Thm 1: \(G, H \) are matrix Lie groups, \(g = \text{Lie} G, h = \text{Lie} H \). (Mathify font)

Given \(\phi: G \rightarrow H \) have \(\phi(g) = h \) a linear map. Then

1. \(\phi(e^x) = e^{\phi(x)} \) \quad \forall x \in G \)
2. \(\phi(A^T x^{-1}) = \phi(A)^{-1} \phi(x)^{-1} \) \quad \forall x \in G \)
3. \(\phi([X,Y]) = [\phi(X), \phi(Y)] \) \quad \forall x \in G \)
4. \(\phi(x) = \frac{d}{dt} \bigg|_{t=0} \phi(e^{tx}) \)

And moreover, \(\phi \) satisfies the chain rule, i.e., if \(G \xrightarrow{\phi} H \xrightarrow{\psi} K \) then \(\psi \circ \phi \).

Pf: 4. This is the chain rule. \(R \xrightarrow{e^x} G \xrightarrow{\phi} H \) yields \(\frac{d}{dt} \bigg|_{t=0} \phi(e^{tx}) \).

1. \(\phi(e^x) \) is a 1-parameter family so by thm of before, it is \(t \rightarrow e^{tz} \) for some \(z \in L \). But then \(z = \frac{d}{dt} \bigg|_{t=0} \phi(e^x) \).

Aside: If we didn't know about derivatives of smooth maps, we could use 1 to deduce 4.

Then we need to check that it is a linear map (chain rule is fairly clean)

rescaling is easy. \(\phi(A^T y) \) is \(z \) s.t.: \(z = \phi(e^{xy}) = \phi(I(n,\mathbb{x},\mathbb{y})) \)

\(e^{\delta e^{xy} + y} = \lim_{\delta \rightarrow 0} \left(\phi(e^{\delta e^{xy}}) \right) = \lim_{\delta \rightarrow 0} \left(\phi(e^{\delta x}) \phi(y) \right) \)

2. \(\phi(e^{A^T x}) = \phi(Ae^x) = \phi(I(n,\mathbb{x},\mathbb{y})) = \phi(I(n,\mathbb{x},\mathbb{y})) \phi(y) = e^{xy} \phi(y) \)

3. \([X,Y] = \frac{d}{dt} \bigg|_{t=0} e^{xy} e^{tx} \quad \forall x \in G \)

\(\frac{d}{dt} \bigg|_{t=0} e^{xy} e^{tx} \) is a linear map of previous derivates:

\(d\phi = \frac{d}{dt} \bigg|_{t=0} \phi(e^{tX} \phi(y)) e^{-tX} \) s.t.:\(d\phi = \frac{d}{dt} \bigg|_{t=0} \phi(e^{tX} \phi(y)) e^{-tX} = [d\phi(X), d\phi(Y)] \)
So get a map of y with many nice properties. But it turns out the only really

important one is (3) that it preserves the bracket.

Theorem 2.1 If $y_1, y_2 : G \to H$ and $\delta y_1 = \delta y_2$ then $y_1 = y_2$.

Proof: If the U of $I \in G$ st. every $g \in U$ is e^x for some $x \in \mathbb{R}$.

Lemma: If G is connected and U is a nbhd of I then every $g \in G$ is in U^k for some k, $U^k = \{g \cdot g_2 \mid g \cdot g_2 \in U\}$.

Proof: Check a path $I \to g \cdot g_2$, use connectedness + connectedness of $G \
$

So every $g \in G$ has the form $e^{x_1} e^{x_2} \cdots e^{x_k}$ for some $x_i \in \mathbb{R}$.

Then $y_1(g) = y_1(e^{x_1} e^{x_2} \cdots e^{x_k}) = (y_1(e^{x_1}), y_1(e^{x_2}), \ldots, y_1(e^{x_k})) = e^{\delta y_1(x_1)} e^{\delta y_1(x_2)} \cdots e^{\delta y_1(x_k)}$.

Similarly $y_2(g) = e^{\delta y_2(x_1)} e^{\delta y_2(x_2)} \cdots e^{\delta y_2(x_k)}$.

\square

Theorem 3.1 Suppose one has a map $f : G \to H$ st. $f(I \cdot g) = \delta f(g)$.

Proof: If G is connected, simply connected, then f is a homomorphism with $\delta f = 0$.

Let U be a nbhd of I where \exp is diff. Define $\psi : U \to H$ by

$\psi(u) = e^{-f(b)u}$.

so $\delta (\psi)_U = 0$. Let V be a nbhd of 0 in U matching U.

Claim 1: If $u, v \in U \cap V$ then $(f(u) + f(v)) = f(u + v)$.

Proof (BCH formula): $u = e^x \cdot e^y = e^x e^y = e^{x + y} = e^{x + y + \frac{1}{2} [x, y] + \cdots}$.

Then $f(u + v) = e^{-f(b)(u + v)} = e^{-f(b)u - f(b)v}$.

\square
Now let \(p: [0,1] \rightarrow G \) be a path, and choose \(t_0 = 0, t_1, \ldots , t_k = 1 \) s.t. \(p(t)p(t_{k-1})^{-1} \in U \) (cancellation against \(\text{corners} \) by \(\text{path} \)).

For more precisely, \(p(s)p(t_{k-1})^{-1} \in U \bigwedge s \in [t_{k-1}, t_k] \) (Don't keep \(U \) out of sight).

Now define \(\Phi(p) = \Phi(p(t_k)p(t_{k-1})^{-1}) \Phi(p(t_{k-1})p(t_{k-2})^{-1}) \cdots \Phi(p(t_1)) \) \(\hat{=} \hat{ } \).

Claim 2: The depends on the path \(p \), but not on the choice of times \(t_i \).

PF: Gap to show that inserting a new time doesn't change the answer.

Then you can mutually refine two choices.

But \(\Phi(p(t_{k-1})p(t_1)^{-1}) = \Phi(p(t_{k-1})p(t_{k-2})^{-1}) \Phi(p(t_{k-2})p(t_1)^{-1}) \) by local homomorphism.

Claim 3: Homotopic paths have \(\Phi(p) = \Phi(q) \).

PF: One can deform paths smoothly by adding up little squares with \(U \) translates.

Then \(\Phi(p(y_1 x^{-1})) = \Phi(y_1 z_1^{-1}) \Phi(z_1 x^{-1}) = \Phi(y_1 z_1^{-1}) \Phi(z_1 x^{-1}) \) by local hom, so that nearby paths agree.

Compos of \(D^2 \) yields a finite number of small changes to get from \(p \) to \(q \).

Part of proof: So define \(\Phi(p) = \Phi(p) \) for any path to \(g \) (relevant which, since \(\Phi \) is simply connected).

Company \(\text{comp} \) with \(\text{path} \) get a path to \(g \).

Using a time decomposition including \(g \), we see that

\[\Phi(g h) = \Phi(g h) \Phi(h^{-1}) \Phi(h) = \Phi(g) \Phi(h) \] so it is a homomorphism.

Then smoothness follows from smoothness near \(I \), since \(\Phi \) near \(g \) is

\[\Phi(g) \cdot \Phi(\text{near } I) \] and left multiplies.