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Math 607 (Homological Algebra), Fall 2021
Exercises

There will be one exercise per class. I’ll include readings by the exercise.

Week 1
Reading: Crawley-Boevey’s notes, p3-6. Gabriel’s theorem is on p19.

T. This exercise is about embedding the category of graded modules over a graded ring into
ordinary modules over an ordinary ring. Let R = ⊕i∈ZRi be a Z-graded C-algebra, and
M = ⊕i∈ZMi be a graded R-module.

Let q ∈ C be an invertible complex number which is not a root of unity. Define an
invertible operator h on M , where hm = qim for any m ∈Mi. Note that h is diagonalizable,
and its eigenspaces are the graded pieces Mi. Now M is a module over both R andC[h, h−1].
However, it is not a module over R[h, h−1] since the elements of R do not commute with h.

1. Compute hrh−1 for r ∈ R homogeneous.

2. Use this relation to define a new ring Rh, having R and C[h, h−1] as subrings which
generate it, where h acts by conjugation in the appropriate way. Note: This ring Rh has
the same “size” as R[h, h−1], but I don’t need you to prove this.

3. If Rh was defined correctly then there is a functor F from graded R-modules to Rh-
modules, preserving the underlying R-module structure of M and letting h act as
above. Is F full? Is F faithful?

4. The functor F is not essentially surjective: find an Rh-module which does not come
from a graded R-module. Which Rh-modules come from graded R-modules? (No
rigorous proof required, but think about how you would define an inverse functor on
this category.)

T/R. (WARMUP, DO NOT WRITE UP.) For each of the categories below, please find:

• All the simple modules.

• All the indecomposable modules.

• Which indecomposable modules are projective.

• All the non-split short exact sequences whose outer terms are indecomposable.

1. R-mod for the ring R = C[x]/(x4).

2. Q-rep for the quiver • → • → •.

R. Consider the following quiver Q. It has four vertices named 1, 2, 3 and ∗. It has three
arrows, one from i to ∗ for each i ∈ {1, 2, 3}. (This is a particular orientation on the D4

quiver.)

1. Find all the simples and indecomposable projectives.
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2. By the Gabriel theorem, there is one isomorphism class of indecomposable object M
whose dimension at vertices 1, 2, 3 is one, and whose dimension at vertex ∗ is 2. Find
M , and show that any other indecomposable of this dimension is isomorphic to M .

3. Find a short exact sequence 0→ P → Q→M → 0 where P and Q are projective.

Week 2
Reading: Weibel Ch 1.1, 1.3, 1.4, 1.5. Parts of Ch 2.2, 2.3.

T. Find projective resolutions of:

1. All indecomposables in R-mod for the ring R = C[x]/(x4). Also find injective resolu-
tions for this example.

2. All indecomposables for Q-rep for the quiver • → • → •.

3. The moduleC[x, y]/(x2, xy, y2) over the ring C[x, y].

T/R Warmup. Let F be the functor from C[x]/(x4)-modules to C[x]/(x2)-modules which
sends M to the quotient M/(x2 ·M). (What does it do to morphisms?) Apply F to your
projective resolutions from 2T., and compute the homology of the result.

R. Practice with cones, slightly different notation from class. In this problem, there is a
termwise split s.e.s.

0→ B• → X• → A• → 0, (1)

so that Xi = Ai ⊕Bi, but the differential is not diagonal.

1. (No need to write up) Confirm the statement made in class: that such complexes are
in bijection with chain maps A[−1] → B. For f : A[−1] → B, let Xf denote the corre-
sponding complex (i.e. the cone of f ).

2. Classify all chain maps ϕ : Xf → Xg which respect the short exact sequence (1). Under
what conditions are Xf and Xg isomorphic?

3. Under what conditions is (1) split, rather than just termwise-split? (Hint: use the pre-
vious part of the exercise.)

4. Classify chain maps Xf → Xg modulo homotopy! (Upshot of this exercise: I com-
plained that cones are not canonical. They’re not even canonical in the homotopy cat-
egory. But they are canonical when certain morphism spaces vanish...)

5. (Optional, but recommended) Now let A,B,C be complexes. Classify all complexes
X where Xi = Ai ⊕ Bi ⊕ Ci, and where the various inclusions and projections give a
filtration of X with quotient C , middle B, and sub A.

Week 3
Reading: Weibel Ch 2, then MacLane Chapter 8. Weibel 1.6 on the Freyd-Mitchell em-

bedding theorem.

T. Practice with computing Ext. The phrase “compute all exts between simples” means that
for any two simple modules S and S′ (possibly S = S′) and any i ∈ Z you need to find
Exti(S, S′). The answer is NOT symmetric (you can’t swap S and S′).



3

1. Most of this exercise deals with the category of C[x]-modules. Compute all exts be-
tween finite-dimensional simples.

2. Let M(λ) denote the one-dimensionalC[x]-module with eigenvalue λ. Take some non-
split short exact sequence of your choice between finite-dimensional modules which
admit nonzero morphisms from M(λ). Compute the long exact sequence associated to
Hom(−,M(λ)).

3. Compute the long exact sequence associated to Hom(M(λ),−). Hint: don’t use injective
resolutions!

4. Let Q be a type A3 quiver with some orientation. Compute all exts between simples:
compute Exti(Sj, Sk) for all i ∈ Z and all vertices j and k. Make a hypothesis about
what happens if you change the orientation.

R. In class I described functors between representations of different quivers, which I called
the source-push and the sink-pop. Consider the quiver Q1 which is • → • → •, and Q2 which is
• ← • → •. The source-push gives a functor F from Q1 modules to Q2 modules, by inverting
the orientation around the first vertex.

Also, recall the setup of Gabriel’s theorem. For a quiver Q with vertex set V , let [Q]
denote the vector space with basis {αi}i∈V . For a quiver representation M , let [M ] or dimM
denote

[M ] :=
∑

i∈V

dimMi · αi ∈ [Q].

Identify [Q] with [Q′] whenever they are related by a source-push or a sink-pop.
For this A3 Dynkin diagram, identify [Qj ] with a subspace ofC4 by setting αi = xi−xi+1.

1. Compute how F acts on all indecomposables. Is F exact? Is it right exact? (If not, what
is the problematic s.e.s)

2. Compute the higher derived functors of F .

3. For a representation of Q1, when the map out of the first vertex is injective, the rank-
nullity theorem determines [FM ] from [M ]. For which indecomposables is this map
injective? For which indecomposables is there a non-trivial higher derived functor?

4. Show that the map [M ] 7→ [FM ] − [L1FM ] gives an involution [Q1] → [Q2] = [Q1].
This involution comes from a reflection on C4: what reflection is it?

Week 4
Reading: MacLane Chapter 8, supplement on Gaussian Elimination.

T.

1. Prove that if g is monic (in an abelian category) then g = ker(coker(g)).

2. Prove that A
f
→ B

g
→ C is exact if and only if gf = 0 and for all members x of B with

g(x) = 0, there exists a member y of A such that f(y) = x.

T/R warmup.
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1. Here’s an old one I forgot to assign: Let C be the cone of a chain map f : A→ B. Thus
there is a short exact sequence of complexes

0→ B → C → A[1]→ 0.

Prove that in the long exact sequence, the map hi(A[1])→ hi+1(B) agrees with the map
f∗ : h

i+1(A)→ hi+1(B).

2. Let A = Z[x]/(x2 − 1), i.e. A is the group algebra of Z/2Z over Z. Let S and T denote
the A-modules, both isomorphic to Z as Z-modules, which correspond to the sign and
trivial representations.

(a) Show that S (resp. T ) is both a sub and a quotient of a free module, but is nonethe-
less not a summand.

(b) Find free resolutions of S and T . What is Exti(S, S), Exti(S, T ), Exti(T, S), and
Exti(T, T ).

R. This problem continues the setup of the warmup: A = Z[x]/(x2 − 1), and S and T are the
trivial and sign modules. Because A is the group algebra of Z/2Z, this means that we can
take the tensor product of A-modules over Z. We write⊗ for⊗

Z

. Explicitly, x acts on M ⊗N
as x⊗ x. For example, T is the monoidal identity, and S ⊗ S ∼= T .

1. Find an explicit decomposition A⊗A ∼= A⊕A.

2. Let F denote the two-term complex (A → T ). The differential is the quotient map,
thinking of T as A/(x − 1). Use Gaussian elimination to compute a minimal complex
for the two-term complex F ⊗A.

3. Let G denote the two-term complex (T → A). The differential sends 1 ∈ T to (x +
1) ∈ A. Use Gaussian elimination to prove that F ⊗ G ≃ T , the monoidal identity
in complexes of A-modules. Hence F ⊗ (−) and G ⊗ (−) are inverse functors on the
homotopy category!

4. Compute a minimal complex for F ⊗ F (remember, when taking tensor products of
complexes, some sign is introduced into the differential).

5. (If you have time) Let Λ denote the two-term complex (A → A) where the differential
is multiplication by (x− 1). Compute the minimal complex of F ⊗ Λ. Be careful!

Extra credit! The example from 4R. is near and dear to my heart, and is a toy model for cer-
tain important complexes in the categorified braid group. Let’s explore deeper. The theme
will be one of categorified eigenvectors. Note that F ⊗ A ≃ A, so that F acts on A just like the
scalar functor which is the monoidal identity. We call A a weak eigenobject for F . Note also
that (F ⊗ F )⊗A ≃ A.

1. Compute the morphism space in the homotopy category from the one-term complex
T (in any homological degree) to F . Compute the morphism space from any shift of T
to F ⊗ F .
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2. Find a chain map α : T → F ⊗ F for which α ⊗ idA is the homotopy equivalence
A→ (F ⊗ F )⊗A. In this sense, A is a (strong) eigenobject for F ⊗ F with eigenmap α.

3. Confirm that there is no morphism T → F which induces the homotopy equivalence
A→ F ⊗A.

4. Let Λα denote the cone of α. What is Λα ⊗ A? Hint: In general, Cone(f) ⊗ M ∼=
Cone(f ⊗ idM ).

5. Let β denote the nontrivial morphism T [−2]→ F ⊗ F you computed. Show that β in-
duces a homotopy equivalence from Λα[−2] to (F ⊗F )⊗Λα, making Λα an eigenobject
with eigenmap β.

6. Let Λβ denote the cone of β. What is Λα ⊗ Λβ?

You should think of (4) as categorifying the statement that, whenever m is an eigenvector
for z with eigenvalue κ, then (z − κ)m = 0. Then (6) categorifies (z − κ1)(z − κ2) = 0. The
most interesting thing is that one of your free resolutions from the warmup categorifies the
projector p1 =

z−κ2

κ1−κ2
, projecting to the κ1-eigenspace. What categorifies p2?

Week 5
Reading: Weibel 3.4 (there are some errors in this chapter, or so I heard), Weibel flat reso-

lution lemma in 3.2 (need to read some 3.1 to understand), then start homological dimension
in Ch 4.

T. Prove that a k-extension [X] corresponds to 0 ∈ Extk(A,B) if and only if it is equivalent
to a split k-extension.

T. challenge Let R = C[x]/xk . We have already computed that Exti(C,C) ∼= C for each
i ≥ 0. Compute the ring structure on Ext∗(C,C). (This depends on k, in a surprising way!!)
For each k, find a 2-extension representing a non-trivial element of Ext2(C,C).

T/R Warmup. (pd is projective dimension.) If 0 → A → B → C → 0 is exact, and
pd(C) 6= pd(A) + 1, show that pd(B) = max{pd(A), pd(C)}. If pd(C) = pd(A) + 1, find an
example when pd(B) is much smaller than pd(C).

R.

1. Let R = ⊕i∈ZR
i be a graded commutative k-algebra (for a field k), where Ri = 0 for

i < 0, and R0 = k. Assume that R is finite dimensional overall; in particular, it is
bounded above. Sketch an argument that R has infinite global dimension. (Hint: Use
the fact that projective modules over a local ring are free. Resolve the one-dimensional
representation.) For extra credit, make it rigorous.

2. Find the canonical resolutions of the following objects.

(a) Some indecomposable quiver representations (give me two, make them at least
slightly interesting).

(b) The representationC[x, y]/(x2, xy, y2) of the ring C[x, y].

Week 6
Reading: Hmmm...
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I had two ideas for HW today, so pick one.

T. Let R = C[x1, x2] be a polynomial ring, and S = C[y1, y2, z1, z2] ∼= R ⊗
C

R, with
yj = xj ⊗ 1 and zj = 1 ⊗ xj . We are interested in taking the Hochschild homology HHi of
various (graded) R-bimodules; recall that these are the higher derived functors of R⊗S (−),
from S-modules to R-modules.

1. Compute HHi of the R-bimodule R, for all i.

2. Compute HHi of the R-bimodule B, for all i. Here, B = S/(y1 − z1, y
2
2 − z22).

3. (Extra credit) Let f : B → R be the R-bimodule map with f(y1) = f(z1) = x1 and
f(y2) = f(z2) = x2. Compute the map induced by f from HHi(B) to HHi(R) for all i.

4. (Extra credit) For each i, one has a two-term complex HHi(B) → HHi(R). Compute
its cohomology in each degree. You’ve just computed the triply graded homology of
the unknot with a twist.

T. In Weibel, Proposition 3.2.4 it is proven that a left R-module B is flat if and only if
Tor1R(I\R,B) = 0 for every right ideal I ⊂ R. The proof is similar to Baer’s criterion.
(Remember, ToriR(M,N) takes a right R-module M and a left R-module N to an abelian
group, just like how M ⊗R N is just an abelian group.)

1. When I = (r) is principal, and r is a nonzerodivisor, compute Tori(I\R,B).

2. When R is a PID, prove that B is flat if and only if it is torsion-free (meaning: if m ∈ B
is nonzero and rm = 0 for r ∈ R, then r = 0).

3. Let R = C[x, y], which is not a PID. Let B = (x, y) be the ideal of x and y. Compute
Tori(B,C). Is B torsion-free? Is B flat?

R. For the double complex attached to a chain map f : A → B of complexes, whose total
complex is Cone(f), compute both spectral sequences (horizontal first, vertical first), and
explicitly exhibit the filtration on hk(Cone(f)) coming from each one. This involves con-
structing a short exact sequence and a long exact sequence which was mentioned in class.

Week 7
Reading: Weibel Chapter 5

T. Here is a double complex X•• of Z-modules. The only nonzero entries are X10 ∼= X11 ∼=
X01 ∼= X02 ∼= Z. The horizontal differential is multiplication by 12 from X01 to X11. The
vertical differential is multiplication by 2 from X01 to X02, and multiplicaiton by 8 from X10

to X11.

1. Compute the total complex and its cohomology. (Hint: For abstract reasons, this will
be an abelian group of order 16. Which abelian group is it? Does it have an element of
order 16? Of order 8?)

2. Compute the spectral sequence where one takes vertical cohomology first. What filtra-
tion on the total complex do you get?
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3. Compute the spectral sequence where one takes horizontal cohomology first. What
filtration on the total complex do you get?

Week 8
Reading: Weibel Ch 10, Kiehl-Weissauer.

T. Given a distinguished triangle X → Y → Z → X[1] with maps (u, v, w), prove that
w = 0 if and only if Y ∼= X ⊕ Z , making u and v commute with the inclusion and projection
maps. Moreover, prove that for any X and Z , the triangle X → (X ⊕ Z) → Z → X[1] is
distinguished.

T/R warmup. Give a sketch for why the direct sum of two distinguished triangles is dis-
tinguished. Also, verify the rotation axiom for K(A): for f : A → B, explicitly construct the
isomorphism of triangles between the rotation of the cone sequence of Cone(f), and the cone
sequence Cone(B → Cone(f)).

Choose one below.
R1. Let F : K → K′ be a triangulated functor (i.e. an additive functor sending distinguished
triangles to distinguished triangles), and Q be the class of morphisms which is sent to iso-
morphisms. Prove that

1. Given any s : A → B with s ∈ Q, and f : Y → B any morphism, one can extend this
data to a commutative square ft = sg, with t ∈ Q.

2. Given f : A → B, the existence of some s ∈ Q with sf = 0 implies the existence of
some t ∈ Q with ft = 0.

Hint: You do not need the octahedron axiom. For both, take the cone of s, and apply the
functor F . For the second problem, apply Hom(A,−) to the cone of s.

R2. The source-push gives a functor F from Q1−Rep to Q2−Rep, by inverting the orientation
around the first vertex, and the sink-pop functor G gives a functor back. Remember that F
is right exact, while G is left exact.

1. You have already computed the higher derived functors of F on all simples, so re-
mind yourself. Same with G. You also found projective and injective resolutions of
everything.

2. It is rarely true that a complex is quasi-isomorphic to its cohomology (viewed as a
complex with zero differential). However, show that this is always true when the co-
homology is concentrated in a single degree, which is the first or the last degree in the
support of the complex.

3. Compute the (total) derived functors LF (S) and RG(T ) for each simple quiver repre-
sentation S of Q1 and T of Q2. E.g., find a nice complex which represents the quasi-
isomorphism class of LF (S).

4. Compute that LF (RG(T )) ∼= T and RG(LF (S)) ∼= S.

5. Deduce that LF and RG are inverse functors between Db(Q1−Rep) and Db(Q2−Rep).
(You need to prove this for all objects of the derived category, not just for objects in the
abelian category! So use the 5-lemma.)
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Week 9
Reading: Weibel Ch 10, Kiehl-Weissauer.

T. Consider modules over Λ = C[x]/x2. Let M be the complex Λ→ Λ, where the differential
is multiplication by x.

1. Compute the hom complex Hom(C,M) and its cohomology.

2. Compute the hom complex Hom(P,M) and its cohomology, where P is the projective
resolution of C. (Hint: This complex should mostly consist of 4D vector spaces.)

3. Is there a reason why these two cohomologies agreed?

T Challenge. Consider modules over R = C[x]. Let M be the complex R → R where the
differential is multiplication by x.

1. Compute the hom complex Hom(M,M) (it should be rank 4 over R) and its cohomol-
ogy.

2. Explicitly indicate the algebra structure on Hom(M,M).

3. Viewing the cohomology as a dg-algebra with zero differential, find an algebra mor-
phism from it to Hom(M,M) which is also a quasi-isomorphism. (Note: it need not be
a morphism of complexes of R-modules.)

Week 10
Reading: Weibel Ch 10, Kiehl-Weissauer, Khovanov’s Hopfological algebra paper.

T. Let (D≤0,D≥0) be a t-structure on a triangulated categoryD. Let M and M ′ be two objects,
and consider distinguished triangles

X →M → Y → X[1],

X ′ →M ′ → Y ′ → X ′[1],

with X,X ′ ∈ D≤0 and Y, Y ′ ∈ D≥1. Prove that any map M → M ′ induces a unique map
X → X ′ and a unique map Y → Y ′. Prove that this assignment is functorial (i.e. for a
composition M → M ′ → M ′′, the maps X → X ′ → X ′′ compose to be the map X → X ′′

induced by the composition M →M ′′).

R. Prove that the triangulated Grothendieck group [Kb(vect)] of the bounded homotopy cate-
gory of vector spaces is Z, where the symbol of a complex is given by its Euler characteristic.
This statement is false when vect is replaced with an non-semisimple abelian category A.
Prove that there is an Euler characteristic map [Kb(A)] → [A]. Prove that when A has finite
homological dimension, then there is a section [A] → [Kb(A)]. Hint: the section is NOT
[M ] 7→ [0→M → 0]. Why is this not well defined!? Find a counterexample.

Week 11
Reading: Khovanov’s Hopfological algebra paper.

R. Prove that any commutative square in the stable module category over a f.d. Hopf algebra
extends to a morphism between distinguished triangles. (Hint: You can use any injective
module you want to define the triangles, so choose the injective module through which
something is forced to factor...)


