In class, we reduced the power series formula $E(x) E(x)=E(2 x)$ to a formula involving factorials or binomial numbers, namely

$$
\begin{equation*}
\sum_{m=0}^{k}\binom{k}{m}=2^{k} \tag{0.1}
\end{equation*}
$$

One of the useful tricks when doing this was to multiply and divide by k ! (Hint hint). Then (0.1) was proven using the binomial formula. This first problem below asks you to reduce a power series formula to a formula involving factorials or binomial numbers, but not to prove that this formula is correct.

1. Recall that

$$
S(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}, \quad C(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}
$$

Take the formula $S(x)^{2}+C(x)^{2}=1$, and reduce it to a formula involving factorials and binomial numbers.
2. The second problem explores the power series

$$
E(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

in more detail. Don't forget the tools you have at your disposal: IVT, MVT, etcetera.
(a) Show that $E(x)$ is the unique power series for which $E(0)=1$ and $E^{\prime}(x)=E(x)$ for all $x \in \mathbb{R}$. (Actually, you already did this in a previous homework, 6.5 .8 b , so you don't need to do it again! I'm just writing this down for the flow.)
(b) Prove that R, the radius of convergence of $E(x)$, satisfies $R=\infty$. (Usually exercise 6.5.7 is the easiest way to do this.)
(c) Prove that $E(x)>x$ for all $x \geq 0$, and hence $E(x)$ is unbounded.
(d) Prove that $E(x) E(-x)=1$. First reduce this to a formula involving factorials or binomial numbers, and then use the binomial formula.
(e) Prove that $1 \leq E(x)$ for all $x \geq 0$, and $0 \leq E(x) \leq 1$ for all $x \leq 0$. (Proving this directly from the power series can be difficult.)
(f) Prove that $E(x)$ is a bijective map from \mathbb{R} to $(0, \infty)$.

Let $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$, and $g(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$. Let $s_{n}(x)$ and $t_{n}(x)$ denote their respective partial sums. In class, we talked about how the sequence $\left(s_{n}(x) t_{n}(x)\right)$ limits to the product $f(x) g(x)$, but is not the sequence of partial sums of a power series. Instead, there is a unique power series

$$
\sum_{n=0}^{\infty}\left(\sum_{m=0}^{n} a_{m} b_{n-m}\right) x^{n}
$$

which describes the product $f(x) g(x)$ within the radius of convergence. One finds this power series by multiplying $s_{i}(x)$ and $t_{j}(x)$ and noticing that the coefficient of each x^{n} will "stabilize" (i.e. stop changing as i and j vary) once $i, j \geq n$. The final problem below asks the same question about the composition $f \circ g$, and then explores the inverse of $E(x)$.
3. Let f, g, s_{n}, and t_{n} be as above. Let $h_{i j}(x)=s_{i}\left(t_{j}(x)\right)$, which is just a polynomial.
(a) What is the coefficient of x^{0} in $h_{i j}(x)$? As i and j get large, will the coefficient of each x^{n} eventually stabilize?
(b) Suppose that $b_{0}=0$. Argue that the coefficient of x^{n} stabilizes once $i, j \geq n$. Let $h(x)$ be the power series obtained by taking the stabilized coefficients.
(c) Compute the x^{0}, x^{1}, x^{2}, and x^{3} coefficients of $h(x)$.
(d) We know that

$$
L(x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\ldots
$$

is the power series for $\log (x+1)$, and that

$$
F(x)=x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\ldots
$$

is the power series for $e^{x}-1$. Thus we expect $L(x)$ and $F(x)$ to be inverse functions. Verify that $L(F(x))=x$ and $F(L(x))=x$ at least up to degree 3, i.e. verify that the power series for each begins with $0+1 x+0 x^{2}+0 x^{3}$.

