Tracy Cots: Recall some defns from day 1.

Def: $K(A)$ the homotopy category
- an additive cat.
- It is a graded cat, equipped w/ a grading shift functor (or translation functor).

\[A[i] = A^{\oplus i} \quad \text{and} \quad d_A[i] = -d_A \]

$sA \rightarrow B$ then $A[i] \rightarrow B[i]$ is the same underlying map (no sign).

Prop: In $K(A)$, any h.c. is an epi. Moreover, the quotient functor

\[\text{Ch}(A) \rightarrow K(A) \]

is universal w'th this property. **Pf:** See Weibel, for cylinder exercise.

Recall $K(A)$ is still additive, but even when A is abelian, $K(A)$ is rarely abelian.

\[0 \rightarrow B \xrightarrow{\text{cone}(f)} A[i] \rightarrow 0 \]

$\mu = \ker v$ but μ is not monic.

\[A \xrightarrow{f} B \xrightarrow{u} \text{cone}(f) \]

$uf = 0$ but $f \neq 0$

In stead $K(A)$ is triangulated.

Def: Let K be an additive graded cat. A **triangle** in K is the data

\[A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} A[i] \]

which also leads to the data.

\[\cdots \rightarrow \text{cone}(h) \rightarrow A \rightarrow B \rightarrow C \rightarrow A[i] \rightarrow \cdots \]

A *morphism of triangles* is

\[A \rightarrow B \rightarrow C \rightarrow A[i] \]

\[X \rightarrow Y \rightarrow Z \rightarrow X[i] \]

all squares commute.

Def: A **triangulated cat** is an additive graded cat K equipped with a collection of special triangles called distinguished triangles, satisfying axioms TRO-TR4 below.

To motivate these axioms:

Thm: $K(A)$ is triangulated, when $\Delta = \{ \text{triangles isomorphic in } K(A) \text{ to}

\[A \xrightarrow{f} B \xrightarrow{u} \text{cone}(f) \xrightarrow{v} A[i] \]

for some cone map f.
Remark: \[0 \to \frac{p_2}{b_2} \to \frac{p_3}{b_3} \to \frac{p_1}{b_1} \to 0 \] is a s.e.s. of complexes, but does not give rise to a d.t. in \(K(\mathbb{Z} mod) \)!

only degree-split s.e.s. does! Recall our example for every s.e.s.
\[0 \to P \xrightarrow{\text{incl}} X \xrightarrow{d} 0 \] when \(X^i = P \otimes_{\mathbb{Q}} k^i \) is a cone of \(P \to X \to Q \to 0 \).

Axioms: (TRO) 1) \[\Delta \text{ is closed under } \equiv \text{ of triangles.} \]
2) \((A \to B \to 0 \to A[1]) \in \Delta \text{ for all } A \in C(\mathbb{Z}) \)

Pf for \(K(\mathbb{A}) \): 1 by def. 2 b/c Cond. (ii) \(\Longleftrightarrow \)

(TRY) Any map \(A \to B \) extends to some \(D \in (A \to B \to C \to A[1]) \in \Delta \).

Remark: Other axioms will ensure \(C \) is well defined up to isom, but NOT up to more than.

Some problem we noticed for cones earlier. In general, \(C \) is called a cone of \(f \).

Pf for \(K(\mathbb{A}) \): Take the cone.

With \(\boxplus \) the next axiom on error term:

(TRA) given the triangle \(\Delta = (A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} A[1]) \), define
\[\text{rot}(\Delta) = (B \xrightarrow{\text{def}} C \xrightarrow{h} A[1] \xrightarrow{id} B[1]) \]
and \(\text{rot}^\ast(\Delta) = (A \xrightarrow{id} A \xrightarrow{id} B \xrightarrow{g} C) \).

Then \(\Delta \in \Delta \Rightarrow \text{rot}^\ast(\Delta) \in \Delta \).

Pf for \(K(\mathbb{A}) \) - w/o correction: WTS \(B^u \to \text{Cone}(f) \to A[1] \to B[1] \) is in \(\Delta \)

\[\begin{array}{cccc}
B_1 & \to & B_2 & \to \\
\uparrow & & \uparrow & \\
A_1 & \to & A_2 & \to
\end{array} \]

\[\text{Cone}(A) = \left(\begin{array}{ccc}
B_1 & \to & B_2 \\
\downarrow & & \downarrow \\
A_1 & \to & A_2
\end{array} \right) \sim A[1] \]

but the map \(A[1] \to \text{Cone}(A) \) is NOT "inclusion", not a clean map.
We discuss how E.S. affects differences but not chain maps.

The actual chain map $\mathbb{A}[1] \rightarrow \mathbb{C}[1]$ is

$$a \rightarrow (a, 0, -fa)$$

This $\mathbb{A}[1] \rightarrow \mathbb{C}[1] \rightarrow \mathbb{B}[1]$ is $\mathbb{F}[1]$, not $\mathbb{F}[1] !$

But this $\mathbb{D}[1] \rightarrow \mathbb{A}[1] \rightarrow \mathbb{C}[1]$ is not $\mathbb{F}[1]$!!

But it is homotopic to $\mathbb{F}[1]$. When,

(TR3) Given $\xymatrix{A \ar[r] & B \ar[r] & C \ar[r] & A[1] \ar[r] & \Delta}$

$$\omega: f_1 \Rightarrow f_2$$

$$X \rightarrow Y \rightarrow Z \rightarrow X[1] \rightarrow \Delta$$

\[\exists \theta \] (but not nec. unique)

Proof: Easy exercise will cancel

for $\mathbb{K}[a]$.

Before getting to the core axiom (TR4), some consequences:

1. $\xymatrix{A \ar[r] & B \ar[r] & C \ar[r] & A[1] \ar[r] & \Delta} \Rightarrow gf = 0$

\[\text{PF:} \quad \xymatrix{A \ar[r] & A \ar[r] & 0 \ar[r] & A} \]

\[\exists f, \exists \lambda \ar[r] & \exists h \ar[r] & A \]

2. **Def:** A functor $K \xrightarrow{h} \mathbb{B}$ is a **homological functor** if

\[\Rightarrow h(\mathbb{C}[1]) \rightarrow h(\mathbb{A}) \rightarrow h(\mathbb{B}) \rightarrow h(\mathbb{C}) \rightarrow h(\mathbb{A}[1]) \rightarrow h(\mathbb{C}[1]) \rightarrow \cdots \] is exact.

Prop: If h is a cochain, $h: \mathbb{K}[a] \rightarrow \mathbb{B}$ is a homological functor.

Rmk: h is additive then might not have built-in hom functor on $\mathbb{K}[a]$.

Thm: For any $\mathbb{K}[a]$, $\text{Hom}_K(X, -)$ is a homological functor to \mathbb{Z}-mod.

PF: ETS

$\text{Hom}(X[A]) \xrightarrow{f_0} \text{Hom}(X[B]) \xrightarrow{g_0} \text{Hom}(X[C])$ exact in middle, then rotate to get exact copies,

Thus competition is zero by 1. If $y: X \rightarrow B$ and $gf = 0$ then $\exists f: X \rightarrow A$

as follows
\[X \rightarrow Y \rightarrow Z \rightarrow X[17] \quad \text{(thus TR3 for the rotated triangle)} \]
\[A \rightarrow B \rightarrow C \rightarrow X[17] \]

so \(\phi \) is folk. \[\square \]

3. Many correlated

Corl (5-learn)

\[X \rightarrow Y \rightarrow Z \rightarrow X[17] \]

\[X' \rightarrow Y' \rightarrow Z' \rightarrow X'[17] \]

Corl: \(X \sim Y \) then \(Z \sim 0 \)

Corl: \(X \sim Y \rightarrow Z \sim X[17] \) then \(w = 0 \Rightarrow \triangle \) trapezoid is isomorphic to \((K^\circ \rightarrow X_2 \rightarrow X) \).

and such triangles are always distinguished.

Now for TR4

3rd isom theorem: \(C \hat{\circ} B \hat{\circ} A \) makes the \(A / B \cong (A \hat{\circ} C) / (C \hat{\circ} B) \)

\[o \rightarrow B \hat{\circ} A \rightarrow A / B \rightarrow o \quad \text{think of these as d.t.} \]
\[o \rightarrow C \hat{\circ} A \rightarrow A \rightarrow o \]
\[o \rightarrow C \hat{\circ} B \rightarrow B \rightarrow o \]

(\text{TR4}) Given \(X \sim Y \) and \(Y \sim Z \) (not part of one triangle)

then \(\exists \) d.t. \(C \hat{\circ} \rightarrow C \hat{\circ} X \rightarrow C \hat{\circ} Y \rightarrow C \hat{\circ} Z \) \((\text{when } C \hat{\circ} \text{ any, case of } \alpha) \)

S.t. \(a \)

\[X[17] = X[17] \]

\[C[17] \rightarrow C[a] \rightarrow C[17] \]

AND \(b \)

\[Z \hat{\circ} \circ V \rightarrow Z \hat{\circ} E \]

\[C \hat{\circ} \rightarrow C \hat{\circ} E \rightarrow C \hat{\circ} \]

\[X = X \]

\[C \hat{\circ} \rightarrow C \hat{\circ} X \rightarrow C \hat{\circ} \]

the rest are triangles. Try going in 3D! octahedron axiom.
Yikes!! Only way to appreciate (TR4) is to use it. Really necessary.

When proving facts about t-structure (soon), OR just move on w/ your life.

Rmk: Two main examples of tri. cat: 1) K(A)
2) Stable modules over a Frobenius algebra A

Obs: A-mod
Mor: A-mod maps / morphism factor these projections (injective)

Think: Killing projections is like killing contractible complexes (exercises).

(2) is great b/c a good way to appreciate axiom is to use them in an unfamilar context.

(3) Derived categories. Next in line.

Aside: The triangulated Grothendieck gr [K] is $\mathbb{Z}\langle [M]/\text{mod}(\text{A})\rangle$.

$[A]+[C]=[B]$ when $A\to B\to C\to 0$.

$[A][I]=-\sigma A$ since $A\to 0\to \sigma A[I]$ is a tilt.

Note: $[A][I]=-\sigma A$ since $A\to 0\to \sigma A[I]$ is a tilt.

Exerc: $[K^b(\text{Vect}_{\text{fd}})]\cong \mathbb{Z}$.

Hint! Build a complex on an iterated cone, degree by degree.

Def: Let A be an abelian cat. The derived cat of A, $D(A)$, is obtained from $K(A)$ by inverting all quasi-

Two things need to be done, quite separate: 1) make sense of this 2) how to use it.

Preview of (2): Any $M\in \text{mod} A \implies 0\to M\to 0$ in $K(A)$ is quasi to a proj resolution P^\bullet.

In fact, any bold above complex M^\bullet is quasi to a complex of projectives, called
the Cartan - Glesingh min (soon). So then $D(A)$ the correct formal context for making
w/ proj res: $D^{-}(A)\cong\text{add}(\text{proj} A)$.

$D^{-}(A)\cong\text{add}(\text{proj} A)$.
So to compute morphisms in $\text{D}(A)$, replace all complexes with projective replacements and then use chain maps up to homotopy. More later.

Let's get (1) out of the way. What does "morally quasi" really mean?

Motivation: R a comm ring. $S\in\text{multiset}$: $\circ 1 \in S$ $\circ fg \in S \Rightarrow fg \in S$

Then $R[S^{-1}]$ is well defined:

$$R[S^{-1}] = \left\{ \frac{a}{f} \mid a \in R, f \in S \bigg/ \frac{a}{f} \sim \frac{b}{g} \iff \exists h \in S \text{ s.t. } h(af-bg)=0 \right\}$$

(equv., $\frac{a}{f}=0 \iff \exists g \in S$ s.t. $ag=0$)

What if R is a non-comm ring?!! Two problems w/ defining $R[S^{-1}]$:

a) Need elements like $af^{-1}bgch^{-1}$... making $R[S^{-1}]$ too big!

b) $a=0$ if $\exists g \in S$ s.t. $ga=0$

or if $\exists f \in S$ s.t. $at=0$

or $-sat=0$

Def: A collection of morphisms S in a category G is a **localizing class** if

- $\circ 1 \in S$
- $fg \in S \Rightarrow fg \in S$
- For all X $\forall \frac{b}{g} \in S$ $\exists \frac{a}{f} \in S$ s.t. $af=bg$

Use double edge to denote a morphism in S

- Is called Ore condition, says $af^{-1}=gb^{-1}$.

Hence no big work $af^{-1}gb^{-1}$ needed, words like af^{-1} will span.

Def: If S a localizing class, define $[S^{-1}]$ with $Ob=Ob(G)$

$$\text{Hom}(X,Y) = \left\{ \left\{ \frac{Z}{X}, \frac{Y}{Z} \bigg/ \sim \right\} \bigg/ \sim \right\}$$

we call them **roots**.
Equivalences:

- \(X \xrightarrow{e} Z \xrightarrow{f} Y \)

Composition:

- \(X \xrightarrow{g} Z \xrightarrow{f} Y \)

Indep. of choice up to equivalence:

- \(X \xrightarrow{e} Y \)

Verify that:

\[X \xrightarrow{f} Z \xrightarrow{g} Y \]

\[X \xrightarrow{g} Y \]

\[X \xrightarrow{g} Y \]

\(\text{Indep. of choice up to equivalence.} \)

Rank:

Is \(\{ \text{roots} \} \) even a set? Roots of fixed object \(Z \) is,

but \(\text{Ob}(E) \) isn't.

Often people add one more condition or local property, \(E \) set of objects where

all roots go thru them up to equiv. \(\text{Locally Small} \)

The (global) size of \(\text{Hom}(E, E) \) is as expected.

\(E \rightarrow E[S^1] \) is universal among functors where \(g \rightarrow \text{Isom} \),

In fact K(A) knows a lot about that \(E \) localized without gaps.

Big technical remark:

\[
\begin{align*}
\text{Ch}(A) & \rightarrow K(A) \rightarrow D(A) \\
& \uparrow \\
\text{Q} \quad \text{universal} & \rightarrow \text{Isom} \\
& \quad \text{it turns out also that } \text{Q} \quad \text{is universal} \\
& \quad \text{Q} \rightarrow \text{Isom} \\
& \text{So why not just } D(A) = \text{Ch}(A)[\text{Isom}^{-1}] \text{? B/c Q isom NOT a localization class} \\
& \quad \text{inside Ch}(A)!!!}
\end{align*}
\]

But ultimately, \(\text{Hom}_{\text{D}(A)}(A^\circ, B^\circ) = \) some crazy roots mod equivalence

You NEVER use this. Next step is to understand thy letter.
Now for a key application:

Then, let K be triangulated, $h: K \to B$ a homotopy functor, and $Q = \{ f \mid h(f) \text{ is an isom} \}$. Then Q is a localizing class and $K[Q]$ is triangulated.

Sketch: Q is multiplicative.

apply h. Since $W(s)$ is isom, $h(s(C))$ is isom, so h is.

$\Rightarrow h(A) \to h(B) \to h(C) \to h(W(C)) \to h(B(C)) \to W(C) = 0$.

$\Rightarrow \ker u \to \ker h(x) \to \ker h(y) \to 0 \to 0 \to 0 \to \ker h(x)$.

Exercise! $sf = 0 \iff \exists t$, $ft = 0$.

Define a triangle in $K[Q]$ as the image of DT from $K[Q]$.

Warning: Erroratum in Weibel?

Eq: What is $\text{Cone}(\Delta X \to Y)$?

So let it be $A \to X \to Y \to C \to A[1]$.