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Math 317 (Fund. of analysis), Spring 2018

Midterm 1 solutions
Teacher: Ben Elias

Date: 5/9/2018

1. (10 pts) (a) Define the term compact.

(b) Let A ⊂ R be compact. Prove from the definition that A is closed.

a) A subset A ⊂ R is compact if every sequence in A has a convergent subsequence,
whose limit is in A.

b) Suppose that A is not closed. Then there is a limit point x of A, with x /∈ A. By the
definition of limit point, there is a sequence (xn) in A with (xn) → x. But then every
subsequence of this (convergent) sequence has the same limit x, so no subsequence can
have a limit in A. Hence A is not compact, a contradiction. Thus A is closed.

Common mistake: Speaking as though every sequence converged. For example: “A
being compact implies that, for any sequence, there is a subsequence converging to
a ∈ A. Since the subsequence has the same limit as the original sequence...” no, the
original sequence need not have a limit. Of course, once you’ve fixed a limit point and
a sequence converging to that limit point, you’re good to go.

Other common mistake: Not actually having an argument.

2. (12 pts) Let f, g : R→ R be differentiable functions. Prove directly from the definition
that (fg)′(c) = f ′(c)g(c) + f(c)g′(c) for all c ∈ R. (For this problem I have hints I can
give you at the cost of points.)

We compute that

(fg)′(c) = lim
x→c

f(x)g(x)− f(c)g(c)

x− c
= lim

x→c

f(x)g(x) − f(x)g(c) + f(x)g(c) − f(c)g(c)

x− c

= lim
x→c

(

f(x)
g(x)− g(c)

x− c
+ g(c)

f(x) − f(c)

x− c

)

.

(Up to this point we haven’t used the algebraic limit theorem, we’ve just been manip-
ulating the object inside the limit.) Now we use the ALT to say that the above is equal
to

lim
x→c

f(x) lim
x→c

g(x)− g(c)

x− c
+ g(c) lim

x→c

f(x)− f(c)

x− c
= f(c)g′(c) + g(c)f ′(c),

which works because all these limits exist. Note that limx→c f(x) = f(c) because f is
continuous at c, which is true because differentiable functions are continuous.
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On the whole this went very poorly! First, common mistakes:

• This is one of those proofs that has one very important trick (namely - add and
subtract something) and if you missed it you wouldn’t get far (which is why I
offered a hint). Instead, people who missed the trick resorted to some very ques-
tionable algebra.

• Don’t mess this one up again! fg denotes the PRODUCT, not the composition.
The composition is f ◦ g. (After all, this looks like the product rule, not the chain
rule.)

• When asserting that limx→c f(x) = f(c), you need to use the fact that f is contin-
uous, and say that this is because differentiable implies continuous.

• As usual, when you use the ALT, you should say so. There is a reason for this
(SEE PROBLEM 5!!!).

3. (14 pts) (a) Define the term Lipschitz. (I can give you the answer, at the cost of points.)

(b) Let f : R → R be differentiable, and suppose that f ′ is bounded. Prove that f is
Lipschitz.

(c) If g : A → R is Lipschitz, is it uniformly continuous? If h : A → R is uniformly
continuous, is it Lipschitz? I want one theorem and one counterexample (no proof
or justification required).

a) A function A → R is Lipschitz if ∃M > 0 such that for all x, c ∈ A,

∣

∣

∣

∣

f(x)− f(c)

x− c

∣

∣

∣

∣

≤ M.

(Common error: forgetting some quantifiers.)

b) Let f be differentiable, such that |f ′(x)| ≤ M for some M > 0. For any x, c ∈ A, the

Mean Value Theorem states that f(x)−f(c)
x−c

= f ′(b) for some b between x and c. Thus

∣

∣

∣

∣

f(x)− f(c)

x− c

∣

∣

∣

∣

= |f ′(b)| ≤ M.

(Tragically common error: not using the MVT. Every other argument I saw was mostly
nonsense.)

c) If g is Lipschitz, then it is uniformly continuous. However, not every uniformly
continuous function is Lipschitz. For example, x 7→ √

x defined on [0, 1] (or even
x 7→

√

|x| defined on all ofR) is uniformly continuous but not Lipschitz.
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4. (10 pts) Is it true or false? Justify or give a counterexample.

(a) If f and g are continuous on [a, c], and f(a) > g(a), and f(c) < g(c), then there
exists some point b ∈ (a, c) where f(b) = g(b).

(b) If f and g are differentiable on [a, c], and f ′(a) > g′(a), and f ′(c) < g′(c), then
there exists some point b ∈ (a, c) where f ′(b) = g′(b).

a) True. Consider the function h = f − g. Then h(a) > 0 and h(c) < 0, and h is
continuous, so by the Intermediate Value Theorem there is some b ∈ (a, c) with h(b) =
0. Therefore, f(b) = g(b).

b) True. Consider the function h = f − g. Then h is differentiable, h′ = f ′ − g′. Thus
h′(a) > 0 and h′(c) < 0. By Darboux’s theorem, there exists some b ∈ (a, c) with
h′(b) = 0. Therefore, f ′(b) = g′(b).

This problem was here to test the IVT, Darboux’s theorem, common misconceptions
around these, and most importantly, the crucial trick of using the function f − g!! We
did this many times, and will continue to do so - when comparing two functions, it is
best to look at the function which measures their difference, rather than applying any
theorem to the functions individually. It was tragically common not to mention f − g,
and therefore, to make at best a hand-waving argument. (It was also common to not
mention Darboux’s theorem.)

5. (18 pts) Let fn(x) =
nx

1+nx2 for each n ∈ N.

(a) Let f(x) = 1
x

. Prove that fn → f uniformly on the domain (1,∞).

(b) On the domain (−1, 1), compute the pointwise limit of fn. (Hint: to use the al-
gebraic limit theorem, it may help to divide the numerator and denominator by
n.)

(c) Why is it impossible that fn converges uniformly on (−1, 1)?

(d) (Extra credit) Why it is impossible that fn converges uniformly on (0, 1)?

a) For n ∈ N and x ∈ (1,∞) we have

|fn(x)− f(x)| =
∣

∣

∣

∣

nx

1 + nx2
− 1

x

∣

∣

∣

∣

=

∣

∣

∣

∣

nx2 − (1 + nx2)

x(1 + nx2)

∣

∣

∣

∣

=
1

x(1 + nx2)
<

1

n
.

So let ǫ > 0 be arbitrary, and choose some N ∈ Nwith N > 1
ǫ
. Then for any n ≥ N and

any x ∈ (1,∞), we have

|fn(x)− f(x)| < 1

n
< ǫ.

Thus fn → f uniformly.

(For those who knew what to do, part (a) went pretty well!)

(Meanwhile, part (b) was DISASTROUS.)

b) We have

lim
n→∞

nx

1 + nx2
= lim

n→∞

x
1
n
+ x2

.
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When x 6= 0, the limit of the denominator is nonzero, so we can apply the ALT to
equate the above with

limn→∞ x

limn→∞

1
n
+ x2

=
x

x2
=

1

x
.

Meanwhile, when x = 0, the numerator is zero for any n, so limn→∞ 0 = 0. Hence the
pointwise limit of fn is the function g where g(0) = 0 and g(x) = 1

x
for x 6= 0.

Tragically common mistake: There is a reason I ask you to write that you’re using
the ALT when you’re using the ALT, and it is precisely because you can NOT use the
ALT when it does not apply! In particular, when trying to apply the ALT to fractions,
you need the limit of the denominator to be nonzero. (A similar thing happens when

looking at limx→c
f(x)−f(c)

x−c
... you’d better not replace this with limx→c(f(x)−f(c)

limx→c x−c
.) (Note

that L’Hopital’s rule exists precisely to deal with this problem for functional limits
(rather than limits as n → ∞ of sequences, as we have in this problem.)) Very often
you need to be careful, and check limits on a case by case basis (e.g. what happens for
x > 0, or x = 0, or x < 0, etcetera.)

Once you do something silly and say that the pointwise limit of fn is the function 1
x

,
you’d better do something not silly like say “The pointwise limit of fn on (−1, 1) does
not exist!” Because the function 1

x
is not defined at zero, this says that fn does NOT

converge at zero, i.e. the functions do not have a pointwise limit. Unfortunately, failing
to do this point was another common error.

c) (fn) can not converge to g uniformly on (−1, 1), because fn is continuous for each n,
while g is not continuous; the uniform limit of continuous functions is continuous.

d) (fn) can not converge to 1
x

uniformly on (0, 1), because fn is bounded for each n,
while 1

x
is not bounded; the uniform limit of bounded functions is bounded.

Note: If you used boundedness to talk about (fn) not converging uniformly to 1
x

on
(−1, 1), I took off some points because that’s not the problem, the problem is the lack of
pointwise convergence (making the function 1

x
on (−1, 1) not even a valid function...)

6. (36 points, 6 pts each) For each of the following statements, is it true or false? Justifi-
cation is required.

(a) There is no function whose derivative is |x|.
False. The function 1

2x|x| will work. You could also write this as x2

2 for x ≥ 0, and
−x2

2 for x ≤ 0.

(This problem was mostly here because someone might incorrectly say “no, the
derivative is too weird”, or “doesn’t Darboux’s theorem say that can’t happen” or
something like that.)
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(b) If f : [0, 1) → R is continuous, and limx→1 f(x) exists, then f is bounded.

True. If limx→1 = L then we can extend f to a continuous function on [0, 1] by
setting f(1) = L. A continuous function defined on a compact set (like [0, 1]) is
bounded.

Common error: having no clue. In particular, the idea that when a functional limit
exists, one can extend the function continuously is a really important concept!
This is what functional limits are really about.

(c) The sequence of functions

fn(x) =

{

1 x > n

−1 x ≤ n

converges pointwise onR.

True. For any given x ∈ R, the sequence (fn(x)) is eventually just the constant
sequence −1. So (fn) → −1.

(d) If (fn) → f uniformly, and for some c ∈ R the sequence (f ′

n(c)) converges to L,
then f ′(c) = L.

False. For example, fn(x) = sin(nx)
n

is a sequence which converges to f = 0 uni-
formly. Then f ′

n(0) = 1 for all n, but f ′(0) = 0. (This is one of several things which
is NOT the DLT.)

(e) If (fn) is a sequence of functions where (f ′

n) converges uniformly, then (fn) con-
verges pointwise.

False. For example, the sequence of functions fn(x) = x + n does not converge
pointwise, but f ′

n = 1 for all n, which converges uniformly. (For more coun-
terexamples, you could take any sequence gn for which the DLT applies, and let
fn(x) = gn(x) +n.) (This is one of several things which is NOT the DLT. To be the
DLT, you also need fn(x0) to converge at some point x0.)

(f) If a sequence of functions (fn) converges pointwise to f on R, and converges
uniformly to f on [−M,M ] for each M > 0, then it converges uniformly to f on
R.

False. For example, fn(x) =
x2

n
. (Common error: giving something which doesn’t

even converge pointwise onR.)


