Math 317 (Fund. of analysis), Spring 2018 Quiz 2
 Teacher: Ben Elias
 Date: 5/30/2018

Name:

Q1		16
Q2		16
Q3		18
Total		50

General notes:

1. If you run out of space, use the other side of the paper!
2. Terminology: Supremum = least upper bound. Injective $=$ 1-to-1 $=$ into. Surjective $=$ onto.
3. Justification: On an exam, by default, you should justify your statements. If an example or counterexample is the best justification, you should provide one. Otherwise, you should provide a brief conceptual explanation (one or two sentences).

- To justify that "Every closed interval contains 0 " is false, you should provide a counterexample, such as [1,2].
- To justify that "Some closed interval contains 0 " is true, you should provide an example, such as $[-1,1]$.
- To justify that "Every closed interval contains some nonzero number" is true, you should explain. "For any interval $[a, b]$, either $a \neq 0$ or $b \neq 0$."

4. If I want a complete proof, I will say "Prove that ..."
5. If I don't need any justification, I will say "no justification necessary." No justification is needed for a definition.
6. Make sure to specify any terms which are not in the statement of the problem. For example, when defining the term continuous, don't say " f is continuous if..." say "A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous if..."
7. (16 pts) (a) State the result known as the Weierstrass M-test.
(b) Consider the series

$$
f(x)=\sum_{n=1}^{\infty} \frac{x^{n}}{n^{2}+x+1} .
$$

Use the Weierstrass M-test to prove that $f(x)$ is well-defined and continuous on $[-1,1]$.
2. ($\mathbf{1 6} \mathbf{p t s}$) Let $a(x)=1+\frac{1}{2} x-\frac{1}{4} x^{2}+\ldots$ be a power series, of which only terms up to degree 2 are known. Assume that the radius of convergence is nonzero.
(a) What is $a^{\prime \prime}(0)$?
(b) How many terms of $a(x)^{2}$ is it possible to compute? Compute them.
(c) Your friend claims to you that $a(x)=\sqrt{\cos (x)+x}$ inside the domain of convergence. Write down the first few terms of the power series representation of $\cos (x)+x$. Deduce that your (former) friend is incorrect.
3. ($\mathbf{1 8}$ points, $\mathbf{6}$ pts each) For each of the following statements, is it true or false? Justification is required.
(a) Suppose that $f(x)$ is a continuous function, agreeing with the power series $T(x)=$ $\sum_{n=1}^{\infty}(-1)^{n} \frac{x^{n}}{n^{3}}$ on the open interval $(-1,1)$. Then $T(1)=f(1)$.
(b) If $\sum_{n=0}^{\infty} a_{n} x^{n}$ converges at the point x_{0}, then so does $\sum_{n=0}^{\infty} n a_{n} x^{n-1}$.
(c) Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be infinitely differentiable, and $T(x)$ be the Taylor series of $g(x)$ at zero. If R is the radius of convergence of $T(x)$, then $T(x)=g(x)$ on $(-R, R)$.
4. (Extra Credit) When $n=\frac{1}{3}$, what is $\binom{n}{3}$ explicitly?

