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In class, we reduced the power series formula E(x)E(x) = E(2x) to a formula involving
factorials or binomial numbers, namely

k
∑

m=0

(

k

m

)

= 2k. (0.1)

One of the useful tricks when doing this was to multiply and divide by k! (Hint hint). Then
(0.1) was proven using the binomial formula. This first problem below asks you to reduce
a power series formula to a formula involving factorials or binomial numbers, but not to
prove that this formula is correct.

1. Recall that

S(x) =

∞
∑

n=0

(−1)nx2n+1

(2n + 1)!
, C(x) =

∞
∑

n=0

(−1)nx2n

(2n)!
.

Take the formula S(x)2 + C(x)2 = 1, and reduce it to a formula involving factorials and
binomial numbers.

2. The second problem explores the power series

E(x) =

∞
∑

n=0

xn

n!

in more detail. Don’t forget the tools you have at your disposal: IVT, MVT, etcetera.

(a) Show that E(x) is the unique power series for which E(0) = 1 and E′(x) = E(x) for
all x ∈ R. (Actually, you already did this in a previous homework, 6.5.8b, so you don’t
need to do it again! I’m just writing this down for the flow.)

(b) Prove that R, the radius of convergence of E(x), satisfies R = ∞. (Usually exercise
6.5.7 is the easiest way to do this.)

(c) Prove that E(x) > x for all x ≥ 0, and hence E(x) is unbounded.

(d) Prove that E(x)E(−x) = 1. First reduce this to a formula involving factorials or bino-
mial numbers, and then use the binomial formula.

(e) Prove that 1 ≤ E(x) for all x ≥ 0, and 0 ≤ E(x) ≤ 1 for all x ≤ 0. (Proving this directly
from the power series can be difficult.)

(f) Prove that E(x) is a bijective map from R to (0,∞).

Let f(x) =
∑

∞

n=0
anx

n, and g(x) =
∑

∞

n=0
bnx

n. Let sn(x) and tn(x) denote their re-
spective partial sums. In class, we talked about how the sequence (sn(x)tn(x)) limits to the
product f(x)g(x), but is not the sequence of partial sums of a power series. Instead, there is
a unique power series

∞
∑

n=0

(

n
∑

m=0

ambn−m

)

xn
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which describes the product f(x)g(x) within the radius of convergence. One finds this
power series by multiplying si(x) and tj(x) and noticing that the coefficient of each xn will
“stabilize” (i.e. stop changing as i and j vary) once i, j ≥ n. The final problem below asks
the same question about the composition f ◦ g, and then explores the inverse of E(x).

3. Let f , g, sn, and tn be as above. Let hij(x) = si(tj(x)), which is just a polynomial.

(a) What is the coefficient of x0 in hij(x)? As i and j get large, will the coefficient of each
xn eventually stabilize?

(b) Suppose that b0 = 0. Argue that the coefficient of xn stabilizes once i, j ≥ n. Let h(x)
be the power series obtained by taking the stabilized coefficients.

(c) Compute the x0, x1, x2, and x3 coefficients of h(x).

(d) We know that

L(x) = x−
x2

2
+

x3

3
− . . .

is the power series for log(x+ 1), and that

F (x) = x+
x2

2
+

x3

6
+ . . .

is the power series for ex − 1. Thus we expect L(x) and F (x) to be inverse functions.
Verify that L(F (x)) = x and F (L(x)) = x at least up to degree 3, i.e. verify that the
power series for each begins with 0 + 1x+ 0x2 + 0x3.


