a) x2 arctan(x5)

Solution: We have

arctan(x) =
∑

0

(−1)n
x2n+1

2n+ 1
,

so

arctan(x5) =
∑

0

(−1)n
(x5)2n+1

2n+ 1
=

∑

0

(−1)n
x10n+5

2n+ 1

and

x2 arctan(x5) =
∑

0

(−1)n
x10n+7

2n+ 1
.

The first three terms are
x7

1
− x17

3
+

x27

5
.

(b)

∫

x

0

1

5 + 2t
dt

Solution: We have

1

5 + 2t
=

1

5
· 1

1− (−2t
5 )

=
∑

0

1

5
(
−2t

5
)n =

∑

0

(−1)n
2ntn

5n+1
.

Integrating this we get
∑

0

(−1)n
2n

5n+1

tn+1

n+ 1
.

The first three terms are
t

5
− 2t2

50
+

4t3

375
.

11. (10 pts) Find the terms up to degree 5 in the power series centered at zero for the
following function.

(4− x2) sinx

Solution: We have sinx = x− x
3

3! +
x
5

5! − . . . so that

4 sinx = 4x− 4

3!
x3 +

4

5!
x5 − . . .

−x2 sinx = 0x− x3 +
1

3!
x5 − . . .

and adding we get

(4− x2) sinx = 4x− (
4

3!
+ 1)x3 + (

4

5!
+

1

3!
)x5 − . . .
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12. (30 pts) Let y =
∑∞

n=0 an(t− 3)n be a power series centered at 3.

(a) Write down power series centered at 3 for y′, for y′′, and for y′′ − y′ + y.

Solution: We have
y′ =

∑

0

(n+ 1)an+1(t− 3)n,

y′′ =
∑

0

(n+ 2)(n+ 1)an+2(t− 3)n,

y′′ − y′ + y =
∑

0

((n+ 2)(n+ 1)an+2 − (n+ 1)an+1 + an)(t− 3)n.

(b) Suppose that y solves the differential equation y′′ − y′ + y = 0. Write down a
recursive formula for the coefficients an.

Solution: For all n ≥ 0 we have (n+ 2)(n+ 1)an+2 − (n+ 1)an+1 + an = 0, or

an+2 =
(n+ 1)an+1 − an

(n+ 1)(n+ 2)
,

which is sufficient to determine all an from the base cases a0 = y(3) and a1 = y′(3).

(c) Suppose that y(3) = 2 and y′(3) = −4. Find the coefficients an for n ≤ 3.

Solution: We have a0 = 2, a1 = −4,

a2 =
1a1 − a0

2
= −3,

a3 =
2a2 − a1

6
=

−8

6
.

13. (14 pts) Let y be a solution to the differential equation y′′ = y · y′, satisfying the initial
conditions y(1) = 2 and y′(1) = 3. Compute the Taylor polynomial T3(x) for y of de-
gree 3 centered at 1. (Hint: Do NOT attempt to find the general power series solution,
this is too hard.)

Solution: We have
y′′ = y · y′, y′′(1) = 2 · 3 = 6,

and by the product rule we have

y′′′ = y′ · y′ + y · y′′, y′′′(1) = 3 · 3 + 2 · 6 = 21.

So

T3(x) =
2

0!
+

3

1!
(x− 1)+

6

2!
(x− 1)2+

21

3!
(x− 1)3 = 2+3(x− 1)+ 3(x− 1)2+

7

2
(x− 1)3.


