Exercises

Exercises will be assigned each lecture, due the next lecture. They are annotated with the week and day they are assigned, so 1F is assigned on Friday of week 1 and is due on Monday of week 2. In addition, several more exercises will be assigned weekly, due the following Wednesday; the week 1 exercises would be listed as 1.1, 1.2, etcetera, and are due on Wednesday of week 2.

Week 6 Reading: Axler Chapter 4.

6.1 Axler 3rd ed 3.16, 4.11.

6.2 Let \(L \in \text{End}(U) \) and \(M \in \text{End}(W) \) be linear operators on their respective domains. Define a linear operator \(L \oplus M \) on \(U \times W \) by the formula

\[
(L \oplus M)(u, w) = (Lu, Mw).
\]

(0.1)

What is the relationship between the matrices of \(L \) and \(M \) (with respect to some chosen bases on \(U \) and \(W \)), and the matrix of \((L \oplus M) \) on the corresponding basis in \(U \times W \)?

6.3 We continue the glorious exercise 5W. once more. Let \(V \) be 6-dimensional, and \(L \in \text{End}(V) \) be a linear operator on \(V \). We’ve seen that when \(L \) preserves a subspace \(U \) of dimension 4, it has a particular form - in particular, a matrix with a lot of zeroes (this is as many guaranteed zeroes as possible for a general such linear operator). Let’s do some variations on this theme, no proofs required. Each problem is independent of the others.

1. Suppose that \(L \) preserves a subspace \(U \) of dimension 3. Find a matrix for \(L \) with a lot of zeroes.

2. Suppose that \(L \) preserves a subspace \(U_1 \) of dimension 2, and another subspace \(U_2 \) of dimension 2, and that \(U_1 \cap U_2 = 0 \). Find a matrix for \(L \) with a lot of zeroes.

3. Suppose that \(L \) preserves a subspace \(U_1 \) of dimension 2, and another subspace \(U_2 \) of dimension 4, and that \(U_1 \subset U_2 \). Find a matrix for \(L \) with a lot of zeroes.

6.4 The moral of this exercise is that “the notions of subspace and quotient space are dual.” Let \(V \) be a vector space, and let \(V^* = \text{Hom}(V, \mathbb{F}) \) be its dual space. Let \(U \) be a subspace of \(V \), and let \(W \subset V^* \) be defined by

\[
W = \{ f \in V^* \mid f(u) = 0 \text{ for all } u \in U \}.
\]

(0.2)

1. Show that \(W \) is a subspace of \(V^* \).

2. Construct inverse isomorphisms between \(W \) and \((V/U)^* \). Thus “the dual of a quotient space is a subspace of the dual.”

3. Now consider the map \(V^* \to U^* \) which sends a function \(f : V \to \mathbb{F} \) to its restriction to \(U \). Is this map linear? Surjective? What is its kernel?
4. Construct an isomorphism between U^* and the quotient space V^*/W. Thus “the dual of a subspace is a quotient of the dual space.”

6W/F. (Because of the midterm, this problem is due on Monday of week 7. Nothing is due Friday of week 6.) Let $L: V \to V$ be a linear operator, and let $U \subset V$ be a subspace, and V/U be the quotient space. Suppose that one tries to define a linear operator $\bar{L}: V/U \to V/U$ by the formula

$$\bar{L}(v + U) = L(v) + U.$$ \hfill (0.3)

1. Show that this formula makes sense and defines a linear operator if and only if $L(U) \subset U$.

2. Return to the setting of 5W, where U is four-dimensional and preserved by L. There is a basis $S = \{v_1, \ldots, v_6\}$ where L has the matrix A as in (0.4). Then $T = \{L(v_5), L(v_6)\}$ is a basis for V/U. What is the relationship between the matrix of L with respect to S and the matrix of \bar{L} with respect to T?

6M. Axler 3rd ed 4.6, which is also Axler 2nd ed 4.4. (A hint mostly to make you write it more efficiently: if λ is a root of p then write $p = qr$ as a product of two polynomials, where λ is a root of q and not a root of r.)

Week 5
Reading: Axler 3rd ed 3.C-E.

5.2 This problem is a follow-up to 5W. Assume that L preserves U. Suppose that L is invertible. Prove that the restriction of L to U gives an invertible map $U \to U$.

5F. Axler 3rd ed 3.E.1 and 3.E.13

5W. Let V be an 6-dimensional vector space, and $L: V \to V$ a linear operator.

1. Let S be a basis of V, and suppose that when L is written as a matrix A with respect to S, then A has the following form

$$
\begin{pmatrix}
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & * \\
0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & * \\
\end{pmatrix}.
$$ \hfill (0.4)

That is, the 2×4 box in the lower left corner of A is zero, and the remaining entries can be arbitrary (as indicated by the $*$). Prove that there is a 4-dimensional subspace U of V for which $L(U) \subset U$. (We say that U is preserved by L.)

2. Conversely, suppose that U is a 4-dimensional subspace of V, and $L(U) \subset U$. Prove that there is some basis S for V such that the matrix A of L with respect to S has the above form.
5M. Let V be the vector space spanned by the functions $S = \{e^{3t}, te^{3t}, t^2 e^{3t}, t^3 e^{3t}\}$. The derivative preserves V; write it as a matrix with respect to the basis S. Now let $f = t^3 e^{3t}$ and let $T = \{f, f', f'', f'''\}$. This is also a basis for V. Write the derivative as a matrix with respect to the basis T. (You can try to do this directly or try to use a change of basis. It is worth trying to do both. You can use wolfram alpha to compute inverses of matrices if you want.)

Week 4 Reading: Axler Chapter 3 (2nd ed), or 3.A-D (3rd ed).

4.2 Let $L: V \to W$ be a linear transformation, $S = \{v_1, \ldots, v_n\}$ a subset of V, and $T = \{L(v_1), \ldots, L(v_n)\}$ the image of S in W.

1. Prove that if T is linearly independent then S is linearly independent.
2. Give an example where S is linearly independent but T is not.
3. Prove that if L is injective and S is linearly independent then T is linearly independent.

4.3

1. Let V be a vector space, and $\{f_1, f_2, \ldots, f_n\} \subset V^*$ be linear functionals on V. Suppose we can find a vector $v_1 \in V$ such that $f_1(v) \neq 0$ but $f_2(v) = f_3(v) = \ldots = f_n(v) = 0$. Similarly, suppose that for all $1 \leq i \leq n$ we can find $v_i \in V$ such that $f_i(v_i) \neq 0$ and $f_j(v_i) = 0$ for all $j \neq i$. Prove that $\{f_1, \ldots, f_n\}$ is linearly independent in V^*. Prove also that the vectors $\{v_1, \ldots, v_n\}$ were linearly independent in V.

2. Let $V = \mathcal{P}_{\leq 2}$. Recall that $ev_\lambda \in V^*$ sends a polynomial to its evaluation at $\lambda \in \mathbb{R}$, that is, $ev_\lambda(p) = p(\lambda)$. Let $\lambda_1, \lambda_2, \lambda_3$ be any three distinct points in \mathbb{R}. Prove that $\{ev_{\lambda_1}, ev_{\lambda_2}, ev_{\lambda_3}\}$ forms a basis for V^*. (Hint: use the previous part of the exercise. How do you find a polynomial p such that $ev_{\lambda_1}(p) \neq 0$ but $ev_{\lambda_2}(p) = ev_{\lambda_3}(p) = 0$?)

4.4 Recall that $\mathbb{R}^N = \{(x_1, x_2, \ldots)\}$ is the vector space of all sequences of real numbers, and $\mathbb{R}^{\oplus \infty}$ is the subspace of sequences which are eventually zero.

For each vector $v = (x_1, x_2, \ldots) \in \mathbb{R}^N$, we will define a linear transformation $f_v: \mathbb{R}^{\oplus \infty} \to \mathbb{R}$ as follows.

$$f_v(y_1, y_2, \ldots) = \sum_{i=1}^{\infty} x_i y_i. \quad (0.5)$$

1. Could we use the same formula to define a linear transformation $f_v: \mathbb{R}^N \to \mathbb{R}$? Why or why not?

2. Prove that $f_{v_1 + v_2} = f_{v_1} + f_{v_2}$. (After showing a similar thing for rescaling, one could say: there is a linear transformation $\mathbb{R}^N \to (\mathbb{R}^{\oplus \infty})^*$ sending $v \mapsto f_v$)

3. Prove that every linear transformation $\mathbb{R}^{\oplus \infty} \to \mathbb{R}$ has the form f_v for some $v \in \mathbb{R}^N$. (In other words, there is an isomorphism $\mathbb{R}^{\oplus \infty}^* \cong \mathbb{R}^N$.)
Let U be a subspace of a finite-dimensional vector space V, with $U \neq V$. Let W be another vector space.

1. Suppose one has a linear transformation $L : V \to W$. Restricting the domain of L to U, we get a function $L|_U : U \to W$. Show that $L|_U$ is a linear transformation. Better yet, don’t write anything, but just convince yourself this is trivial!

2. Suppose one has a linear transformation $M : U \to W$. The extension by zero of M is the function $M^0 : V \to W$ for which

$$M^0(v) = \begin{cases} M(v) & \text{if } v \in U, \\ 0 & \text{if } v \notin U. \end{cases} \quad (0.6)$$

Prove that M^0 is not a linear transformation when M is nonzero.

3. Suppose one has a linear transformation $M : U \to W$. Now choose a complement U' to U, i.e. a subspace $U' \subset V$ such that $U \oplus U' = V$. Show that there is a unique linear transformation $M' : V \to W$ such that

$$M'(v) = \begin{cases} M(v) & \text{if } v \in U, \\ 0 & \text{if } v \in U'. \end{cases} \quad (0.7)$$

We call M' an extension of M to V.

4. Give an example where two different complements give rise to two different extensions of a linear transformation.

4F. Axler 3rd edition 3.D.9. Written out: If $S, T : V \to V$ are linear maps, then $S \circ T$ is invertible if and only if both S and T are invertible.

4W. Axler 3rd edition 3.B.4. Written out: show that

$$\{T \in L(\mathbb{R}^5, \mathbb{R}^4) \mid \dim \ker(T) > 2\}$$

is not a subspace of $L(\mathbb{R}^5, \mathbb{R}^4)$.

4M. Let $V = P_{\leq 2}$. Recall that $ev_\lambda \in V^*$ sends a polynomial to its evaluation at $\lambda \in \mathbb{R}$, that is, $ev_\lambda(p) = p(\lambda)$. I claim that the set $\{ev_{-1}, ev_0, ev_1, ev_2\}$ is linearly dependent in V^*. Find a nontrivial linear combination for 0.

Week 3 Reading: Axler Chapter 2 (the rest) and start of Chapter 3. I have the idea that, even though there are more problems this week, they feel shorter to me. Let me know if I’m wrong!

3W. Two problems. I assigned this late, so feel free to hand in on Monday instead of Friday. Axler 3rd edition 2.B.7 and 2.A.17.
3M. Prove that \mathbb{R}^N is infinite-dimensional.

Week 2
Reading: Axler Chapter 1 (sums and direct sums), Chapter 2 (spans, linear independence, bases)

2.2 Let U be a subspace of V. For any vector $v \in V$, define $U + v$ to be the subset

$$U + v = \{ z \in V \mid z = u + v \text{ for some } u \in U \}. \tag{0.8}$$

(Note: Now that we’ve discussed quotient spaces, we call this set $v + U$.)

1. For which $v \in V$ is $U + v$ a subspace?

2. Let $v, v' \in V$. Prove that the sets $U + v$ and $U + v'$ are either equal or disjoint. (Hint: first prove that if $U + v \cap U + v' \neq \emptyset$ then $v' \in U + v$.)

3. Think about the connection between this exercise and the notion of parallel lines, or parallel planes in 3D. Say something meaningful and brief, both about the definition of $U + v$, and about the result you just proved.

2W. Axler 3rd edition exercise 1.C.24. (Hint: ONLY READ AFTER THINKING AND BEING STUMPED. Given an arbitrary function $f(x)$, consider the function $g(x) = \frac{f(x) + f(-x)}{2}$.)

2M. Do Axler (3rd edition) exercise 1.C.20 and 1.C.21. Here they are written out in case you only have 2nd ed. Both exercises give you a subspace U and ask for W such that $U \oplus W$ is the whole space.

- $U = \{(x, x, y, y)\} \subset \mathbb{F}^4$,
- $U = \{(x, y, x + y, x - y, 2x)\} \subset \mathbb{F}^5$.

Week 1
Reading: Axler Chapter 1

1.1 Do Axler exercises 1.2, 1.4, 1.5, 1.6, 1.9. You only need rigorous proofs for 1.4 and 1.9.

1.2 Consider $\mathbb{Q}(\sqrt{2})$ defined abstractly as $\{(a, b) \mid a, b \in \mathbb{Q}\}$ with addition and multiplication coming from the formulas in exercise 1W. For $z = (a, b)$ in $\mathbb{Q}(\sqrt{2})$ let us define $N(z) \in \mathbb{R}$ by the formula $N(z) = a^2 - 2b^2$. Confirm that $N(z \cdot w) = N(z) \cdot N(w)$ for any $z, w \in \mathbb{Q}(\sqrt{2})$.

Aside: For a complex number $z = a + bi$ we can define $N(z) = a^2 + b^2 = |z|^2$. The exercise above is essentially the same computation one would use to show that $N(z \cdot w) = N(z) \cdot N(w)$ for the complex numbers, or that $|z \cdot w| = |z| \cdot |w|$.

1F. Do Axler exercise 1.8.

1W. Consider the set $X = \mathbb{R} \times \mathbb{R} = \{(a, b) \mid a, b \in \mathbb{R}\}$. Equip X with an addition and multiplication structure just like we did for $\mathbb{Q}(\sqrt{2})$ in class, namely
• \((a, b) + (c, d) = (a + c, b + d)\), and

• \((a, b) \cdot (c, d) = (ac + 2bd, ad + bc)\).

Sadly, \(X\) is not a field, and we will NOT denote it by \(\mathbb{R}(\sqrt{2})\).

• Which properties of a field hold for \(X\)? (You need not provide the proof.)

• Which properties of a field fail? (Give an example.)

1M. Prove that the set of all twice-differential functions \(f : \mathbb{R} \to \mathbb{R}\) which satisfy

\[f'' - 26f' + 3f = 0 \]

is closed under addition and rescaling.

Note: This is not a hard proof, but I want to see your style of proof-writing. Don’t be too verbose or too sketchy please. Feel free to use basic facts from calculus, but you should call them out.

Proof-writing hint: When you want to avoid ambiguity and convoluted sentences, name things. For instance, I didn’t name the set above, but when you write up the proof, an excellent first sentence is “Let \(Y\) denote the set of all twice-differentiable ...” It is a lot easier to refer to \(Y\) than “the set in question” or “it” or whatever else one might say. Similarly, the equation \(f'' - 26f' + 3f = 0\) might itself be named something, like \((\ast)\), which enables you to say “Suppose that \(f\) satisfies \((\ast)\). Then ...”