Math 317 (Fund. of analysis), Spring 2018 Midterm 1
 Teacher: Ben Elias
 Date: 5/9/2018

Name:

Q1		10
Q2		12
Q3		14
Q4		10
Q5		18
Q6		36
Total		100

General notes:

1. If you run out of space, use the other side of the paper!
2. Terminology: Supremum = least upper bound. Injective $=$ 1-to-1 = into. Surjective $=$ onto.
3. Justification: On an exam, by default, you should justify your statements. If an example or counterexample is the best justification, you should provide one. Otherwise, you should provide a brief conceptual explanation (one or two sentences).

- To justify that "Every closed interval contains 0 " is false, you should provide a counterexample, such as [1,2].
- To justify that "Some closed interval contains 0 " is true, you should provide an example, such as $[-1,1]$.
- To justify that "Every closed interval contains some nonzero number" is true, you should explain. "For any interval $[a, b]$, either $a \neq 0$ or $b \neq 0$."

4. If I want a complete proof, I will say "Prove that ..."
5. If I don't need any justification, I will say "no justification necessary." No justification is needed for a definition.
6. Make sure to specify any terms which are not in the statement of the problem. For example, when defining the term continuous, don't say " f is continuous if..." say "A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous if..."
7. ($\mathbf{1 0} \mathbf{~ p t s) ~ (a) ~ D e f i n e ~ t h e ~ t e r m ~ c o m p a c t . ~}$
(b) Let $A \subset \mathbb{R}$ be compact. Prove from the definition that A is closed.
8. ($\mathbf{1 2} \mathbf{~ p t s)}$ Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable functions. Prove directly from the definition that $(f g)^{\prime}(c)=f^{\prime}(c) g(c)+f(c) g^{\prime}(c)$ for all $c \in \mathbb{R}$. (For this problem I have hints I can give you at the cost of points.)
9. ($\mathbf{1 4} \mathbf{~ p t s)}$ (a) Define the term Lipschitz. (I can give you the answer, at the cost of points.)
(b) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable, and suppose that f^{\prime} is bounded. Prove that f is Lipschitz.
(c) If $g: A \rightarrow \mathbb{R}$ is Lipschitz, is it uniformly continuous? If $h: A \rightarrow \mathbb{R}$ is uniformly continuous, is it Lipschitz? I want one theorem and one counterexample (no proof or justification required).
10. (10 pts) Is it true or false? Justify or give a counterexample.
(a) If f and g are continuous on $[a, c]$, and $f(a)>g(a)$, and $f(c)<g(c)$, then there exists some point $b \in(a, c)$ where $f(b)=g(b)$.
(b) If f and g are differentiable on $[a, c]$, and $f^{\prime}(a)>g^{\prime}(a)$, and $f^{\prime}(c)<g^{\prime}(c)$, then there exists some point $b \in(a, c)$ where $f^{\prime}(b)=g^{\prime}(b)$.
11. (18 pts) Let $f_{n}(x)=\frac{n x}{1+n x^{2}}$ for each $n \in \mathbb{N}$.
(a) Let $f(x)=\frac{1}{x}$. Prove that $f_{n} \rightarrow f$ uniformly on the domain $(1, \infty)$.
(b) On the domain $(-1,1)$, compute the pointwise limit of f_{n}. (Hint: to use the algebraic limit theorem, it may help to divide the numerator and denominator by n.
(c) Why is it impossible that f_{n} converges uniformly on $(-1,1)$?
(d) (Extra credit) Why it is impossible that f_{n} converges uniformly on $(0,1)$?
12. (36 points, 6 pts each) For each of the following statements, is it true or false? Justification is required.
(a) There is no function whose derivative is $|x|$.
(b) If $f:[0,1) \rightarrow \mathbb{R}$ is continuous, and $\lim _{x \rightarrow 1} f(x)$ exists, then f is bounded.
(c) The sequence of functions

$$
f_{n}(x)= \begin{cases}1 & x>n \\ -1 & x \leq n\end{cases}
$$

converges pointwise on \mathbb{R}.
(d) If $\left(f_{n}\right) \rightarrow f$ uniformly, and for some $c \in \mathbb{R}$ the sequence $\left(f_{n}^{\prime}(c)\right)$ converges to L, then $f^{\prime}(c)=L$.
(e) If $\left(f_{n}\right)$ is a sequence of functions where $\left(f_{n}^{\prime}\right)$ converges uniformly, then $\left(f_{n}\right)$ converges pointwise.
(f) If a sequence of functions $\left(f_{n}\right)$ converges pointwise to f on \mathbb{R}, and converges uniformly to f on $[-M, M]$ for each $M>0$, then it converges uniformly to f on \mathbb{R}.

