Representation theory of monoids

Or: Cell theory for monoids

Daniel Tubbenhauer

Part 2: Reps of algebras; Part 3: Reps of monoidal cats

Where do we want to go?

- Green, Clifford, Munn, Ponizovskiĩ ~1940++ + many others Representation theory of (finite) monoids
- Goal Find some categorical analog

Where do we want to go?

- Green, Clifford, Munn, Ponizovskiĩ ~1940++ + many others Representation theory of (finite) monoids
- Goal Find some categorical analog

Where do we want to go?

- Talk 1 Monoids and their reps ON THE STRUCTURE OF SEMIGROUPS

By J. A. Green

(Received June 1, 1950)

$$
\begin{gathered}
x \leq_{L} y \Leftrightarrow \exists z: y=z x \\
x \leq_{R} y \Leftrightarrow \exists z^{\prime}: y=x z^{\prime} \\
x \leq_{L R} y \Leftrightarrow \exists z, z^{\prime}: y=z x z^{\prime}
\end{gathered}
$$

- Talk 2 The linear version of talk 1

Representations of Coxeter Groups and Hecke Algebras
David Kazhdan ${ }^{1}$ and George Lusztig ${ }^{2 \star}$
Inventiones math. 53, 165-184(1979)

$$
\begin{gathered}
x \leq_{L} y \Leftrightarrow \exists z: y \oplus z x \\
x \leq_{R} y \Leftrightarrow \exists z^{\prime}: y \oplus x z^{\prime} \\
x \leq_{L R} y \Leftrightarrow \exists z, z^{\prime}: y \in z x z^{\prime}
\end{gathered}
$$

- Talk 3 The categorical version of talk 1

ANALOGUES OF CENTRALIZER SUBALGEBRAS FOR FIAT
2-CATEGORIES AND THEIR 2-REPRESENTATIONS
MARCO MACKAAY ${ }^{\oplus 1,2}$, VOLODYMYR MAZORCHUK ${ }^{\oplus 3}$, VANESSA MIEMIETZ ${ }^{4}$
AND XIAOTING ZHANG ${ }^{\text {© }}$
(Received 23 February 2018; revised 5 November 2018; accepted 7 November 2018; first published online 4 December 2018)

$$
\begin{gathered}
\mathrm{X} \leq_{L} \mathrm{Y} \Leftrightarrow \exists \mathrm{Z}: \mathrm{Y} \oplus \mathrm{ZX} \\
\mathrm{X} \leq_{R} \mathrm{Y} \Leftrightarrow \exists \mathrm{Z}^{\prime}: \mathrm{Y} \oplus \mathrm{XZ}^{\prime} \\
\mathrm{X} \leq_{L R} \mathrm{Y} \Leftrightarrow \exists \mathrm{Z}, \mathrm{Z}^{\prime}: \mathrm{Y} \Subset \mathrm{ZXZ}
\end{gathered}
$$

The theory of monoids (Green $\sim 1950+$)

- Associativity \Rightarrow reasonable theory of matrix reps
- Southeast corner \Rightarrow reasonable theory of matrix reps

The th Adjoining identities is "free" and there is no essential difference between semigroups and monoids
The main difference is monoids vs. groups
I will stick with the more familiar monoids and groups

- Associativity \Rightarrow reasonable theory of matrix reps
- Southeast corner \Rightarrow reasonable theory of matrix reps

The th Adjoining identities is "free" and there is no essential difference between semigroups and monoids
The main difference is monoids vs. groups
I will stick with the more familiar monoids and groups

In a monoid information is destroyed
The point of monoid theory is to keep track of information loss

- Associativi
- Southeast

The th
 Adjoining identities is "free" and there is no essential difference between semigroups and monoids
 The main difference is monoids vs. groups
 I will stick with the more familiar monoids and groups
 In a monoid information is destroyed
 The point of monoid theory is to keep track of information loss

Monoids appear naturally in categorification

Group-like structures					
	Totality ${ }^{\alpha}$	Associativity	Identity	Invertibility	ommutativity
Semigroupoid	Unneeded	Required	Unneeded	Unneeded	Unneeded
Small category	Unneeded	Required	Required	Unneeded	Unneeded
Groupoid	Unneeded	Required	Required	Required	Unneeded
Magma	Required	Unneeded	Unneeded	Unneeded	Unneeded
Quasigroup	Required	Unneeded	Unneeded	Required	Unneeded
Unital magma	Required	Unneeded	Required	Unneeded	Unneeded
Semigroup	Required	Required	Unneeded	Unneeded	Unneeded
Loop	Required	Unneeded	Required	Required	Unneeded
Inverse semigroup	Required	Required	Unneeded	Required	Unneeded
Monoid	Required	Required	Required	Unneeded	Unneeded
Commutative monoid	Required	Required	Required	Unneeded	Required
Group	Required	Required	Required	Required	Unneeded
Abelian group	Required	Required	Required	Required	Required

The theory of monoids (Green ~1950++)

Examples of monoids

Groups

Multiplicative closed sets of matrices (these need not to be unital, but anyway)
Symmetric groups $\operatorname{Aut}(\{1, \ldots, n\})$
(24138567) ↔

Transformation monoids $\operatorname{End}(\{1, \ldots, n\})$
(23135555) ↔u

- Southeast corner \Rightarrow reasonable theory of matrix reps

The theory of monoids (Green $\sim 1950+$)

$$
\begin{gathered}
\text { Example (now with notation) } \\
S_{n}=\operatorname{Aut}(\{1, \ldots, n\}) \text { is a group Symmetric group } \\
T_{n}=\operatorname{End}(\{1, \ldots, n\}) \text { is a monoid Transformation monoid }
\end{gathered}
$$

- Associativity \Rightarrow reasonable theory of matrix reps
- Southeast corner \Rightarrow reasonable theory of matrix reps

Finite groups are kind of random...

The t

```
A000001 Number of groups of order n.
                            (Formerly M0098 N0035)
    0, 1, 1, 1, 2, 1, 2, 1, 5, 2, 2, 1, 5, 1, 2, 1, 14, 1, 5, 1, 5, 2, 2, 1, 15, 2, 2, 5, 4, 1, 4, 1,
    51, 1, 2, 1, 14, 1, 2, 2, 14, 1, 6, 1, 4, 2, 2, 1, 52, 2, 5, 1, 5, 1, 15, 2, 13, 2, 2, 1, 13, 1,
    2, 4, 267, 1, 4, 1, 5, 1, 4, 1, 50, 1, 2, 3, 4, 1, 6, 1, 52, 15, 2, 1, 15, 1, 2, 1, 12, 1, 10, 1,
```

 \(\log (\#)\)

A058133 Number of monoids (semigroups with identity) of order n, considered to be equivalent when they are isomorphic or anti-isomorphic (by reversal of the operator).
0, 1, 2, 6, 27, 156, 1373, 17730, 858977, 1844075697, 52991253973742 (list; graph; refs; listen; history;
$\log (\#)$
$>$
$\rightarrow \mathrm{A}$
$>$

Finite groups are kind of random...

The t

A000001 | Number of groups of order n. |
| :---: |
| (Formerly m0098 N0035) |
| $0,1,1,1,2,1,2,1,5,2,2,1,5,1,2,1,14,1,5,1,5,2,2,1,15,2,2,5,4,1,4,1$, |
| $51,1,2,1,14,1,2,2,14,1,6,1,4,2,2,1,52,2,5,1,5,1,15,2,13,2,2,1,13,1,1$ |
| $2,4,267,1,4,1,5,1,4,1,50,1,2,3,4,1,6,1,52,15,2,1,15,1,2,1,12,1,10,1$, |

$\log (\#)$
Monoids have almost no structure
and there are zillions of them
\Rightarrow not clear that there is a satisfying (rep) theory of monoids
Spoiler There is ;-)
200

A058133 Number of monoids (semigroups with identity) of order n, considered to be equivalent when they are isomorphic or anti-isomorphic (by reversal of the operator).
0, 1, 2, 6, 27, 156, 1373, 17730, 858977, 1844075697, 52991253973742 (list; graph; refs; listen; history;

The theory of monoids (Green $\sim 1950+$)

The cell orders and equivalences:

$$
\begin{aligned}
x \leq_{L} y & \Leftrightarrow \exists z: y=z x \\
x \leq_{R} y & \Leftrightarrow \exists z^{\prime}: y=x z^{\prime} \\
x \leq_{L R} y & \Leftrightarrow \exists z, z^{\prime}: y=z x z^{\prime} \\
x \sim_{L} y & \Leftrightarrow\left(x \leq_{L} y\right) \wedge\left(y \leq_{L} x\right) \\
x \sim_{R} y & \Leftrightarrow\left(x \leq_{R} y\right) \wedge\left(y \leq_{R} x\right) \\
x \sim_{L R} y & \Leftrightarrow\left(x \leq_{L R} y\right) \wedge\left(y \leq_{L R} x\right)
\end{aligned}
$$

Left, right and two-sided cells (a.k.a. L, R and J-cells): equivalence classes

- H-cells $=$ intersections of left and right cells
- Slogan Cells measure information loss

The theory of monoids (Green $\sim 1950+$)

- Cells partition monoids into matrix-type-pieces
- L and R-cells
\rightarrow columns/rows

The theory of monoids (Green $\sim 1950+$)

- H-cells $=$ intersections of left and right cells
- The J-cells are matrices with values in H-cells

The theory of monoids (Green $\sim 1950+$)

- Each \mathcal{H} contains no or 1 idempotent e; every e is contained in some $\mathcal{H}(e)$
- Each $\mathcal{H}(e)$ is a maximal subgroup No internal information loss

The theory of monoids (Green ~1950++)

- Each \mathcal{H} contains no or 1 idempotent e; every e is contained in some $\mathcal{H}(e)$
- Each $\mathcal{H}(e)$ is a maximal subgroup No internal information loss

The theory of monoids (Green $\sim 1950++$)

Example (cells of \mathbb{N})

- Each \mathcal{H} contains no or 1 idempotent e; every e is contained in some $\mathcal{H}(e)$
- Each $\mathcal{H}(e)$ is a maximal subgroup No internal information loss

The theory of monoids (Green $\sim 1950++$)

- Each \mathcal{H} contains no or 1 idempotent e; every e is contained in some $\mathcal{H}(e)$
- Each $\mathcal{H}(e)$ is a maximal subgroup No internal information loss

The theory of monoids (Green $\sim 1950++$)

- Each $\mathcal{H}(e)$ is a maximal subgroup No internal information loss

The theory of monoids (Green ~1950++)

\mathcal{J}
Computing these "egg box diagrams" is one of the main tasks of monoid theory

GAP can do these calculations for you (package semigroups)
\rightarrow Eacn +1 contams no or 1 laempotent e; every e is contamea in some $f(e)$

- Each $\mathcal{H}(e)$ is a maximal subgroup No internal information loss

The theory of monoids (Green $\sim 1950+$)

Cells of some diagram monoids

Connect eight points at the bottom with eight points at the top:

or
(24637158) \rightarrow

We just invented the symmetric group S_{8} on $\{1, \ldots, 8\}$

Cells of some diagram monoids

My multiplication rule for $g h$ is "stack g on top of h "

Cells of some diagram monoids

- We clearly have $g(h f)=(g h) f$
- There is a do nothing operation $1 g=g=g 1$

- Generators-relations (the Reidemeister moves), e.g.

Cells of some diagram monoids

Allow merges and top dots:

We just invented the transformation monoid T_{8} on $\{1, \ldots, 8\}$

Cells of some diagram monoids

My multiplication rule for $g h$ is "stack g on top of h "

Cells of some diagram monoids

- Generators-relations for $S_{n} \subset T_{n}$ (the Reidemeister moves), e.g.

- Generators-relations for the non-invertible part of T_{n}, e.g.

- Interactions, e.g.

- Interactions, e.g.

Cells of some diagram monoids

Theorem (folklore)

J-cells of T_{n} are given and ordered by through strands λ All J-cells contain idempotents
L-cells correspond to fixed bottom ($\left\{\begin{array}{c}n \\ \lambda\end{array}\right\}$ many), R-cells to fixed top ($\binom{n}{\lambda}$ many $)$

$$
\mathcal{H}(e) \cong S_{\lambda} \text { for } \lambda=\# \text { through strands }
$$

- Generators-relations for the non-invertible nart of T. oo

Example (cells of T_{3}, idempotent cells colored)

- Interact

Cells of some diagram monoids

More examples (details on the exercise sheets)
Planar (left) and symmetric (right) diagram monoids, e.g.

The (planar) symmetric groups $\mathrm{pS}_{n}, \mathrm{~S}_{n}$ are groups \Rightarrow Boring cells

Cells of some diagram monoids

Morn ovamone (dntaile on tho ovorricn chonte)
Examples ((planar) rook monoid $\mathrm{pRo}_{3}, \mathrm{Ro}_{3}$ by hand)
\mathcal{J}_{1}

$$
\mathcal{H}(e) \cong \mathrm{S}_{2}
$$

$$
\mathcal{H}(e) \cong 1
$$

The (planar) symmetric groups $\mathrm{pS}_{n}, \mathrm{~S}_{n}$ are groups \Rightarrow Boring cells

The simple reps of monoids

$\phi: S \rightarrow \mathrm{GL}(V) S$-representation on a \mathbb{K}-vector space V, S is some monoid

- A \mathbb{K}-linear subspace $W \subset V$ is S-invariant if $S . W \subset W$ Substructure
- $V \neq 0$ is called simple if $0, V$ are the only S-invariant subspaces Elements
- Careful with different names in the literature: S-invariant ans subrepresentation, simple $\rightsquigarrow \rightarrow$ irreducible
- A crucial goal of representation theory

Find the periodic table of simple S-representations

Chemistry	Group theory	Rep theory
Matter	Groups	Reps
Elements	Simple groups	Simple reps
Simpler substances	Jordan-Hölder theorem	Jordan-Hölder theorem
Periodic table	Classification of simple groups	Classification of simple reps

The simple reps of monoids

$\phi: S \rightarrow \mathrm{GL}(V) S$-representation on a \mathbb{K}-vector space V, S is some monoid

- Careful with different names in the literature: S-invariant $4 \rightarrow$ subrepresentation, simple $u \rightarrow$ irreducible
- A crucial goal of representation theory

$$
\text { Find the periodic table of simple } S \text {-representations }
$$

Chemistry	Group theory	Rep theory
Matter	Groups	Reps
Elements	Simple groups	Simple reps
Simpler substances	Jordan-Hölder theorem	Jordan-Hölder theorem
Periodic table	Classification of simple groups	Classification of simple reps

The simple reps of monoids

$\phi: S \rightarrow \mathrm{GL}(V) S$-representation on a \mathbb{K}-vector space V, S is some monoid

- A K-linear $s \quad$ Frobenius $\sim \mathbf{1 8 9 5 + +}$ and others bstructure
$-V \neq 0$ is cafeu smipie and $\mathbb{K}=\mathbb{C}$ rep theory is really satisfying $\begin{aligned} & \text { For groups }\end{aligned}$ Elements
- Carefi

What about monoids?
subrep Me: Probably not much better than general algebra rep theory...

- A cruclal goal of representation theory

Find the periodic table of simple S-representations

Chemistry	Group theory	Rep theory
Matter	Groups	Reps
Elements	Simple groups	Simple reps
Simpler substances	Jordan-Hölder theorem	Jordan-Hölder theorem
Periodic table	Classification of simple groups	Classification of simple reps

The simple reps of monoids

$\phi: S \rightarrow \mathrm{GL}(V) S$-representation on a \mathbb{K}-vector space V, S is some monoid

- A \mathbb{K}-linear $\{\quad$ Frobenius $\sim 1895+$ and others bstructure

For groups and $\mathbb{K}=\mathbb{C}$ rep theory is really satisfying

- Careff

What about monoids?
Me: Probably not much better than general algebra rep theory... Jeez, was I wrong...

- A cruclal goal of representation theory

Clifford, Munn, Ponizovskiĩ $\sim 1940++$ and others MATRIX REPRESENTATIONS OF COMPLETELY SIMPLE SEMIGROUPS.* 1942

By A. H. Clifpord.
ON SEMIGROUP ALGEBRAS
By W. D. MUNN
Received 21 July 1954
О матричных представлениях ассоциативных систем*
и. с. Поиновскииі (Kемеррооо) 1956
eorem
ple reps
The rep theory of monoids is much better than expected!

The simple reps of monoids

Clifford, Munn, Ponizovskiĩ ~1940++ H-reduction

There is a one-to-one correspondence

$$
\left\{\begin{array}{c}
\text { simples with } \\
\text { apex } \mathcal{J}(e)
\end{array}\right\} \stackrel{\text { one-to-one }}{\longleftrightarrow}\left\{\begin{array}{c}
\text { simples of (any) } \\
\mathcal{H}(e) \subset \mathcal{J}(e)
\end{array}\right\}
$$

Reps of monoids are controlled by $\mathcal{H}(e)$-cells

- Each simple has a unique maximal $\mathcal{J}(e)$ whose $\mathcal{H}(e)$ does not kill it Apex
- In other words (smod means the category of simples):

$$
S-\operatorname{smod}_{\mathcal{J}(e)} \simeq \mathcal{H}(e)-\operatorname{smod}
$$

Example (anti apex predator)

"Apex $=$ fish" means that the red bubble does not annihilate your rep and the rest does
J-reduction $=$ existence of apexes
Basically, there is a monoid $S_{\mathcal{J}}$ associated to fish with Simples of $S_{\mathcal{J}} \stackrel{1: 1}{\longleftrightarrow}$ simples of S with apex fish

The simple reps of monoids

Clifford, Munn, Ponizovskiĩ ~1940++ H-reduction
There is a one-to-one correspondence

- Each simple has a unique maximal $\mathcal{J}(e)$ whose $\mathcal{H}(e)$ does not kill it Apex
- In other words (smod means the category of simples):

$$
S-\operatorname{smod}_{\mathcal{J}(e)} \simeq \mathcal{H}(e)-\operatorname{smod}
$$

The simple reps $\begin{aligned} & \text { Example (cells of } C_{3,2} \text {, idempotent cells colored) }\end{aligned}$
Clifford, Munn,
There is a one-to

\mathcal{J}_{t}	a^{3}, a^{4}	$\mathcal{H}(e) \cong \mathbb{Z} / 2 \mathbb{Z}$
$\mathcal{J}_{a^{2}}$	a^{2}	
\mathcal{J}_{a}	a	
\mathcal{J}_{b}	1	$\mathcal{H}(e) \cong 1$

Three simple reps over \mathbb{C} : one for \mathcal{J}_{b} and two for \mathcal{J}_{t}

Reps of monoids are controlled by $\mathcal{H}(e)$-cells

- Each simple has a unique maximal $\mathcal{J}(e)$ whose $\mathcal{H}(e)$ does not kill it Apex
- In other words (smod means the category of simples):

$$
S-\operatorname{smod}_{\mathcal{J}(e)} \simeq \mathcal{H}(e)-\operatorname{smod}
$$

The simple reps \quad Example (cells of $C_{3,2}$, idempotent cells colored)

Clifford, Munn,
There is a one-to

\mathcal{J}_{t}	a^{3}, a^{4}	$\mathcal{H}(e) \cong \mathbb{Z} / 2 \mathbb{Z}$
$\mathcal{J}_{a^{2}}$	a^{2}	
\mathcal{J}_{a}	a	
\mathcal{J}_{b}	1	$\mathcal{H}(e) \cong 1$

Three simple reps over \mathbb{C} : one for \mathcal{J}_{b} and two for \mathcal{J}_{t}
Example (cells of T_{3}, idempotent cells colored)

- Each simple
- In other wor

The simple reps of monoids

Clifford, Munn, Ponizovskiĩ ~1940++ H-reduction

There is a one-to-one correspondence

$\left\{\begin{array}{c} \text { simple } \\ \text { apex } \end{array}\right.$	Example (cells of $C_{3,2}$, idempotent cells colored)	$\left\{\begin{array}{l} (\text { any }) \\ \mathcal{T}(e) \end{array}\right\}$
- Each simple	Trivial rep of 1 induces to $C_{3,2}$ and has apex \mathcal{J}_{b} $\mathcal{J}_{a}, \mathcal{J}_{a^{2}}, \mathcal{J}_{t} \text { act by zero }$	pt kill it Apex
- In other wo	Trivial rep of $\mathbb{Z} / 2 \mathbb{Z}$ induces to $C_{3,2}$ and has apex \mathcal{J}_{t} Nothing acts by zero	

The simnle rens of monoids

Example (no specific monoid)

Five apexes: bottom cell, big cell, 2×2 cell, 3×3 cell, top cell Simples for the 2×2 cell are acted on as zero by elements from 3×3 cell, top cell

H-reduction It is sufficient to pick one $\mathcal{H}(e)$ per block

The simple reps of monoids

Clifford, Munn, Ponizovskiī $\sim 1940+$ H-reduction

- There are cell representations

Cells can be considered S-representations, called cell representations or Schützenberger representations, up to higher order terms:
Lemma 3B.1. Each left cell \mathcal{L} of S gives rise to a left S-representation $\Delta_{\mathcal{L}}=\mathbb{K} \mathcal{L}$ by

$$
a . l \in \Delta_{\mathcal{L}}= \begin{cases}a l & \text { if al } \in \mathcal{L}, \\ 0 & \text { else } .\end{cases}
$$

Similarly, right cells give right representations $\mathcal{R} \Delta$ and J-cells give birepresentations (often called bimodules). We have $\operatorname{dim}_{\mathbb{K}}\left(\Delta_{\mathcal{L}}\right)=|\mathcal{L}|$ and $\operatorname{dim}_{\mathbb{K}}(\mathcal{R} \Delta)=|\mathcal{R}|$.

- There is a sandwich matrix which takes values in the H -cells
- There is an isomorphism of rings

$$
[S-\bmod] \cong \prod_{\mathcal{J}(e)}[\mathcal{H}(e)-\bmod]
$$

- S is semisimple if and only if all J -cells are idempotent and square, all $\mathcal{H}(e)$ are semisimple + a condition on cell representations
- Many more...

The simple reps of some diagram monoids

- The transformation monoid T_{3} has three apexes, five left cell modules $\Delta(\lambda, i)$, seven right cell modules $\nabla(\lambda, i)$
- Over \mathbb{C} we find $3+2+1$ simple modules

The sir The bottom cell
$\Delta(b)$ is the regular rep of S_{3} inflated to T_{3} :

- The transformation monoid T_{3} has three apexes, five left cell modules $\Delta(\lambda, i)$, seven right cell modules $\nabla(\lambda, i)$
- Over \mathbb{C} we find $3+2+1$ simple modules

The middle cell, left column (the others are similar)

$$
\text { 1. } \Delta(m, 1) \text { is the regular rep of } S_{2} \text { induced to } T_{3} \text { : }
$$

- The transtormation monoid I_{3} has three apexes, tive left cell modules $\Delta(\lambda, i)$, seven right cell modules $\nabla(\lambda, i)$
- Over \mathbb{C} we find $3+2+1$ simple modules

The transtormation monoid 1_{3} has three apexes, tive lett cell modules $\Delta(\lambda, i)$, seven right cell

- Over \mathbb{C} we find $\Delta(t)$ is the regular rep of S_{1} induced to T_{3}

The simple reps of some diagram monoids

- The transformation monoid T_{3} has three apexes, five left cell modules $\Delta(\lambda, i)$, seven right cell modules $\nabla(\lambda, i)$
- Over \mathbb{C} we find $3+2+1$ simple modules

The simple reps of some diagram monoids

The middle cell over \mathbb{C}

$\Delta(b, 1)$ contributes two simple of S_{2} that induce to T_{3} (one of them decomposes), e.g.

is an S_{2}-invariant vector + track its image \rightsquigarrow simple dims are 3, 2 as T_{3} reps

- The transformation monoid T_{3} has three apexes, five left cell modules $\Delta(\lambda, i)$, seven right cell modules $\nabla(\lambda, i)$
- Over \mathbb{C} we find $3+2+1$ simple modules

The simple reps of some diagram monoids

The middle cell over \mathbb{C}

$\Delta(b, 1)$ contributes two simple of S_{2} that induce to T_{3} (one of them decomposes), e.g.

is an S_{2}-invariant vector + track its image \rightsquigarrow simple dims are 3,2 as T_{3} reps

The simpl
Sandwich matrices for the middle cell

- The transformation monoid T_{3} has three apexes, five left cell modules $\Delta(\lambda, i)$, seven right cell modules $\nabla(\lambda, i)$
- Over \mathbb{C} we find $3+2+1$ simple modules

The simpl
Sandwich matrices for the middle cell

- Over \mathbb{C} we find $3+2+1$ simple modules

The simple reps of some diagram monoids

- The Brauer monoid $B r_{3}$ has two apexes, four left/right cell modules
- Over \mathbb{C} we find $3+1$ simple modules
- Other diagram algebras are similar; more on the exercise sheets

- Green, Clifford, Munn, Ponizouskii ~1940++ + many others
- Green, Clifford, Munn, Poonizouskiin ~
- Goal Find some categonical analog

The theary of monoids (Green ~1950++)

- Associatinty \rightarrow rezsonable theory of matrix reps
- Southeast corner \rightarrow reasonable theory of matiox reps

The simple reps of monoids
Clifford, Munn, Ponizovskiil $\sim 1940++$ H-reduction
There is a one to-ane correspondence.

$$
\left\{\begin{array}{c}
\text { simples with } \\
\text { apex } \mathcal{J}(e)
\end{array}\right\} \stackrel{\text { one-to-one }}{\longleftrightarrow}\left\{\begin{array}{c}
\text { simples of (any) } \\
\mathcal{H}(e) \subset \mathcal{J}(e)
\end{array}\right\}
$$

Reps of manoids zee controiled by $H(e)$-cells

- Each simple has a unique maximal $\mathcal{J}(\mathrm{e})$ whose $\mathcal{H}(e)$ does not kill it Apex
- In other words (smod means the category of simples).

- H-cells - intersections of left and right cells
- The 1 -cells are matricics with values in H-cels

There is still much to do...

- Green, Clifford, Munn, Ponizouskii ~1940++ + many others
Representation theary of (ifit) monoids
- Green, Cliford, Munn, Ponizovsk Representation theary of (finite) monoids
- Goal Find some categonical analog

The theary of monoids (Green $\sim 1950++$)

- Associatinty \rightarrow rezsonable theory of matrix reps
- Southeast corner \rightarrow reasonable theory of matiox reps

The simple reps of monoids
Clifford, Munn, Ponizovskiil $\sim 1940++$ H-reduction
There is a one to-one correspondence.

$$
\left\{\begin{array}{c}
\text { simples with } \\
\text { apex } \mathcal{J}(e)
\end{array}\right\} \stackrel{\text { one-to-one }}{\longleftrightarrow}\left\{\begin{array}{c}
\text { simples of (any) } \\
\mathcal{H}(e) \subset \mathcal{J}(e)
\end{array}\right\}
$$

Reps of monoids are controiled by $H(e)$-cells

- Each simple has a unique maximal $\mathcal{J}($ e) whase $\mathcal{H}(e)$ does not kili it Apex
- In other words (smod means the category of simples).

- H-cells - intersections of left and right cells
- The \mathcal{A}-cells are matrices with values in H-celts

-Apax - tah' monas thet the med butble does not antiailuee your sep and the rest doess S-2ebection $=$ exisimece of appeses

Thanks for your attention!

