Math 317 (Fund. of analysis), Spring 2018 Quiz 1
 Teacher: Ben Elias
 Date: 4/27/2018

Name:

Q1		9
Q2		11
Q3		15
Q4		15
Total		50

General notes:

1. If you run out of space, use the other side of the paper!
2. Terminology: Supremum = least upper bound. Injective $=$ 1-to-1 $=$ into. Surjective $=$ onto.
3. Justification: On an exam, by default, you should justify your statements. If an example or counterexample is the best justification, you should provide one. Otherwise, you should provide a brief conceptual explanation (one or two sentences).

- To justify that "Every closed interval contains 0 " is false, you should provide a counterexample, such as [1,2].
- To justify that "Some closed interval contains 0 " is true, you should provide an example, such as $[-1,1]$.
- To justify that "Every closed interval contains some nonzero number" is true, you should explain. "For any interval $[a, b]$, either $a \neq 0$ or $b \neq 0$."

4. If I want a complete proof, I will say "Prove that ..."
5. If I don't need any justification, I will say "no justification necessary." No justification is needed for a definition.
6. Make sure to specify any terms which are not in the statement of the problem. For example, when defining the term continuous, don't say " f is continuous if..." say "A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous if..."
7. (9 pts) For the function $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x^{3}$, prove that $f^{\prime}(5)=75$. (You may use the formula $x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)$.)
8. (11 pts) (a) Define the term compact.
(b) Let $A \subset \mathbb{R}$ be closed and bounded. Prove that A is compact.
9. (15 pts) (a) Let $A \subset \mathbb{R}$, and $f: A \rightarrow \mathbb{R}$. Define what it means for f to be uniformly continuous.
(b) Briefly justify the fact that $f(x)=\frac{1}{x}$ is uniformly continuous on $[1,2]$.
(c) Briefly justify the fact that $\frac{1}{x}$ is not uniformly continuous on $(0,1]$.
10. ($\mathbf{1 5} \mathbf{~ p t s}$) For each of the following statements, is it true or false? Justification is required.
(a) If f is continuous on $[a, c]$ then there is some $b \in(a, c)$ for which $f^{\prime}(b)=\frac{f(c)-f(a)}{c-a}$.
(b) If f is differentiable on (a, b), and $f^{\prime}(x) \neq 0$ for any $x \in(a, b)$, then either f is increasing or f is decreasing.
(c) If C is the Cantor set and $f: C \rightarrow \mathbb{R}$ is continuous, then f attains a maximum value.
