Math 317 (Fund. of analysis), Spring 2018 Final Teacher: Ben Elias Date: 6/13/2018

Name:

Q1	15
Q2	15
Q3	20
Q4	15
Q5	20
Q6	15
Q7	20
Q8	56
Xtra	24
Total	176

General notes:

- 1. Please don't try extra credit until you've done all the regular problems to your satisfaction.
- 2. If you run out of space, use the other side of the paper!
- 3. Justification: On an exam, by default, you should justify your statements. If an example or counterexample is the best justification, you should provide one. Otherwise, you should provide a brief conceptual explanation (**one or two sentences**).
 - To justify that "Every closed interval contains 0" is false, you should provide a counterexample, such as [1,2].
 - To justify that "Some closed interval contains 0" is true, you should provide an example, such as [-1, 1].
 - To justify that "Every closed interval contains some nonzero number" is true, you should explain. "For any interval [a, b], either $a \neq 0$ or $b \neq 0$."
- 4. If I want a complete proof, I will say "Prove that ..."
- 5. If I don't need any justification, I will say "no justification necessary." No justification is needed for a definition.
- 6. Make sure to specify any terms which are not in the statement of the problem. For example, when defining the term *continuous*, don't say "*f* is continuous if..." say "A function *f* : ℝ → ℝ is continuous if..."
- 7. All Taylor series are assumed to be centered at zero.

- 1. (15 pts) (a) Define the term *compact*.
 - (b) Let $A \subset \mathbb{R}$ be compact. Prove from the definition that *A* is bounded.

2. (15 pts) Let $f(x) = xe^{|x|}$. Prove that f is differentiable at 0. You may use standard facts about the function e^x .

- 3. (20 pts) Consider the function $f(x) = \sum_{n=0}^{\infty} \frac{x^n \cos(nx)}{n}$.
 - (a) Prove that f(x) is continuous on (-1, 1).
 - (b) Prove that f(x) is differentiable on (-1, 1).

For a lot of partial credit, you can do the above on the domain $\left(-\frac{1}{2}, \frac{1}{2}\right)$ instead of (-1, 1).

4. (15 pts) Prove the following result.

Proposition. Suppose that *f* and *g* are differentiable on an interval [a, b], and that f'(x) = g'(x) for all $x \in [a, b]$. Then f = g + C for some constant $C \in \mathbb{R}$.

(Warning: I wouldn't use the fundamental theorem of calculus - f' need not be integrable! You can do this with just the techniques from the chapter on differentiation.)

- 5. (20 pts) Let $g: \mathbb{R} \to \mathbb{R}$ be an infinitely differentiable function. Assume that, for all $k \ge 1$, the *k*-th derivative is bounded by *k*, that is $|g^{(k)}(x)| \le k$ for all $x \in \mathbb{R}$. Let $T(x) = \sum_{k=0}^{\infty} a_k x^k$ be the Taylor series of *g*.
 - (a) Find a bound on the absolute value of a_k , for each k.
 - (b) Justify that T(x) converges on all of \mathbb{R} .
 - (c) Justify that T(x) = g(x) on all of \mathbb{R} .

- 6. (15 pts) Let T(x) be the Taylor series for $f(x) = \sqrt{1+x}$, and U(x) be the Taylor series for $g(x) = \frac{1}{\sqrt{1+x}}$.
 - (a) Write down the terms up to degree 2 (i.e. the coefficient of x^2) of T(x). (If you don't remember the formula, you can always compute derivatives.)
 - (b) Write down the terms up to degree 2 of U(x).
 - (c) One expects that T(x)U(x) = 1. Verify that this is true up to degree 2.

- 7. (20 pts) (a) Define what it means for f to be integrable on [a, b]. (You do not need to tell me what a partition is, or to define the quantities L(f, P) and U(f, P) for a particular partition P.)
 - (b) Let $h(x) \colon [0,3] \to \mathbb{R}$ be the function defined as follows.

$$h(x) = \begin{cases} 1 & \text{if } 0 \le x \le 1\\ 2 & \text{if } 1 < x < 2 & \text{or } 2 < x \le 3,\\ 15 & \text{if } x = 2. \end{cases}$$

Let *P* be the partition $\{0, 1, 3\}$. Compute U(P) and L(P).

(c) Let $\epsilon > 0$ be arbitrary. Find a partition P such that $U(P) - L(P) < \epsilon$. (You need not rigorously justify your answer.)

- 8. (56 points, 7 pts each) For each of the following statements, is it true or false? Justification is required.
 - (a) There is no function $\mathbb{R} \to \mathbb{R}$ whose derivative is +1 for $x \ge 0$, and -1 for x < 0.
 - (b) If $(f_n) \to f$ uniformly, and each f_n is discontinuous, then f is discontinuous.
 - (c) If $(f_n) \to f$ pointwise, and each f_n is bounded, then f is bounded.
 - (d) If (f_n) is a sequence of functions $\mathbb{R} \to \mathbb{R}$ such that (f'_n) converges uniformly to 0, and the sequence of numbers $(f_n(17))$ converges to -3, then (f_n) converges uniformly to to the constant function -3.

- (e) If P(x) is a power series which converges on [-5, 5], then it attains a maximum value.
- (f) If Q(x) is a power series which converges at x = 4, then it converges absolutely at x = -3.
- (g) If *g* is continuous, then there exists a function *G* such that G' = g.
- (h) If (h_n) is a sequence of integrable functions which converges pointwise to h on [a, b], and $\lim_{n\to\infty} \int_a^b h_n = L$, then $\int_a^b h = L$.

You're done! Here are some extra credit problems. Don't work on them problem until you've finished the rest of the test! The points-to-time ratio is smaller.

- **Xtra1.** Let $f(x) = xe^{|x|}$ be the function from Problem 2. Is *f* twice-differentiable at 0? Justify your answer.
- **Xtra2.** Let T(x) be the Taylor series for $\sqrt{1+x}$ and U(x) be the Taylor series for $\frac{1}{\sqrt{1+x}}$, as in Problem 6. One expects that 2T'(x) = U(x). Comparing the terms of degree *n*, what equality between binomial numbers do you get?
- **Xtra3.** More true/false.
 - (a) If $h: [a,b] \to \mathbb{R}$ is integrable and $H(x) = \int_a^x h(t)dt$ is differentiable on [a,b], then H'(x) = h(x) for all $x \in [a,b]$.
 - (b) There is a sequence of functions $g_n \colon \mathbb{R} \to \mathbb{R}$ whose domain of convergence is the Cantor set.