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Math 441 (Linear Algebra), Spring 2019
Exercises

Exercises will be assigned each lecture, due the next lecture. They are annotated with
the week and day they are assigned, so 1F. is assigned on Friday of week 1 and is due on
Monday of week 2. In addition, several more exercises will be assigned weekly, due the
following Wednesday; the week 1 exercises would be listed as 1.1, 1.2, etcetera, and are due
on Wednesday of week 2.

Week 10 Reading: Axler Chapter 6.

10W.1 Two problems today. The first: now its not optional anymore. In the setup of 10M, ap-
ply Gram-Schmidt to {1, x, x2, x3} to find an orthonormal basis {v0, v1, v2, v3} where deg vi =
i.

10W.2 Find the orthogonal complement to the span of {v1, v2} in R4, where

v1 = (1, 1, 1, 1), v2 = (1, 1, 3, 5).

10M. This problem is about the inner product space P
R

= R[x], with inner product

〈p, q〉 =
∫ 1

0
p(x)q(x)dx.

1. Compute 〈xk, xl〉 for all k, l ≥ 0.

2. Write down explicitly what the Cauchy-Schwartz inequality tells you about 〈x, x〉, and
verify it.

3. Clearly 〈1, 1〉 = 1. Find a vector of the form v1 = a + bx such that 〈1, v1〉 = 0 and
〈v1, v1〉 = 1. (Please doublecheck your answer!)

4. Letting v0 = 1 the previous exercise shows that {v0, v1} is an orthonormal basis for
P≤1. Use inner products to efficiently compute the coordinates of x with respect to this
basis (i.e. verify 6.30 from Axler 3rd ed).

5. (Optional) Find a vector of the form v2 = a + bx + cx2 which extends the above to an
orthonormal basis {v0, v1, v2} for P≤2. Compute the coordinates of x2 with respect to
this basis.

Week 9 Reading: Axler Chapter 8.D (Jordan Normal Form), Chapter 6.A (inner prod-
ucts, norms)

9F. Axler 6.A.4 and 6.A.8.

9W. Axler 3rd ed 8.D.4 and 8.D.5.

9.1 Axler 6.A.1, 6.A.2, 6.A.5, 6.A.6, 6.A.7.
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9.2 Let D be the derivative, acting on the space of infinitely differentiable functions R→ R.
Let p be a polynomial of degree n, and let V = Ker p(D), the space of solutions to this
“differential equation.” The fundamental theorem of differential equations, stated in this
special case, says that dimV = n. For example, the space {f | f ′′ − 26f ′ + 3f = 0} is the
kernel of p(D) where p(x) = x2 − 26x+ 3, so it has dimension 2.

Theorem 0.1. Let p be a polynomial of degree n, and D be the derivative operator on the
space of infinitely differentiable functions. Then the kernel of p(D) has dimension exactly n.

For this problem you are welcome to use the following fact: if an operator on a finite-
dimensional real vector space has only real eigenvalues, then the Jordan normal form theo-
rem still applies.

1. Recall from a previous exercise that D preserves V , since it commutes with p(D). Prove
that the minimal polynomial of D acting on V is p.

2. Prove that D acting on V can not be represented by a matrix in Jordan normal form
with more than one block associated to a given eigenvalue λ.

3. Find all solutions to the differential equation p(D)(f) = 0, where p(x) = (x − 5)4(x +
2)(x − 3)2.

(Hint 1: Theorem 0.1 applies to every polynomial, not just the chosen one p. So the dimen-
sion of the kernel of (D − 5I)3 is three, etcetera. Hint 2: You already know how to find
functions on which the derivative acts like a Jordan block.)

9.Extra Credit This exercise is a first introduction to Lagrange interpolation. Let λ1, . . . , λd

be distinct scalars, and let p(x) be the multiplicity-free polynomial

q(x) = (x− λ1) · · · (x− λd).

Let L be an operator on an arbitrary vector space V (any dimension, any field) and suppose
that q(L) = 0. Remember that if L preserves a subspace of V (e.g. an eigenspace) then any
polynomial in L preserves that subspace.

1. Let 1 ≤ i, j ≤ d. Consider the polynomial

cij(x) =
x− λj

λi − λj

.

How does the operator cij(L) act on the λi-eigenspace of L? How does it act on the
λj-eigenspace of L? How does it act on the λk-eigenspace for some k 6= i, j?

2. Let 1 ≤ i, j, k ≤ d. How does the operator cij(L)cik(L) act on the λi-eigenspace of L?
What about λj , λk, and λl for l 6= i, j, k?

3. Let
pi(x) =

∏

j 6=i

cij(x).

How does pi(L) act on the various eigenspaces of L?
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4. Prove that the image of pi is contained in the λi-eigenspace of L.

5. Prove that pi(L)
2 = pi(L).

6. Prove that pi(L)pj(L) = 0 for all i 6= j.

7. Consider the special case where L is represented by the matrix









3 0 0 0
0 3 0 0
0 0 2 0
0 0 0 7









,

with λ1 = 3, λ2 = 2, λ3 = 7. Write down the matrices for p1(L), p2(L), and p3(L)?
What is (p1 + p2 + p3)(L)? What is (λ1p1 + λ2p2 + λ3p3)(L)?

8. Prove that cij(x) + cji(x) = 1.

9. Prove in general that (p1 + p2 + . . .+ pd)(L) = I . (This is the hardest thing by far!)

10. Deduce that V is a direct sum of its λi-eigenspaces.

Week 8 Reading: Axler Chapter 8. You really need to read this week, several proofs
and ideas will not be covered in class. We won’t get to Jordan normal form.

8.1 Axler 3rd ed 8.A.4, 8.A.6, 8.A.8, 8.C.1, 8.C.4, 8.C.18 but just the case n = 4 for sanity,
8.C.20.

8.2 In this problem T will be a linear operator on a finite-dimensional complex vector space
V of dimension n.

1. Find an example where V 6= KerT ⊕ Im T .

2. Prove that V = KerT n ⊕ Im T n.

8F. Axler 8.C.8 and 8.C.11. (Hint for 8.C.11: Use 8.C.8, and “solve for the constant term.”)

8W. Axler 3rd ed 8.A.5.

8M. Let S = {v1, v2, . . . , vm} be a list of vectors in V , and L be an operator on V . Suppose
that vi is a generalized eigenvector with eigenvalue λi, and λi 6= λj if i 6= j. Prove that S
is linearly independent. (This was the same thing I proved in class, except now they are
generalized eigenvectors.) (Hint: you can use the same proof. Choose a linear combination
which is zero of minimal length, and make it shorter somehow. In class I made it shorter
by applying L − λkI for some k. What operator should you apply this time? Addendum -
this is harder than I anticipated with this proof, though it can still be done. There is a much
slicker proof in 8.A.13 of Axler.)

Week 7 Reading: Axler Chapter 5.
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7.1 Axler 3rd ed 5.A.6, 5.A.7, 5.A.10, 5.A.15, 5.A.19, 5.A.20, 5.A.25, 5.A.26, 5.B.9 (some of
these are very short).

7F. Axler 3rd ed 5.B.4. (Hint: do it with eigenspaces.)

7W.

1. Let L be a linear operator and p a polynomial. Suppose v is an eigenvector for L with
eigenvalue λ. How does the operator p(L) act on v?

2. Prove that L preserves the kernel of p(L). If L has an eigenvector v inside the kernel of
p(L), what can you say about the eigenvalue λ?

3. Let V be the space of solutions to the differential equation f ′′′′−3f ′′′−3f ′′+11f ′−6f =
0. For which λ is the function eλx in V ? (Hint: rephrase V as the kernel of a polynomial
in some operator. Rephrase eλx as an eigenvector.)

7M. Let V be a finite-dimensional complex vector space. Suppose that S, T : V → V are
linear operators on V that commute: ST = TS.

1. Find an example where there is a subspace U that S preserves but T does not.

2. However, prove in general that T preserves each eigenspace of S.

3. If V is nonzero, deduce that there exists a nonzero vector v which is an eigenvector for
both S and T .

Week 6 Reading: Axler Chapter 4.

6.1 Axler 3rd ed 3.E.16, 4.11.

6.2 Let L ∈ End(U) and M ∈ End(W ) be linear operators on their respective domains.
Define a linear operator L⊕M on U ×W by the formula

(L⊕M)(u,w) = (Lu,Mw). (0.1)

What is the relationship between the matrices of L and M (with respect to some chosen bases
on U and W ), and the matrix of (L⊕M) on the corresponding basis in U ×W ?

6.3 We continue the glorious exercise 5W. once more. Let V be 6-dimensional, and L ∈
End(V ) be a linear operator on V . We’ve seen that when L preserves a subspace U of dimen-
sion 4, it has a particular form - in particular, a matrix with a lot of zeroes (this is as many
guaranteed zeroes as possible for a general such linear operator). Let’s do some variations
on this theme, no proofs required. Each problem is independent of the others.

1. Suppose that L preserves a subspace U of dimension 3. Find a matrix for L with a lot
of zeroes.

2. Suppose that L preserves a subspace U1 of dimension 2, and another subspace U2 of
dimension 2, and that U1 ∩ U2 = 0. Find a matrix for L with a lot of zeroes.
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3. Suppose that L preserves a subspace U1 of dimension 2, and another subspace U2 of
dimension 4, and that U1 ⊂ U2. Find a matrix for L with a lot of zeroes.

6.4 The moral of this exercise is that “the notions of subspace and quotient space are dual.”
Let V be a vector space, and let V ∗ = Hom(V,F) be its dual space. Let U be a subspace of V ,
and let W ⊂ V ∗ be defined by

W = {f ∈ V ∗ | f(u) = 0 for all u ∈ U}. (0.2)

1. Show that W is a subspace of V ∗.

2. Construct inverse isomorphisms between W and (V/U)∗. Thus “the dual of a quotient
space is a subspace of the dual.”

3. Now consider the map V ∗ → U∗ which sends a function f : V → F to its restriction to
U . Is this map linear? Surjective? What is its kernel?

4. Construct an isomorphism between U∗ and the quotient space V ∗/W . Thus “the dual
of a subspace is a quotient of the dual space.”

6W/F. (Because of the midterm, this problem is due on Monday of week 7. Nothing is due
friday of week 6.) Let L : V → V be a linear operator, and let U ⊂ V be a subspace, and V/U
be the quotient space. Suppose that one tries to define a linear operator L̄ : V/U → V/U by
the formula

L̄(v + U) = L(v) + U. (0.3)

1. Show that this formula makes sense and defines a linear operator if and only if L(U) ⊂
U .

2. Return to the setting of 5W., where U is four-dimensional and preserved by L. There is
a basis S = {v1, . . . , v6} where L has the matrix A as in (0.4). Then T = {L(v5), L(v6)}
is a basis for V/U . What is the relationship between the matrix of L with respect to S
and the matrix of L̄ with respect to T ?

6M. Axler 3rd ed 4.6, which is also Axler 2nd ed 4.4. (A hint mostly to make you write it
more efficiently: if λ is a root of p then write p = qr as a product of two polynomials, where
λ is a root of q and not a root of r.)

Week 5 Reading: Axler 3rd ed 3.C-E.

5.1 Axler 3rd ed 3.C.4, 3.C.5, 3.C.6, 3.D.3, 3.D.7, 3.E.7.

5.2 This problem is a follow-up to 5W. Assume that L preserves U . Suppose that L is invert-
ible. Prove that the restriction of L to U gives an invertible map U → U .

5F. Axler 3rd ed 3.E.1 and 3.E.13

5W. Let V be an 6-dimensional vector space, and L : V → V a linear operator.
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1. Let S be a basis of V , and suppose that when L is written as a matrix A with respect to
S, then A has the following form

















∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗
0 0 0 0 ∗ ∗

















. (0.4)

That is, the 2× 4 box in the lower left corner of A is zero, and the remaining entries can
be arbitrary (as indicated by the ∗). Prove that there is a 4-dimensional subspace U of
V for which L(U) ⊂ U . (We say that U is preserved by L.)

2. Conversely, suppose that U is a 4-dimensional subspace of V , and L(U) ⊂ U . Prove
that there is some basis S for V such that the matrix A of L with respect to S has the
above form.

5M. Let V be the vector space spanned by the functions S = {e3t, te3t, t2e3t, t3e3t}. The
derivative preserves V ; write it as a matrix with respect to the basis S. Now let f = t3e3t

and let T = {f, f ′, f ′′, f ′′′}. This is also a basis for V . Write the derivative as a matrix with
respect to the basis T . (You can try to do this directly or try to use a change of basis. It is
worth trying to do both. You can use wolfram alpha to compute inverses of matrices if you
want.)

Week 4 Reading: Axler Chapter 3 (2nd ed), or 3.A-D (3rd ed).
4.1 Axler 3rd ed, 3.B.29, 3.B.22 (Hint: use preimages to understand Ker(ST )), 3.B.20, 3.B.21.

4.2 Let L : V → W be a linear transformation, S = {v1, . . . , vn} a subset of V , and T =
{L(v1), . . . , L(vn)} the image of S in W .

1. Prove that if T is linearly independent then S is linearly independent.

2. Give an example where S is linearly independent but T is not.

3. Prove that if L is injective and S is linearly independent then T is linearly independent.

4.3

1. Let V be a vector space, and {f1, f2, . . . , fn} ⊂ V ∗ be linear functionals on V . Suppose
we can find a vector v1 ∈ V such that f1(v) 6= 0 but f2(v) = f3(v) = . . . = fn(v) = 0.
Similarly, suppose that for all 1 ≤ i ≤ n we can find vi ∈ V such that fi(vi) 6= 0 and
fj(vi) = 0 for all j 6= i. Prove that {f1, . . . , fn} is linearly independent in V ∗. Prove
also that the vectors {v1, . . . , vn} were linearly independent in V .

2. Let V = P≤2. Recall that evλ ∈ V ∗ sends a polynomial to its evaluation at λ ∈ R,
that is, evλ(p) = p(λ). Let λ1, λ2, λ3 be any three distinct points in R. Prove that
{evλ1

, evλ2
, evλ3

} forms a basis for V ∗. (Hint: use the previous part of the exercise.
How do you find a polynomial p such that evλ1

(p) 6= 0 but evλ2
(p) = evλ3

(p) = 0?).



7

4.4 Recall that RN = {(x1, x2, . . .)} is the vector space of all sequences of real numbers, and
R

⊕∞ is the subspace of sequences which are eventually zero.
For each vector v = (x1, x2, . . .) ∈ RN, we will define a linear transformation fv : R

⊕∞ →
R as follows.

fv(y1, y2, . . .) =

∞
∑

i=1

xiyi. (0.5)

1. Could we use the same formula to define a linear transformation fv : R
N → R? Why

or why not?

2. Prove that fv1+v2 = fv1 + fv2 . (After showing a similar thing for rescaling, one could
say: there is a linear transformationRN → (R⊕∞)∗ sending v 7→ fv.)

3. Prove that every linear transformation R⊕∞ → R has the form fv for some v ∈ RN.
(In other words, there is an isomorphism (R⊕∞)∗ ∼= RN.)

4.5 Let U be a subspace of a finite-dimensional vector space V , with U 6= V . Let W be another
vector space.

1. Suppose one has a linear transformation L : V → W . Restricting the domain of L to U ,
we get a function L|U : U → W . Show that L|U is a linear transformation. Better yet,
don’t write anything, but just convince yourself this is trivial!

2. Suppose one has a linear transformation M : U → W . The extension by zero of M is the
function M0 : V → W for which

M0(v) =

{

M(v) if v ∈ U,

0 if v /∈ U.
(0.6)

Prove that M0 is not a linear transformation when M is nonzero.

3. Suppose one has a linear transformation M : U → W . Now choose a complement U ′

to U , i.e. a subspace U ′ ⊂ V such that U ⊕ U ′ = V . Show that there is a unique linear
transformation M ′ : V → W such that

M ′(v) =

{

M(v) if v ∈ U,

0 if v ∈ U ′.
(0.7)

We call M ′ an extension of M to V .

4. Give an example where two different complements give rise to two different extensions
of a linear transformation.

4F. Axler 3rd edition 3.D.9. Written out: If S, T : V → V are linear maps, then S ◦ T is
invertible if and only if both S and T are invertible.

4W. Axler 3rd edition 3.B.4. Written out: show that

{T ∈ L(R5,R4) | dimKer(T ) > 2}
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is not a subspace of L(R5,R4).

4M. Let V = P≤2. Recall that evλ ∈ V ∗ sends a polynomial to its evaluation at λ ∈ R, that
is, evλ(p) = p(λ). I claim that the set {ev−1, ev0, ev1, ev2} is linearly dependent in V ∗. Find a
nontrivial linear combination for 0.

Week 3 Reading: Axler Chapter 2 (the rest) and start of Chapter 3. I have the idea that,
even though there are more problems this week, they feel shorter to me. Let me know if I’m
wrong!

3.1 Axler 3nd edition exercises 2.A.16, 2.B.4, 2.B.5, 2.C.6, 2.C.10, 2.C.14, 3.A.1.

3F. Two problems. Axler 3rd edition 2.C.4 and 2.C.13.

3W. Two problems. I assigned this late, so feel free to hand in on Monday instead of Friday.
Axler 3rd edition 2.B.7 and 2.A.17.

3M. Prove that RN is infinite-dimensional.

Week 2 Reading: Axler Chapter 1 (sums and direct sums), Chapter 2 (spans, linear
independence, bases)

2.1 Do Axler 2nd edition exercises 1.14, 2.1, 2.2, and Axler 3rd edition exercises 2.A.7, 2.A.9.

2.2 Let U be a subspace of V . For any vector v ∈ V , define U+v to be the subset

U+v = {z ∈ V | z = u+ v for some u ∈ U}. (0.8)

(Note: Now that we’ve discussed quotient spaces, we call this set v + U .)

1. For which v ∈ V is U+v a subspace?

2. Let v, v′ ∈ V . Prove that the sets U+v and U+v′ are either equal or disjoint. (Hint: first
prove that if U+v ∩ U+v′ 6= ∅ then v′ ∈ U+v.)

3. Think about the connection between this exercise and the notion of parallel lines, or
parallel planes in 3D. Say something meaningful and brief, both about the definition
of U+v, and about the result you just proved.

2F. Axler 2nd edition exercise 2.3 (same as Axler 3rd edition exercise 2.A.10).

2W. Axler 3rd edition exercise 1.C.24. (Hint: ONLY READ AFTER THINKING AND BEING

STUMPED. Given an arbitrary function f(x), consider the function g(x) = f(x)+f(−x)
2 .)

2M. Do Axler (3rd edition) exercise 1.C.20 and 1.C.21. Here they are written out in case you
only have 2nd ed. Both exercises give you a subspace U and ask for W such that U ⊕W is
the whole space.

• U = {(x, x, y, y)} ⊂ F4,
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• U = {(x, y, x + y, x− y, 2x)} ⊂ F5.

Week 1 Reading: Axler Chapter 1
1.1 Do Axler exercises 1.2, 1.4, 1.5, 1.6, 1.9. You only need rigorous proofs for 1.4 and 1.9.

1.2 ConsiderQ(
√
2) defined abstractly as {(a, b) | a, b ∈ Q} with addition and multiplication

coming from the formulas in exercise 1W. For z = (a, b) in Q(
√
2) let us define N(z) ∈ R by

the formula N(z) = a2 − 2b2. Confirm that N(z · w) = N(z) ·N(w) for any z, w ∈ Q(
√
2).

Aside: For a complex number z = a+bi we can define N(z) = a2+b2 = |z|2. The exercise
above is essentially the same computation one would use to show that N(z ·w) = N(z)·N(w)
for the complex numbers, or that |z · w| = |z| · |w|.

1F. Do Axler exercise 1.8.

1W. Consider the set X = R × R = {(a, b) | a, b ∈ R}. Equip X with an addition and
multiplication structure just like we did forQ(

√
2) in class, namely

• (a, b) + (c, d) = (a+ c, b+ d), and

• (a, b) · (c, d) = (ac+ 2bd, ad + bc).

Sadly, X is not a field, and we will NOT denote it byR(
√
2).

• Which properties of a field hold for X? (You need not provide the proof.)

• Which properties of a field fail? (Give an example.)

1M. Prove that the set of all twice-differential functions f : R→ Rwhich satisfy

f ′′ − 26f ′ + 3f = 0

is closed under addition and rescaling.

Note: This is not a hard proof, but I want to see your style of proof-writing. Don’t be too
verbose or too sketchy please. Feel free to use basic facts from calculus, but you should call
them out.

Proof-writing hint: When you want to avoid ambiguity and convoluted sentences, name
things. For instance, I didn’t name the set above, but when you write up the proof, an
excellent first sentence is “Let Y denote the set of all twice-differentiable ...” It is a lot easier
to refer to Y than “the set in question” or “it” or whatever else one might say. Similarly, the
equation f ′′ − 26f ′ +3f = 0 might itself be named something, like (⋆), which enables you to
say “Suppose that f satisfies (⋆). Then ...”


