1. Let G be a simply-connected, connected Lie group. Prove that

$$\text{Rep}_{\mathfrak{g},\text{smooth}}(G) \cong \text{Rep}_{\mathfrak{g},\text{man}}(\text{adj})$$

for $\text{adj} = \text{Lie}G$.

When G is complex, prove that

$$\text{Rep}_{\mathfrak{g},\text{holo}}(G) \cong \text{Rep}_{\mathfrak{g},\text{holo}}(\text{adj})$$

2. Prove that the complexification adj_C is a real Lie algebra.

3. Prove that $\mathfrak{sl}(n)_C \cong M(n;C)$

4. Prove that $\mathfrak{so}(n)_C \cong \{ X \in \mathfrak{gl}(n;C) | X + X^T = 0 \}$

 Where

 $$X = \begin{bmatrix}
 & & & & \\
 & \ddots & & & \\
 & & \ddots & & \\
 & & & \ddots & \\
 & & & & \\
 \end{bmatrix}
 $$

 (This is like the transpose, except flipped instead of \(\gamma\))

 (Hint: Use last week's HW to show $\mathfrak{so}(n)_C$ is isomorphic to $\mathfrak{so}(B)$ for some B.)

5. Prove that $\mathfrak{su}(2) \neq \mathfrak{sl}(2;\mathbb{R})$. More concretely, find

 $$X \in \mathfrak{sl}(2;\mathbb{R})$$

 such that $[X,Y] = X\gamma$ for some $X \in \mathbb{R}$.

 Prove that this does not happen in $\mathfrak{su}(2)$.

6. Find an example of a Lie group G where $\text{Rep}G \neq \text{Rep} \text{adj}$

 when the representations are allowed to be infinite dimensional.

 (Hint: When adj is abelian, what does $\text{Rep} \text{adj}$ look like?)

 What is wrong with the expected map?
7. Prove that $\text{Der}A$ is an ideal inside $\text{Der}A$ for a Lie algebra A. (Recall: $\text{Der}A$ is the image of $ad \to \text{Der}A$.)

8. Classify all 3D Lie algebras over any field F for which $[\gamma, \delta] \neq 0$.

9. a) Prove that if $H \subseteq G$ then $\text{Lie H} \subseteq \text{Lie G}$ is a subalgebra.
 b) What is $\text{Lie H} \subseteq \text{Lie G}$ on ideal?

10. Let $X \in \mathfrak{gl}(n;F)$ have n distinct eigenvalues $\lambda_1, \ldots, \lambda_n$. Prove that the eigenvalues of $ad_X \in \mathfrak{gl}(n;F)$ are the n^2 scalars $\lambda_i - \lambda_j$ (possibly with multiplicity when $\lambda_i = \lambda_j$).

11. Prove that $[e_{1n}, e_{jn}] = s e_{ij}$ and $[e_{1n}, s e_{ij}] = s e_{ij}$, over \mathbb{R} or \mathbb{C}.

12. Show that $[X, X] = 0 \forall X \iff [X, Y] = -[Y, X] \forall X, Y$ outside of characteristic 2.

13. Let $B = \begin{pmatrix} \lambda & \ast \\ \ast & \ast \end{pmatrix}$ in \mathfrak{gl}_n.

 Compute $B = \text{Lie}B$ and $U = \text{Lie}U$.