McKay Correspondence: An interesting bijection b/w finite subgroups \(\text{SU}(2) \) of \(\text{SU}(2) \) and affine Dynkin diagrams = "McKay graphs" for short.

Quickly:
\[
\text{SU}(2) = \left\{ \begin{array}{c} (a, b) \in \text{Mat}_{2 \times 2}(\mathbb{C}) \\ |a|^2 + |b|^2 = 1 \end{array} \right\}
\]

McKay graphs: The subscript is the \((-1) \) of vertices, why later. They are very special for many reasons!

\[\widehat{A}_n\]
\[\widehat{D}_n\]
\[\widehat{E}_6\]
\[\widehat{E}_7\]
\[\widehat{E}_8\]

Special case: \[\widehat{A}_n\]
\[\text{if } n \neq 4\]

Simply laced = no loops or multiple edges.

The story will be: given \(G \subseteq \text{SU}(2) \), consider \(\text{Rep}_G \) and the special structure it inherits.

Then extract combinatorics to get a graph \(G_6 \) and prove it is a McKay graph.

Idea: Classify things by classifying possible categories of representations (w/ implicit structure).

One can also classify subgroups of \(\text{SU}(2) \) directly, and we'll do that first for context. The interesting part of the theorem is the bijection, not the classification.

We'll review \(\text{SU}(n) \) etc. soon, but more exciting, start w/ a related problem.

8.2. Finite subgroups of \(\text{SO}(3) \)

\(\text{SO}(3) = \) group of transformations of \(S^2 \) = things you can do to a globe.

(Again, more review soon).

Space \(H \subseteq \text{SO}(3) \) finite, and consider orbit under \(H \) of a point in \(S^2 \). This must be a regular polyhedron (all points are the same).

Thm (Theaetetus, *Elements*, see Euclid's Elements): The only 3D regular polyhedron are:

- \(d_4 \)
- \(d_6 \)
- \(d_8 \)
- \(d_{12} \)
- \(d_{20} \)

- Tetrahedron
- Cube
- Octahedron
- Dodeca-
- Icos-

Pf: It's slick! See wikipedia for rough outline. (Ask: Why Platonic solids? Also see wiki)

\(\uparrow \text{nice but hard.} \)
These solids have finite symmetry groups inside $O(3)$ and $SO(3)$

Tetra:

- Size: $S_4 = (-A_3)$, 24
- Reflections through edge 1-2 induce permutation on vertices (34).
- Get all permutations of vertices.
- $\det(\text{ref}) = -1$ so $\det = \text{sgn}$

- $O(3)$ and $SO(3)$ also include reflections which turn S^2 inside-out.

Cube:

- Size: $S_{3} = (B_3)$, 48
- Signed symmetric group
- S_n = permutations of $\{\pm 1, \pm 2, \ldots, \pm n\}$
- $i \rightarrow j \Rightarrow -i \rightarrow -j$
- (i.e. they are "linear")
- $|S_n| = |S_n| |\{\pm 1, \ldots, \pm n\}| = n! 2^n$
- Think of $\{\pm 1, \pm 2, \ldots\}$ as the 6 faces.

Octahedron:

- Same as cube!
- Cube + Octa are dual polyhedra.
- Vertices ↔ faces, edges ↔ edges. Dual polyhedra have same symmetry group.
- Tetra is dual to tetra. Dodeca is dual to Icosa.

Dodeca/Icosa:

- Size: $H_3 = 120$
- $A_5 = (I)$, 60

(A_3, B_3, H_3 are the rank 3 irreducible finite Chevalley groups. Later in course, A_n groups generated by "reflections".)

Any other regular polyhedra in S^2? Sure... 2D (and 1D) polyhedra.

- Get $C_n = \mathbb{Z}/n\mathbb{Z}$ and also D_n, size 2n, in both $O(3)$ and $SO(3)$ (Flipping in 2D can come from rotation in 3D).

Prop: The finite subgroups of $SO(3)$ are: C_n, $n \geq 1$, D_n, $n \geq 2$, T, O, I

- Size: n or $2n$, 12, 24, 60

Like McKay graphs: two infinite families and three sporadic groups.
33 Linear algebra review: the groups \(\text{GL}(n) \), \(\text{O}(n) \), \(\text{U}(n) \), \(\text{SO}(n) \)

Def: Let \(\mathbb{F} \) be a field and \(V \) a \(\mathbb{F} \)-v.s./f.f. \(\text{End}(V) = \{ \text{linear fns. } V \to V \} \)

\(\text{GL}(V) = \text{End}(V) \) is the subgroup of isomorphisms.

When \(V \equiv \mathbb{F}^n \) (i.e., a basis \(\{ e_1, \ldots, e_n \} \) of \(V \) is chosen), then one can identify

\[\text{End}(V) = \text{Mat}(n, n; \mathbb{F}) \quad \text{GL}(V) = \text{GL}(n; \mathbb{F}) = \{ \text{invertible } n \times n \text{ matrices} \} \]

Remind: If \(A \in \text{Mat}(n, n; \mathbb{F}) \) then

\[
A = \begin{pmatrix}
A_{e_i e_j} \\
\vdots \\
A_{e_i e_n}
\end{pmatrix}
\]

Now, let \(\langle - , - \rangle \) be the standard symmetric bilinear form on \(A \). \(\langle e_i, e_j \rangle = \delta_{ij} \)

Note: \(A_{e_i e_j} = (A_{e_j e_i})^T \).

It's a fact: Matrix coefficients are detected by applying a bilinear form to test vectors.

Def: \(A^T \) is the adjoint transpose matrix, \((A^T)_{ij} = A_{ji} \)

Prop: \(\langle Av, w \rangle = \langle v, A^T w \rangle \) — this is what makes it the adjoint w.r.t \(\langle -, - \rangle \)

Def/Prop: \(A \) is orthogonal if (TFAC)

1. \(A \) is invertible and \(A^{-1} = A^T \)

2. \(A \) preserves the form, i.e., \(\langle Av, Aw \rangle = \langle v, w \rangle \)

PF: \(\langle v, w \rangle = \langle v, (A^T A) w \rangle \).

By plugging in test vectors \(v = e_i, w = e_j \) get

\[
\begin{align*}
\langle v, w \rangle &= \langle e_i, e_j \rangle = \delta_{ij} \\
&\iff (A^T A)_{ij} = \delta_{ij} \\
&\iff A^{-1} = A^T.
\end{align*}
\]

Def: \(\text{O}(n; \mathbb{F}) = \{ A \in \text{GL}(n; \mathbb{F}) \mid A \text{ is orthogonal} \} \)

\(\text{SL}(n; \mathbb{F}) = \{ \text{ } \mid \det A = 1 \} \)

\(\text{SO}(n; \mathbb{F}) = \text{O} \cap \text{SL} \)

Why do we like \(\text{O}(n) \)? The standard form on \(\mathbb{F}^n \) is positive definite, i.e.

\(\langle v, v \rangle \geq 0 \) with \(\langle v, v \rangle = 0 \implies v = 0 \).

Consequently, we have a notion of lengths and angles, and \(\text{O}(n; \mathbb{F}) \) preserves lengths + angles.

Ex: \(\text{O}(3) \) contains \(\text{SO}(3) \) (generated by reflections \(\sim \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \) rotations \(\sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \)).

\(\text{SO}(3) \) only has rotations. (Every rigid symmetry of a globe is a rotation.)

Not true for \(\text{SO}(n), n > 3 \).
But $O(n;\mathbb{F})$ isn't so great. Pos def? What does $(v, v) > 0$ even mean?

In $O(n; \mathbb{C})$, if $(v, w) \in \mathbb{R}_{\geq 0}$ then $(v, iv) = i^2(v, w) \in \mathbb{R}_{\geq 0}$.

When working over \mathbb{C} can either have pos def or symmetric bilinear, but not both.

Def: A pairing on \mathbb{C}^n is **sesquilinear** if $\forall v, w, \in \mathbb{C}^n$ $(Av, w) = \overline{A^*(v)}(w)$ anti-linear

(mean 1.5-linear) instead of bilinear

It is **hermitian** if $(v, w) = \overline{(w, v)}$ (replace symmetric)

(could also replace symmetric v) Skew-hermitian, $(v, w) = -(w, v)$

Now if $z \in \mathbb{C} \subseteq \mathbb{C}^*$ then $(zv, zw) = \overline{\overline{z}z}(y, w) = (y, w)$.

Let \mathbb{C}^n have the standard sesq. herm. form $(e_i, e_j) = \delta_{ij}$. Then $(y)v \in \mathbb{R}_{\geq 0}$ with

$(y)v = 0 \iff v = 0$.

Now, w.r.t. $(-, -)$, the adjoint matrix A^* is A^*.

$\begin{align*}
(Av, w) = (v, A^*w)
\end{align*}$

Def/Prop: A is **unitary** if (TFAE)

1. A is invertible and $A^{-1} = A^*$
2. $(v, w) = (Av, Aw) \forall v, w$.

These form a group $U(n)$ the field \mathbb{C} is implicit. Columns of A are orthonormal.

$U(n) \triangleq SL(n; \mathbb{C}) = SU(n)$.

Note: Just bc $U(n) \subseteq \text{Mat}_{n \times n}(\mathbb{C})$ does NOT mean it is "complex-linear."

If $A \in U(n)$ and $z \in \mathbb{C}^*$ then $zA \in U(n)$ in general $U(n)$ is actually a real manifold, but NOT a complex manifold. Not even even-dimensional.

§4: $SU(2)$ and $SO(3)$

Fact: Every $A \in SU(n)$ is diagonalizable. (or just $U(n)$)

Consequence: $\mathbb{Z}(SU(n)) \subseteq \text{diag}$ and matrices. But the only central diagonal matrices are scalars zI for $z \in \mathbb{C}^*$. Then unitary $\implies z \in \mathbb{S} \subseteq \mathbb{C}^*$.

$A = zI$ so $z \in \mathbb{Z}/\mathbb{Z} \subseteq \mathbb{S}$.

$\mathbb{Z}(SU(n)) \cong \mathbb{Z}/\mathbb{Z}$
Now, \(\text{SU}(2) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid ad - bc = 1 \right\} \)

\[
\begin{cases}
\left(\frac{a}{\sqrt{d}}, \frac{c}{\sqrt{d}} \right) \quad \text{if} \quad d > 0 \\
\left(-\frac{c}{\sqrt{-d}}, -\frac{a}{\sqrt{-d}} \right) \quad \text{if} \quad d < 0
\end{cases}
\]

Topologically, this is \(S^3 \subset \mathbb{R}^4 \cong \mathbb{C}^2 \).

Now \(\mathbb{Z}(\text{SU}(2)) = \left\{ \pm \mathbb{I} \right\} \cong \mathbb{Z}/2\mathbb{Z} \). Moreover, \(-I\) is the \underline{only} involution in \(\text{SU}(2) \).

If \(-I\) is only diagonal involution, but central. \(AI = IA \Rightarrow A = -I \).

Prop. There is an s.e.s.

\[
0 \to \mathbb{Z}/2\mathbb{Z} \to \text{SU}(2) \to \text{SO}(3) \to 0
\]

Quick version, more in exercises, and generalization later in the class:

\[
V = \text{traceless Hermitian matrices} = \text{Span}_{\mathbb{R}} \left\{ \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \right\}
\]

Let \(A^* = A \)

Define a pairing on \(V \) via \((X, Y) = \text{Tr}(XY) \). \(\underline{Claim:} \) This is non-degenerate!

Claim: Given \(A \in \text{SU}(2), X \in V \) then \(AXA^{-1} \in V \) so \(\text{SU}(2) \subset V \). Moreover, \((AX, AY) = (X, Y) \) so \(\text{SU}(2) \to O(V) \cong O(3) \)

Can confirm:
1. \(U \) has image \(\text{SO}(3) \)
2. \(\ker \phi = \mathbb{Z}(\text{SU}(2)) \).

\[5\] Finite subgroups of \(\text{SU}(2) \):

\[
\mathbb{G} \subset \text{SU}(2) \quad \overset{\phi}{\longrightarrow} \quad H = \phi(G) \subset \text{SO}(3)
\]

Either
1. \(\mathbb{Z}/2\mathbb{Z} \subset G \) so \(|G| = 2|H| \), \(G = \phi^2(H) \)
2. \(\mathbb{Z}/2\mathbb{Z} \not\subset G \) so \(|G| = |H| \), \(\phi \) is an isomorphism.

Note that \(1 \Leftrightarrow |G| \) is even, since \(-I\) is unique involution. \(\text{Call} \, 1 \Leftrightarrow \, \text{involutory} \).

Note that \(|H| \) is even \(\Rightarrow |G| \) is even.

We have classified \(H \subset \text{SO}(3) \), and \(|H| \) is even unless \(H = G \) for \(n \) odd.

\(\text{SU}(2) \) does contain cyclic groups, and it is easy to see that they are all conjugate of \(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \) in the diagonal matrices.
Prop: The finite subgroups of SU(2) are (isomorphic, by conjugation, to):

\(C_n \) cyclic \(\{ (\cos \frac{2\pi k}{n}, \sin \frac{2\pi k}{n}) \}_{k=0}^{n-1} \)

\(= \mathbb{Z}/n \mathbb{Z} \) when \(n \) even.

\(4n = D_{2n} \) binary dihedral \(\{ (\cos \frac{2\pi k}{n}, \sin \frac{2\pi k}{n}), (\cos \frac{2\pi k}{2}, \sin \frac{2\pi k}{2}) \}_{k=0}^{n-1} \)

\(g^4 = h^2 = 1 \) (\(g^2 = -1 \) is central, involution)

Notes: \(T^* \) same size as tetrahedron symmetry group in \(O(3) \), but NOT the same,

\(e.g. \ T^* \neq S_4 \), \(S_4 \) has many involutions, \(T^* \) has one.

Cool Fact: These groups all have presentations which lift to presentations of double cover:

\[C_n = \langle a | a^n = 1 \rangle \]
\[D_{2n} = \langle a, b | a^n = b^2 = (ab)^n = 1 \rangle \]
\[T = \langle a, b | a^2 = b^3 = (ab)^3 = 1 \rangle \]
\[O = \langle a, b | a^2 = b^3 = (ab)^4 = 1 \rangle \]
\[I = \langle a, b | a^2 = b^3 = (ab)^5 = 1 \rangle \]

Ex: \([\begin{array}{cccc} 1 & \cdot & \cdot & \cdot \\ \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & 1 & \cdot \\ \cdot & \cdot & \cdot & 1 \end{array}]\)

\(a = (34)(12), b = (134) \)

Qn: When can you binaryize a group presentation (and get a double cover, not something trivial)?

Ex: Binaryizing \(C_2 \times C_4 \) gives the generalized quaternion group \(\mathbb{Q}_{2^k} \).

\(Q_8 \) is binary \(C_2 \times C_2 \).
McKay Correspondence

"Idea": Identify structure, transform into combinatorics!

Given \(G \subset SU(2) \), have \(G \subset C^2 \subset V \). A very nice resp.

Def: Let \(\Gamma_G \) be the labeled graph defined as follows:

\[\begin{align*}
& \bullet \text{ vertices } \leftrightarrow \text{ rep } \sigma \text{ of } G \text{ /iso} \\
& \bullet \text{ label } d_i \in \mathbb{Z}_{\geq 0} \text{ on a vertex } i = \dim V_i \\
& \bullet \text{ if } \sigma_i \text{ appears in } V_c \text{ w/multiplicity } m_i, \text{ "branching graph" } M_{i \to j} \\
& \text{ what happens to reps after applying a functor.}
\end{align*} \]

We will soon prove: \(M_{i \to j} = M_{j \to i} \), so may as well consider an undirected graph.

\[M_{i \to i} = 0 \] unless \(G \) is trivial group, where \(M_{\text{trivial}} = 2 \). No loops.

Def: Let \(\Gamma \) be an undirected graph whose vertices are labeled by positive integers. We call \(\Gamma \)

an Mckay graph if it satisfies:

1) basepoint: \(\exists \) distinguished vertex \(0 \), \(d_0 = 1 \).
2) harmonic: \(2d_i = \sum_j d_j M_{i \to j} \), \(M_{ij} \neq 0 \) if edge \(i \to j \) (possibly 0)
3) connected
4) no loops

Thm: a) If \(G \subset SU(2) \) is nontrivial, then \(\Gamma_G \) is a Mckay graph.

b) The Mckay graphs are \(\tilde{A}_n, \tilde{S}_n, \tilde{E}_6, \tilde{E}_7, \tilde{E}_8 \).

c) \(G \to \Gamma_G \) is a bijection \(\{ \text{ nontrivial } G \subset SU(2) \} \leftrightarrow \{ \text{ finite Mckay graphs} \} \)

The outline is:

1. Use rep-theory to prove a.
2. Use combinatorics to prove b. This is on the exercise.
3. Just match it up to prove c. Matching is easy; \#Irreps = \#conjug classes.

This proof of c is unsatisfactory! One would rather provide an interesting construction which
takes a Mckay graph and magically ("actually") produces a subgp of \(SU(2) \).

Later in the course we will have nice bijections with such magic constructions!

Remark: With the exception of \(\tilde{A}_1 = \tilde{E}_8 \), every Mckay graph is simply laced.
Ex: \(G = C_n = \{(\alpha^0, \alpha^1) \mid \alpha^0, \alpha^1 \in \mathbb{Z}_n \} \) where \(\alpha = (\alpha^0, \alpha^1) \).

\(G \) is abelian \(\Rightarrow \) all irreps are 1D. \(V_k = C^k \), \(\alpha x = \alpha^k x \).

Then \(V_k \otimes V \) has basis \(\{x \otimes e_1, x \otimes e_2\} \) where \(a(x \otimes e_1) = a(x) \otimes e_1 = S_x \otimes S_{e_1} = S_{x \otimes e_1} \) and \(a(x \otimes e_2) = S_x \otimes S_{e_2} = S_{x \otimes e_2} \).

So \(V_k \otimes V = V_k \oplus V_{k-1} \).

\[\Rightarrow \quad V^2 = V_3 \oplus V_2 \oplus V_1 \]

\[\Rightarrow \quad \text{spec. case: } n = 2 \]

Rep Theory

Base case: Any group \(G \) has a trivial rep \(V_0 = C^1 \) where \(g \cdot 1 = 1 \forall g \in G \).

Harmonic: \(\dim V_c \otimes V = 2 \dim V_c \).

By semisimplicity, \(V_0 \otimes V = \bigoplus V_j \) for some multiplicities \(\# M_v = j \), and so \(2 \dim_i = \dim (V_i \otimes V) = \sum j M_v \rightarrow g \).

Interesting fact: \(M_v \rightarrow g = M_{g^{-1} v} \). Let's prove it.

Prop: \(V \) is self-dual, i.e., \(V \cong V^* \) as \(G \)-rep.

Rik: This is really what the unitary group gives you!!

Pf: \(V \) has self-hermitian form \((\cdot, \cdot)\).

Use it to identify \(V^* \cong V \) as \(V \)-vis.

\((v, \cdot) = f_v \leftrightarrow v \)

\(f_i \rightarrow v_i \)

Action of \(A \in GL(V) \) on \(V^* \) is

\[A^* f(v) = f(A^{-1} v) = (A^{-1} v, A^{-1} v') = \left(A^{-1} f v, v' \right) \]

\[f_{A^{-1} v} (w) \]

So \(V^* \) is, as a \(GL(V) \) rep, isomorphic to \(V \) with \(A \cdot v = (A^{-1})^* v \).

When \(A \in GL(V), \quad (A^{-1})^* = A \) and get usual action.

Side Notes (Basic Concepts)

Defs: Subrep, Semisimple.

Irreducible repn. Semisimple.

Tensor product.

Dual repn. Character. Inner product of characters

Pf: \(\chi_{V^*} = \chi_V^* \) for any rep \(V \).

\(V \cong V^* \iff V = V^* \) so enough to show that \(\chi_V (g) \in R \quad \forall g \in SU(2) \).

But \(g \sim (\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}) \Rightarrow \chi_V (g) = \frac{3 + i}{2} \in R \) as desired.
Two more ingredients:

Schur's Lemma (holds over C): \(\dim \text{Hom}(V_i, V_j) = \delta_{ij} \)

\[\Rightarrow \text{if } W = \bigoplus V_i^m \text{ then } \dim W = \dim V_i = \dim \text{Hom}(V_i, W) = \dim \text{Hom}(W, V_i) \]

Tensor-Hom adjunction:

\[\text{Hom}(W \otimes X, Y) \cong \text{Hom}_G(W, \text{Hom}(X, Y)) \]

Consequence:

\[\dim \text{Hom}(V_j, V_i \otimes V) = \dim \text{Hom}(V_j \otimes V^*, V_i) = m_{ij} \text{ for } \bar{V} \neq V^* \]

Now loops: My proof of this sucks - I'll return to it. Not hard.

Connected: The hard part. Use a tricky character proof!

Lemma: \(V \) is irreducible \(\iff G \) is not abelian \((\iff G \neq C_n) \)

PF: If \(V \) is reducible, \(V = C \times C \) as \(G \)-reps. Up to conjugation, \(x = e_1, y = e_2 \). \(G \) diagonal matrices, \(\cong \mathbb{S}^1 \) abelian.

Conversely, any abelian subgroup of \(SU(2) \) is conjugate to a diagonal subgroup. \(\square \)

We've already computed that \(G \neq C_n \) is connected, so let's assume \(V \) irreducible.

Also, this rules out \(C_n \), so we can assume \(-I \in G\).

Connected \(\iff \) Each \(V_i \in V \otimes k \) for some \(k \) \(\iff (X_{V_i}, X_{V \otimes k}) \neq 0 \) for some \(k \)

Now \((X_{V_i}, X_{V \otimes k}) = \frac{1}{16} \sum_{g \in G} X_{V_i}(g) \overline{X_{V \otimes k}(g)} \)

We've seen \(X_{V_i}(e^{0 \cdot 0}) = 2 \Re S \), so \(X_{V_i}(g) = \begin{cases} 2 \quad g = I \\ -2 \quad g = -I \\ (e^{\pi i}, e^{2 \pi i}) \quad \text{else} \end{cases} \)

Now \(-I \in \mathbb{Z}(G) \) so \(-I \in \text{End}_G(V_i) = C \cdot \text{id}_{V_i} \), either \(-I \) acts by \(+ \text{id}_V \) or \(- \text{id}_V \).

\[X_{V_i}(-I) = \pm \dim V_i \quad X_{V_i}(I) = \pm \dim V_i \]

\[\Rightarrow (X_{V_i}, X_{V \otimes k}) = \frac{1}{16} \left(\dim V_i \cdot 2^k + (\pm 1) \dim V_i \cdot (-2)^k + \sum_{g \neq I} X_{V_i}(g) \overline{X_{V_i}(g)} \right) \]
Restrict to k even/odd st. $X_k(-2)^k$ is positive.

Then \[(X_k, X_{k^2}) = \frac{1}{|G|} \left(2 \dim V_i + \sum_{g \neq 1} X_k(g)(\frac{k}{2}) \right) \]

\[\lim_{k \to \infty} = \frac{2 \dim V_i}{|G|} \neq 0 \text{ so some } (X_k, X_{k^2}) \neq 0. \]

The action of $-I$ is even, $-I \in G$. As noted, $-I$ acts on V_i by either $+1$ or -1.

$-I$ acts on V by -1, so acts on $V_i \otimes V$ (and any summand thereof) by the opposite sign.

$\Rightarrow \Gamma^*_G$ is bipartite! $-I$ acts on triv by $+1$.

C_n, n even
D_{n^2}, n even
D_{n^2}, n odd

Now $-I$ acts by $+1$ \Leftrightarrow action of G factors through $H = \{e \in G \}$, so the black vertices give the graphs of subgroups of $SO(3)$.

$C_{n/2}$ D_{n^2}, n even D_{n^2}, n odd $T=A_4$ $O=S_4$ $I=A_5$

Rmk: Why no loops? No loops in a bipartite graph, so if Γ^*_G has a loop then $|G|$ is odd.

But we know this means $G = C_n$ for n odd, and we know Γ^*_C has no loops unless $n=1$.

However, this is a ugly reason, relying on classification of subgps. I don't know a better reason.

$\text{Aut}(\Gamma^*_G) \Rightarrow$ Let V_i be a curve of dim 1. Then $\otimes V^*$ is an invertible functor with inverse $\otimes V^*$. This functor preserves irreducibles, so it induces an automorphism of Γ^*_G. These automorphisms form a subgroup $\text{Aut}(\Gamma^*_G)$ which acts simply transitively on the vertices labeled 1.

Rmk! $\text{Aut}(\Gamma^*_G)$ except for \hat{E}_7 and \hat{E}_8.
McKay graphs are simply laced. Prop: Unless \(\Gamma = A_1 \), \(M_{i-j} = 0 \) or 1.

\[
2d_j = \text{md}_i + \sum d_{k} M_{j-k}
\]

\[
2d_i = \text{md}_i + \sum d_{k} M_{i-k} = \sum d_{k} (M_{i-k} + M_{j-k})
\]

\[
= 0 \iff m = 2 \quad = 0 \iff m = 2
\]

\(\Rightarrow \) both sides = 0, so \(m = 2 \) and graph is \(A_1 \).

Infinite McKay graphs One of our first tasks in Lie gp theory will be to prove that Rep\(G \) is semisimple when \(G \) is a compact Lie gp. This includes all finite groups.

The same rep theory results prove that \(\Gamma^* \) is a (non-finite) McKay graph.

Thm (Extended McKay Con.) \(
\{ \text{(Compact) subps of } SU(2) \} \iff \{ \text{McKay graphs} \}
\)

\[
\begin{array}{c}
\text{SU}(2) \iff E_6 \\
D_\infty = \langle (0,0), (1,1), (1,0) \rangle \iff D_\infty \\
\end{array}
\]
A classification of graphs

I. \(\Gamma \) is a proper subgraph of a McKay graph.

(\(\Rightarrow \) \(\Gamma \) is simply laced)
These are called simply laced Dynkin diagrams.

They are: (now subscript = # of vertices)

- \(A_n \)
- \(D_n \)
- \(E_6 \)
- \(E_7 \)
- \(E_8 \)

II. \(\Gamma \) is a McKay graph.

(No two contain each other)
Also called (simply-laced)
affine Dynkin diagrams
(w/ \(\tilde{A}_1 \))

III. \(\Gamma \) properly contains a McKay graph.

(Con remain vertices and/or edges to get a McKay graph.)
This is everything else.

```
PF: Straight-up easy case-by-case analysis.
- Does it have multiple edges? (\( \tilde{A}_1 \))
- Does it have cycles? (\( A_n \))
- Does it fork more than once? (\( D_n \))
- If no forks, \( A_n \).
- Does it fork have more than 3 outputs? (\( D_4 \))
```

Finally, the interesting part. Spouse

```
3 cases:
\[
\frac{1}{p+\frac{1}{q}+\frac{1}{r}} = 1
\]
(\(2,2,n\)) is \( D_n \)
(\(2,3,3\)) \( E_6 \)
(\(2,3,4\)) \( E_7 \)
(\(2,3,5\)) \( E_8 \)
```

```
\[
\frac{1}{p+\frac{1}{q}+\frac{1}{r}} = 1
\]
(\(2,3,6\)) \( E_6 \)
(\(2,4,4\)) \( E_7 \)
(\(3,3,3\)) \( E_8 \)
```

\[
\frac{1}{p+\frac{1}{q}+\frac{1}{r}} < 1
\]
Everything else.

Why is this classification important?
Def: Let V_f be the \mathbb{R}-v.s. spanned by $x_i j$ in $\text{Vertices}(\Gamma)$ over \mathbb{R}.

Equip V_f with a symmetric bilinear form $\langle \cdot, \cdot \rangle_f$ defined by
$$
\langle x_i j, y_k l \rangle_f = \begin{cases} 2 & i=j \\ -1 & i \neq j \\ 0 & i \neq j
\end{cases}
$$

The matrix of this form is the Cartan matrix of Γ.

Ex: A_4 has matrix
$$
\begin{pmatrix}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{pmatrix}
$$

A labeling of vertices by real numbers x_i is the same as a vector $\mathbf{d} = \sum x_i x_i e_i \in V_f$.

Fix \mathbf{d} and suppose $2d_i = \sum y_j d_j$. Then $\langle \mathbf{d}, \mathbf{x} \rangle = \sum d_i x_i - \sum y_j x_j = 0$.

If this is true for $\forall i$, then $\langle \mathbf{d}, \mathbf{v} \rangle = 0 \forall \mathbf{v} \in V_f$, i.e., \mathbf{d} is in the kernel of $(-, -)_f$.

Note! If Γ not connected, $\Gamma' = \bigoplus \Gamma_k$ can composed, then $V_f' \cong \bigoplus V_{e_k}$ orthogonal.

Thm: Either I $(-, -)_f$ is positive definite $\iff \Gamma'$ is Dynkin

II $(-, -)_f$ is positive semi-definite $\iff \Gamma'$ is affine Dynkin

Moreover, Ker $(-, -)$ is 1-dimensional, spanned by McKay vectors $\mathbf{w}_\mathbf{f}$.

III $(-, -)_f$ is indefinite $\iff \Gamma'$ is general type.

Recall: Indefinite means $\exists \mathbf{v}, \mathbf{w}$ s.t. $\langle \mathbf{v}, \mathbf{v} \rangle > 0, \langle \mathbf{v}, \mathbf{w} \rangle < 0$

Positive semi-definite means $\langle \mathbf{v}, \mathbf{v} \rangle > 0 \forall \mathbf{v}$, but possibly $\langle \mathbf{v}, \mathbf{v} \rangle = 0$ for $\mathbf{v} \neq 0$.

This is the real meat behind the classification.

PP: First show affine Dynkin \Rightarrow positive semi-definite with 1-D kernel.

This implies that Dynkin \Rightarrow positive definite. Thus is because $V_f \subset V_f^1$, when $\Gamma \subset \Gamma'$. Let \mathbf{v} be a vector by $\mathbf{0}$. Then \(\langle \mathbf{v}, \mathbf{v} \rangle > 0 \forall \mathbf{v} \in V_f \), Γ Dynkin $\subset \Gamma'$ affine Dynkin.

But if $\langle \mathbf{v}, \mathbf{v} \rangle = 0$ then \mathbf{v} is a multiple of $\mathbf{0} \Rightarrow \mathbf{v}$ not in image of V_f.

Then show if $\Gamma' \neq \Gamma$, if Dynkin then Γ' is indefinite. This shows all three \Rightarrow directions. But then by classification of graphs, get \iff directions.
Lemma: Γ affine Dynkin \implies has semistable if $\text{Ker}(\lambda)_\Gamma = 0$.

Proof: We use only the existence of $\lambda \in \text{Ker}(\lambda)_\Gamma$. Let $x = \Sigma d_i x_i$. For any given i let $V = \Sigma x_i x_i$. Then

$$\langle V, V \rangle = \sum_{i,j} 2x_i^2 + \sum_{i} \sum_{j} (-x_i x_j) = \sum_{i,j} \left(\frac{d_i}{dx_i} x_i^2 - x_i x_j \right)$$

Each edge appears twice in $\sum_{i,j}$. Sum over edges instead:

$$\sum_{\text{edges}} \left(\frac{d_i}{dx_i} x_i^2 - 2x_i x_j + \frac{d_i}{dx_j} x_j^2 \right) = \sum_{i,j} d_i d_j \left(\frac{x_i}{d_i} - \frac{x_j}{d_j} \right)^2 \geq 0$$

with equality iff $\frac{x_i}{d_i} = \frac{x_j}{d_j}$ for all edges $\implies V$ is a multiple of x_i.

Lemma: Γ affine Dynkin \iff Γ' oriented type. Then $(\xi, \xi)_\Gamma'$ is indefinite.

Proof: If Γ' has an extra edge by the vertices in Γ, then let $v = \lambda V_{\Gamma'}$ be $\Sigma v x_i$ the McKay labeling. Then $(v, v)_\Gamma' < \langle (\xi, \xi)_\Gamma' \rangle = 0$ since the edge just makes the sum more negative. But $(\xi, \xi)_\Gamma' = 2 > 0$.

If Γ' has extra vertex v connected to nothing in Γ, let $V = \lambda V + 3 v x_k$.

$$\langle V, V \rangle = \langle (\xi, \xi), 2 \rangle + 2 \cdot (\xi, \xi)_\Gamma' + 2 \lambda^2 \leq 0$$

As $\lambda > 0$, $\exists \to 0$ this is negative.

Can you prove this for A_∞? A_∞? D_∞? D_∞?...

Rank: Exercise uses $\frac{1}{p} + \frac{1}{q} + \frac{1}{r} = \frac{1}{4}$ to find a vector V with $\langle V, V \rangle \geq 0$.

For $\Gamma (\Gamma') = \lambda$.