Exercises Otr2 Wk 3

1. This exercise is related to Weyl's original proof of his theorem on complete reducibility.
 a) Consider: \(\text{null}(n) = \{ Y \in g(n) \mid Y + Y^* = 0 \} \). Let \(K_{std} \) denote the standard trace form on \(g(n) \), i.e., \(K_{std}(X,Y) = Tr g(X,Y) \). Pare that \(K_{std} \mid \text{null}(n) \) is negative definite.
 b) Recall that \(\text{Syl}(n) = \text{Syl}(n; \mathbb{C}) \) is simple. Deduce that \(\text{Syl}(n) \) is simple over \(\mathbb{R} \).
 c) Deduce that the Killing form on \(\text{Syl}(n) \) is negative definite. (How do \(K_{std} \) and Killing compare?)

Def: Given a complex split Lie algebra \(\mathfrak{L} \), a compact real form \(\mathfrak{g} \) of \(\mathfrak{L} \) is a Lie algebra \(\mathfrak{g} \) such that the Killing form on \(\mathfrak{g} \) is negative definite and \(\mathfrak{g} \mid \mathfrak{H} = \mathfrak{L} \).

Let \(K \) be a compact Lie group w/ \(\mathfrak{g} = \text{Lie} K \) simple. Prove that the Killing form is negative definite. (Hint: The existence of an invariant hermitian form on a rep., implies that the rep. \(\mathfrak{g} \to \mathfrak{g}(\mathbb{C}) \) factors thru \(K \to \text{SU}(n) \).)

2. Pare that every complex semisimple Lie algebra has a compact real form.
 (Hint: Read Wiki for a sketch.) (In fact, it is unique.)

Weyl proved that every compact real form is \(\text{Lie} K \) for a compact group, hence a simply connected one. This connects \(\text{Rep}_{\mathbb{R}}(g) \) to \(\text{Rep}_{\mathbb{R}}(\mathfrak{g}) \) and \(\text{Rep}_{\mathbb{R}}(K) \).

These ideas above go under the name "the criterion trick."

Humphreys

\[
\begin{align*}
\text{A}_3 & \# 8, 9, 10 \\
\text{A}_4 & \# 1, 3 \\
\text{A}_6 & \# 14, 15 \text{ acd}
\end{align*}
\]