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1. Consider the series
1

4
−

1

8
+

1

12
−

1

16
+ . . .

(a) Is the series convergent? WHY?

Alternating, decreasing with limit zero. AST (alternating series test) says it converges.

(b) How many terms of the sum must one take in order to be within .1 of the limit?

Error after N terms is bounded by |aN+1|. Need |aN+1| <
1
10 . But 1

12 < 1
10 so N = 2

works.

(c) Is the series absolutely convergent? WHY?

First observe our series is
∞∑
n=1

(−1)n−1

4n
.

∑ 1
4n diverges by p-test, p = 1. No, not absolutely convergent.

2. What does the ratio test say about the following series?

(a)
∞∑
n=1

(−1)n
2n

n!

|
an+1

an
| =

2

n+ 1
and the limit as n → ∞ is 0. The series absolutely converges.

(b)
∞∑
n=1

n2 + 3

n3 + 2

|
an+1

an
| =

((n+ 1)2 + 3)(n3 + 2)

((n+ 1)3 + 2)(n2 + 3)
=

n5 + . . .

n5 + . . .
and the limit as n → ∞ is 1. The ratio

test is inconclusive. (Aside: this is the classic example where you are wasting your time
with the ratio test.)
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3. Does the series converge or diverge? WHY?

(a)
∞∑
n=1

n7n

32n+5

Note that 32n+5 = 359n. The ratio test looks at

|
an+1

an
| =

n+ 1

n

7

9

which limits to 7
9 < 1. Thus the series converges.

(b)
∞∑
n=0

n2 + 2

n3 + 3

(We expect this to diverge because as n grows this behaves like
∑ 1

n .) In fact, n2+2
n3+3

> 1
2n

for all n > 0, since (multiplying both sides by the denominator) this is equivalent to

(2n)(n2 + 2) > (n3 + 3) ⇐⇒ 2n3 + 4n > n3 + 3 ⇐⇒ n3 + 4n > 3.

Since
∑ 1

2n = 1
2

∑ 1
n diverges by p-test with p = 1, and this series is bigger, it also

diverges by comparison test.

(c)

−1−
1

4
+

1

9
+

1

16
−

1

25
−

1

36
+

1

49
+ . . .

This is
∑

± 1
n2 . Its absolute value sequence

∑ 1
n2 converges by p-test, p = 2. Absolute

convergence implies convergence.

(d)
∞∑
n=6

(−1)n
2n2 + 2

n3 + 3

This is an alternating series, and lim 2n3+2
n3+3

= 0 by examining the leading terms. Thus it
converges by the Alternating Series Test (AST).
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(e)
∞∑
n=2

(−1)n
n5 − 3

2n5 + 3n3 + n− 1

This series alternates signs, but lim n5−3
2n5+3n3+n−1

= 1
2 6= 0, so it diverges by the Diver-

gence Test.

4. Find the interval of convergence of the following power series.

(a)
∞∑
n=0

(x− 2)n

n3n

Ratio test: |
an+1

an
| =

|x− 2|

3

n

n+ 1
and the limit is |x−2|

3 . This converges when |x−2| <

3, so the radius is 3, centered at 2.

Checking the boundary: When x = 5 we have
∑ 1

n which diverges by p-test, p = 1.

When x = −1 we have
∑ (−1)n

n which converges by AST. So the interval of convergence
is [−1, 5).

(b)
∞∑
n=0

4n(x+ 9)n

n3 + 1

Ratio test: |
an+1

an
| = 4|x+9|

(n + 1)3 + 1

n3 + 1
and the limit is 4|x+9|. This converges when

|x+ 9| < 1
4 , so the radius is 1

4 , centered at −9.

Checking the boundary: When x = −8.75 we have
∑ 1

n3+1
which converges by compar-

ison test to p-test, p = 3. When x = −9.25 we have
∑ (−1)n

n3+1
which converges by AST

(or because it absolutely converges). So the interval of convergence is [−9.25, 8.75].

5. Compute
∫ 1/10
0 arctan(t2)dt to within 10−9.

We know arctan(t) = t− t3

3 + t5

5 − . . . so arctan(t2) = t2 − t6

3 + t10

5 − . . .. Integrating from∫ x
0 , we get

x3

3
−

x7

3 · 7
+

x11

5 · 11
− . . .

Plugging in x = 1
10 we get an alternating series, so we are interested in finding the first term

with absolute value less than 10−9. Clearly the third term (with x11) is small enough, so our
approximation is the first two terms, 1

103·3
− 1

107·3·7
.
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6. Find a power series centered at zero for the following functions. (Note: I could also
ask for the radius of convergence.)

(a)
1

4− 3x

1

4− 3x
=

1

4

1

(1− 3
4x)

=
1

4

∞∑
n=0

(
3

4
)nxn. The radius of convergence is 4

3 (easy ratio test,

or because it is a geometric series).

(b)

∫ x

0

1

1 + t6
dt

1

1 + t6
=

∞∑
n=0

(−1)nt6n. So the integral is C +
∑∞

n=0(−1)n x6n+1

6n+1 , and C = 0 since the

integral begins at 0. The radius of convergence is 1 (easy ratio test). (Remember: radius
of convergence doesn’t change when you integrate or derive! However, interval of conver-
gence may change - stuff can happen at the boundary!)

(c) The derivative of
∞∑
n=0

2n(n!)xn

(2n)!
.

(This looks harder than it is - the constants don’t affect the derivative at all.)

∞∑
n=0

2n(n!)nxn−1

(2n)!
.

(If you really wanted to reindex this series, unnecessary for this problem, you’d get

∞∑
n=0

2n+1(n+ 1)!xn

(2(n + 1))!
.

If you need the radius of convergence, it’s a tricky ratio test. The ratio of successive terms
is

an+1

an
= 2x

n+ 1

n

(n+ 1)!

n!

(2n)!

(2n + 2)!
= 2x

(n+ 1)(n + 1)

n(2n + 1)(2n + 2)
.

This is a degree 2 polynomial over a degree 3 polynomial, so the limit is zero, no matter
what x is. Thus the radius of convergence is ∞.
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7. Find a power series centered at zero for the following functions. Write out the first
three nonzero terms explicitly. (Note: I could also ask for the radius of convergence.)

(a) ex
3

Just plug in x3 to the formula for ex.

1 + x3 +
1

2
x6 + . . . =

∞∑
n=0

x3n

n!
.

The radius of convergence is ∞. After all, the interval of convergence of ex is (−∞,∞),

so ex
3

converges when x3 is in (−∞,∞), which is always. Or you could do a ratio test.

(b)
1

(1 + 2x)2

The power series for 1
(1−x)2

is
∑∞

n=0(n+1)xn, since this is the derivative of 1
1−x . Plugging

in −2x we get
∞∑
n=0

(n+ 1)(−2)nxn

The radius of convergence is 1
2 . After all, the radius of convergence of 1

1−x is 1, as for its
derivative. Plugging in 2x cuts the radius in half. In other words, this series converges
if 2x is in (−1, 1) which means x is in (−1/2,+1/2) (I’m ignoring the boundary, since
I’m just computing the radius). Or you could do a ratio test.

(c) ln(1− x3)
∞∑
n=1

(−1)n−1(−1)n
x3n

n
= −x3 −

x6

2
−

x9

3
− . . .

The radius of convergence is 1. After all, the radius of convergence of ln(1 + x) is 1, and
plugging in x3 takes the cube root of that. Or you could do a ratio test.

8. Find cos(.5) to within 1
500 .

Two reasonable solutions, which are about the same. Both use the usual Taylor series for cos(x)

centered at 0. Which is 1− x2

2! +
x4

4! − . . .

Solution 1: Plugging in .5 for x, we get an alternating series. Since 1
26·6! <

1
500 , our estimate

is just the first 3 terms, namely 1− 1
22·2!

+ 1
24·4!

.

Solution 2: We use the Taylor Remainder theorem. For f(x) = cos(x) Note that |f (k)(x)| is
bounded above by M = 1 for any k. Thus

|Rk(.5)| ≤
(.5)k+1

(k + 1)!
=

1

2k+1(k + 1)!

When k = 4, we have |Rk(.5)| ≤
1

500 . So our estimate is T4(.5), which is 1− (.5)2

2! + (.5)4

4! .
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9. Using any method, find the first few terms of the Taylor series, up to the cubic term
(i.e. the x3 term).

(a) ex cosx centered at 0.

Method 1 (easier):

ex = 1 + x+ x2

2 + x3

6 + . . . and cos x = 1− x2

2 + . . . so when we multiply we get

1 + x+ x2(12 − 1
2) + x3(16 − 1

2) + . . . = 1 + x− 1
3x

3 + . . .

Method 2 (harder):

f(x) = ex cos x so f(0) = 1. f ′(x) = ex(cos x − sinx) so f ′(0) = 1. f ′′(x) =
−2ex sinx so f ′′(0) = 0. f ′′′(x) = −2ex(cos x+ sinx) so f ′′′(0) = −2. Thus

f(x) = 1 + 1x+ 0
2!x

2 + −2
3! x

3 + . . . = 1 + x− 1
3x

3 . . .

(b) ln(x) centered at 2.

(Aside: there is a tricky way to deduce this from the power series for ln(1 + x), but let’s
not do that.)

Let g(x) = ln(x). Then g′(x) = 1
x , and g′′(x) = −1

x2 , and g′′′(x) = 2
x3 .

So g(2) = ln(2), g′(2) = 1
2 , g′′(2) = −1

4 , and g′′′(2) = 1
4 .

Thus the Taylor series is

ln(2) +
1

2
(x− 2) +

−1

4 · 2!
(x− 2)2 +

1

4 · 3!
(x− 2)3 + . . .

or in other words

ln(2) +
1

2
(x− 2)−

1

8
(x− 2)2 +

1

24
(x− 2)3.

(c) e3x centered at −5.

f (k)(x) = 3ke3x. So we have

f(x) = e−15 + 3e−15(x+ 5) + 32e−15

2 (x+ 5)2 + 33e−15

3! (x+ 5)3 + . . .

10. Find the degree three Taylor polynomial T3(x) for 1
1−x centered at 5. Bound the error

on the interval [4, 6].

For f(x) = 1
1−x one has f (k)(x) = k!

(1−x)k+1 . (Or you can just compute the first 3 derivatives.)

So f(5) = 1
−4 , f ′(5) = 1

(−4)2
, f ′′(5) = 2!

(−4)3
and f ′′′(5) = 3!

(−4)4
. Thus

T3(x) =
1

−4
+

1

(−4)2
(x− 5) +

1

(−4)3
(x− 5)2 +

1

(−4)4
(x− 5)3.

The fourth derivative is f ′′′′(x) = 4!
(1−x)5

whose absolute value is a decreasing function, so the

maximum is obtained at x = 4, and this maximum is M = 4!
35

. The radius for the interval is

d = 1. Hence |R3(x)| ≤
4!

4!·35
= 1

35
.
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11. Find the degree 5 Taylor polynomial T5(x) for 3 sinx centered at 0. What error bound
does the Taylor Remainder Theorem give on the interval [−.2, .2]?

Using the standard Taylor series at 0, we have T5(x) = 3x− 3x3

3! + 3x5

5! .

Every derivative of 3 sin x is bounded in absolute value by M = 3. So on a radius of interval d

by Taylor Remainder Theorem we have |R5(x)| ≤
3d6

6! . When d = .2 we get 3(.2)6

6! .

12. Let f(x) = ex sinx. For your convenience, we have calculated the first several deriva-
tives of f .

f ′(x) = ex(sinx+ cos x)

f ′′(x) = 2ex cos x

f ′′′(x) = 2ex(cos x− sinx)

f ′′′′(x) = −4ex sinx

Compute the degree 3 Taylor polynomial T3(x) for f(x) centered at 0, and bound the
error on the interval [−2, 2].

From these formulas we compute f(0) = 0, f ′(0) = 1, f ′′(0) = 2, and f ′′′(0) = 2. Thus

T3(x) = 0 + 1x+
2

2
x2 +

2

6
x3 = x+ x2 +

1

3
x3.

Since |sin(x)| ≤ 1 for all x, we have |f ′′′′(x)| ≤ 4ex for all x. On the interval [−2, 2] we get

|f ′′′′(x)| ≤ 4e2 = M . So by the Taylor Remainder theorem we get that |R3(x)| ≤
4e2·24

4! .



8

13. Is this series convergent or divergent? If it is convergent, what is the sum?

(a)
1

2
−

1

22 · 2
+

1

23 · 3
−

1

24 · 4
+ . . .

This is ln(1 + x) with x = 1/2. The radius of convergence is 1 > 1
2 , so it converges to

ln(3/2).

(b) 3−
33

3
+

35

5
−

37

7
+ . . .

This is arctan(x) with x = 3. But the radius of convergence is 1 < 3, so this diverges (an
easy divergence test).

(c) 3−
33

3!
+

35

5!
−

37

7!
+ . . .

This is sin(x) at x = 3. The radius of convergence is ∞, so this converges to sin(3).

14. Find the first few terms of a power series centered at 0 for the following function, up
to the x3 term.

(x2 − 5)(

∞∑
n=0

(n+ 1)xn).

We have
∑∞

n=0(n+ 1)xn = 1 + 2x+ 3x2 + 4x3 + . . .. Multiplying by −5, we get

−5− 10x− 15x2 − 20x3 + . . .

and multiplying by x2 we get
0 + 0x+ x2 + 2x3 + . . .

so adding these we get
−5− 10x− 14x2 − 18x3 + . . .

which is the final answer.


