Math 317 (Fund. of analysis), Spring 2018
 Final
 Teacher: Ben Elias
 Date: 6/13/2018

Name:

Q1		15
Q2		15
Q3		20
Q4		15
Q5		20
Q6		15
Q7		20
Q8		56
Xtra		24
Total		176

General notes:

1. Please don't try extra credit until you've done all the regular problems to your satisfaction.
2. If you run out of space, use the other side of the paper!
3. Justification: On an exam, by default, you should justify your statements. If an example or counterexample is the best justification, you should provide one. Otherwise, you should provide a brief conceptual explanation (one or two sentences).

- To justify that "Every closed interval contains 0 " is false, you should provide a counterexample, such as [1,2].
- To justify that "Some closed interval contains 0 " is true, you should provide an example, such as $[-1,1]$.
- To justify that "Every closed interval contains some nonzero number" is true, you should explain. "For any interval $[a, b]$, either $a \neq 0$ or $b \neq 0$."

4. If I want a complete proof, I will say "Prove that ..."
5. If I don't need any justification, I will say "no justification necessary." No justification is needed for a definition.
6. Make sure to specify any terms which are not in the statement of the problem. For example, when defining the term continuous, don't say " f is continuous if..." say "A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous if..."
7. All Taylor series are assumed to be centered at zero.
8. ($\mathbf{1 5} \mathbf{~ p t s) ~ (a) ~ D e f i n e ~ t h e ~ t e r m ~ c o m p a c t . ~}$
(b) Let $A \subset \mathbb{R}$ be compact. Prove from the definition that A is bounded.
9. ($\mathbf{1 5} \mathbf{p t s}$) Let $f(x)=x e^{|x|}$. Prove that f is differentiable at 0 . You may use standard facts about the function e^{x}.
10. (20 pts) Consider the function $f(x)=\sum_{n=0}^{\infty} \frac{x^{n} \cos (n x)}{n}$.
(a) Prove that $f(x)$ is continuous on $(-1,1)$.
(b) Prove that $f(x)$ is differentiable on $(-1,1)$.

For a lot of partial credit, you can do the above on the domain $\left(-\frac{1}{2}, \frac{1}{2}\right)$ instead of $(-1,1)$.
4. ($\mathbf{1 5} \mathbf{p t s}$) Prove the following result.

Proposition. Suppose that f and g are differentiable on an interval $[a, b]$, and that $f^{\prime}(x)=g^{\prime}(x)$ for all $x \in[a, b]$. Then $f=g+C$ for some constant $C \in \mathbb{R}$.
(Warning: I wouldn't use the fundamental theorem of calculus - f^{\prime} need not be integrable! You can do this with just the techniques from the chapter on differentiation.)
5. (20 pts) Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be an infinitely differentiable function. Assume that, for all $k \geq 1$, the k-th derivative is bounded by k, that is $\left|g^{(k)}(x)\right| \leq k$ for all $x \in \mathbb{R}$. Let $T(x)=\sum_{k=0}^{\infty} a_{k} x^{k}$ be the Taylor series of g.
(a) Find a bound on the absolute value of a_{k}, for each k.
(b) Justify that $T(x)$ converges on all of \mathbb{R}.
(c) Justify that $T(x)=g(x)$ on all of \mathbb{R}.
6. (15 pts) Let $T(x)$ be the Taylor series for $f(x)=\sqrt{1+x}$, and $U(x)$ be the Taylor series for $g(x)=\frac{1}{\sqrt{1+x}}$.
(a) Write down the terms up to degree 2 (i.e. the coefficient of x^{2}) of $T(x)$. (If you don't remember the formula, you can always compute derivatives.)
(b) Write down the terms up to degree 2 of $U(x)$.
(c) One expects that $T(x) U(x)=1$. Verify that this is true up to degree 2 .
7. (20 pts) (a) Define what it means for f to be integrable on $[a, b]$. (You do not need to tell me what a partition is, or to define the quantities $L(f, P)$ and $U(f, P)$ for a particular partition P.)
(b) Let $h(x):[0,3] \rightarrow \mathbb{R}$ be the function defined as follows.

$$
h(x)=\left\{\begin{array}{lll}
1 & \text { if } & 0 \leq x \leq 1 \\
2 & \text { if } & 1<x<2 \quad \text { or } \quad 2<x \leq 3, \\
15 & \text { if } & x=2
\end{array}\right.
$$

Let P be the partition $\{0,1,3\}$. Compute $U(P)$ and $L(P)$.
(c) Let $\epsilon>0$ be arbitrary. Find a partition P such that $U(P)-L(P)<\epsilon$. (You need not rigorously justify your answer.)
8. (56 points, 7 pts each) For each of the following statements, is it true or false? Justification is required.
(a) There is no function $\mathbb{R} \rightarrow \mathbb{R}$ whose derivative is +1 for $x \geq 0$, and -1 for $x<0$.
(b) If $\left(f_{n}\right) \rightarrow f$ uniformly, and each f_{n} is discontinuous, then f is discontinuous.
(c) If $\left(f_{n}\right) \rightarrow f$ pointwise, and each f_{n} is bounded, then f is bounded.
(d) If $\left(f_{n}\right)$ is a sequence of functions $\mathbb{R} \rightarrow \mathbb{R}$ such that $\left(f_{n}^{\prime}\right)$ converges uniformly to 0 , and the sequence of numbers $\left(f_{n}(17)\right)$ converges to -3 , then $\left(f_{n}\right)$ converges uniformly to to the constant function -3 .
(e) If $P(x)$ is a power series which converges on $[-5,5]$, then it attains a maximum value.
(f) If $Q(x)$ is a power series which converges at $x=4$, then it converges absolutely at $x=-3$.
(g) If g is continuous, then there exists a function G such that $G^{\prime}=g$.
(h) If $\left(h_{n}\right)$ is a sequence of integrable functions which converges pointwise to h on $[a, b]$, and $\lim _{n \rightarrow \infty} \int_{a}^{b} h_{n}=L$, then $\int_{a}^{b} h=L$.

You're done! Here are some extra credit problems. Don't work on them problem until you've finished the rest of the test! The points-to-time ratio is smaller.

Xtra1. Let $f(x)=x e^{|x|}$ be the function from Problem 2. Is f twice-differentiable at 0 ? Justify your answer.

Xtra2. Let $T(x)$ be the Taylor series for $\sqrt{1+x}$ and $U(x)$ be the Taylor series for $\frac{1}{\sqrt{1+x}}$, as in Problem 6. One expects that $2 T^{\prime}(x)=U(x)$. Comparing the terms of degree n, what equality between binomial numbers do you get?

Xtra3. More true/false.
(a) If $h:[a, b] \rightarrow \mathbb{R}$ is integrable and $H(x)=\int_{a}^{x} h(t) d t$ is differentiable on $[a, b]$, then $H^{\prime}(x)=h(x)$ for all $x \in[a, b]$.
(b) There is a sequence of functions $g_{n}: \mathbb{R} \rightarrow \mathbb{R}$ whose domain of convergence is the Cantor set.

