Representation theory of monoids

Or: Cell theory for monoids

Daniel Tubbenhauer

Part 2: Reps of algebras; Part 3: Reps of monoidal cats
Where do we want to go?

rep theory
“categorify”
generalize

- Green, Clifford, Munn, Ponizovskii \(\sim 1940++\) + many others
 - Representation theory of (finite) monoids

- Goal: Find some categorical analog
Where do we want to go?

- rep theory
 - “categorify”
 - generalize

- Green, Clifford, Munn, Ponizovskii \(\sim \) 1940++ + many others
 - Representation theory of (finite) monoids

- Goal
 - Find some categorical analog
Where do we want to go?

Talk 1 Monoids and their reps

ON THE STRUCTURE OF SEMIGROUPS

By J. A. Green

(Received June 1, 1950)

Talk 2 The linear version of talk 1

Representations of Coxeter Groups and Hecke Algebras

David Kazhdan¹ and George Lusztig²*

Inventiones math. 53, 165 – 184 (1979)

Talk 3 The categorical version of talk 1

ANALOGUES OF CENTRALIZER SUBALGEBRAS FOR FIAT
2-CATEGORIES AND THEIR 2-REPRESENTATIONS

MARCO MACKAAY¹,², VOLODYMYR MAZORCHUK³, VANESSA MIEMIETZ¹
AND XIAOTING ZHANG⁴,⁵

(Received 23 February 2018; revised 5 November 2018; accepted 7 November 2018;
first published online 4 December 2018)
The theory of monoids (Green ~1950++)

- Associativity \Rightarrow reasonable theory of matrix reps
- Southeast corner \Rightarrow reasonable theory of matrix reps
Adjoining identities is “free” and there is no essential difference between semigroups and monoids.

The main difference is **monoids vs. groups**.

I will stick with the more familiar monoids and groups.

- **Associativity** ⇒ reasonable theory of matrix reps
- **Southeast corner** ⇒ reasonable theory of matrix reps

Examples:

- Groups
- Multiplicative closed sets of matrices (these need not to be unital, but anyway)
- Symmetric groups
- \(Aut(\{1, \ldots, n\}) \)
- Transformation monoids
 - \(End(\{1, \ldots, n\}) \)

In a monoid information is destroyed.

The point of monoid theory is to keep track of information loss.

Monoids appear naturally in categorification.

Examples:

- \(\mathbb{Z} \) is a group
- \(\mathbb{N} \) is a monoid
- \(\mathbb{C}_n = \langle a | a^n = 1 \rangle \) is a group
- \(\mathbb{C}_n, p = \langle a | a^n + p = a^n \rangle \) is a monoid
- \(S_n = Aut(\{1, \ldots, n\}) \) is a group
- \(T_n = End(\{1, \ldots, n\}) \) is a monoid

Finite groups are kind of random... Monoids have almost no structure and there are zillions of them.

⇒ not clear that there is a satisfying (rep) theory of monoids.

Spoiler There is ;-)

Example (group-like):
All invertible elements form the smallest cell.

Example (cells of \(\mathbb{N} \)):
Every element is in its own cell, only 0 is idempotent.

Example (cells of \(\mathbb{C}_3, 2 \), idempotent cells colored):

Example (cells of \(T_3 \), idempotent cells colored; more in a second):

Computing these “egg box diagrams” is one of the main tasks of monoid theory.

GAP can do these calculations for you (package semigroups).

Examples (no specific monoids):

- Grey boxes are idempotent
- \(H \)-cells

Cell theory for algebras

Representation theory of monoids

August 2022 3 / 7
Adjoining identities is “free” and there is no essential difference between semigroups and monoids

The main difference is monoids vs. groups

I will stick with the more familiar monoids and groups

In a monoid information is destroyed

The point of monoid theory is to keep track of information loss
Adjoining identities is “free” and there is no essential difference between semigroups and monoids.

The main difference is monoids vs. groups.

I will stick with the more familiar monoids and groups.

In a monoid information is destroyed.

The point of monoid theory is to keep track of information loss.

Monoids appear naturally in categorification.

<table>
<thead>
<tr>
<th>Group-like structures</th>
<th>Totality</th>
<th>Associativity</th>
<th>Identity</th>
<th>Invertibility</th>
<th>Commutativity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semigroupoid</td>
<td>Unneeded</td>
<td>Required</td>
<td>Unneeded</td>
<td>Unneeded</td>
<td>Unneeded</td>
</tr>
<tr>
<td>Small category</td>
<td>Unneeded</td>
<td>Required</td>
<td>Required</td>
<td>Unneeded</td>
<td>Unneeded</td>
</tr>
<tr>
<td>Groupoid</td>
<td>Unneeded</td>
<td>Required</td>
<td>Required</td>
<td>Unneeded</td>
<td>Unneeded</td>
</tr>
<tr>
<td>Magma</td>
<td>Required</td>
<td>Unneeded</td>
<td>Unneeded</td>
<td>Unneeded</td>
<td>Required</td>
</tr>
<tr>
<td>Quasigroup</td>
<td>Required</td>
<td>Unneeded</td>
<td>Required</td>
<td>Unneeded</td>
<td>Unneeded</td>
</tr>
<tr>
<td>Unital magma</td>
<td>Required</td>
<td>Unneeded</td>
<td>Required</td>
<td>Unneeded</td>
<td>Unneeded</td>
</tr>
<tr>
<td>Semigroup</td>
<td>Required</td>
<td>Unneeded</td>
<td>Unneeded</td>
<td>Unneeded</td>
<td>Unneeded</td>
</tr>
<tr>
<td>Loop</td>
<td>Required</td>
<td>Unneeded</td>
<td>Required</td>
<td>Required</td>
<td>Unneeded</td>
</tr>
<tr>
<td>Inverse semigroup</td>
<td>Required</td>
<td>Required</td>
<td>Unneeded</td>
<td>Required</td>
<td>Unneeded</td>
</tr>
<tr>
<td>Monoid</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
<td>Unneeded</td>
</tr>
<tr>
<td>Commutative monoid</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
<td>Unneeded</td>
<td>Required</td>
</tr>
<tr>
<td>Group</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
<td>Unneeded</td>
</tr>
<tr>
<td>Abelian group</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
</tr>
</tbody>
</table>
The theory of monoids (Green \(\sim 1950++\))

Examples of monoids

Groups

Multiplicative closed sets of matrices (these need not to be unital, but anyway)

Symmetric groups \(\text{Aut}(\{1, \ldots, n\})\)

Transformation monoids \(\text{End}(\{1, \ldots, n\})\)

Groups

Southeast corner \(\Rightarrow\) reasonable theory of matrix reps
The theory of monoids (Green \(\sim 1950++\))

- **Example**
 - \(\mathbb{Z}\) is a group
 - \(\mathbb{N}\) is a monoid

- **Example**
 - \(C_n = \langle a \mid a^n = 1 \rangle\) is a group
 - \(C_{n,p} = \langle a \mid a^{n+p} = a^n \rangle\) is a monoid

- **Example (now with notation)**
 - \(S_n = \text{Aut}(\{1, \ldots, n\})\) is a group
 - \(T_n = \text{End}(\{1, \ldots, n\})\) is a monoid

- Associativity \(\Rightarrow\) reasonable theory of matrix reps
- Southeast corner \(\Rightarrow\) reasonable theory of matrix reps

- Adjoining identities is "free" and there is no essential difference between semigroups and monoids
- The main difference is monoids vs. groups
- I will stick with the more familiar monoids and groups
- In a monoid information is destroyed
- The point of monoid theory is to keep track of information loss
- Monoids appear naturally in categorification
- Examples of monoids:
 - Groups
 - Multiplicative closed sets of matrices (these need not be unital, but anyway)
 - Symmetric groups
 - \(\text{Aut}(\{1, \ldots, n\})\)
 - Transformation monoids
 - \(\text{End}(\{1, \ldots, n\})\)

- Finite groups are kind of random...
- Monoids have almost no structure and there are zillions of them
 - \(\Rightarrow\) not clear that there is a satisfying (rep) theory of monoids
- **Spoiler** There is ;-)
The theory of monoids (∼1950+)

▶ Associativity ⇒ reasonable theory of matrix reps

Southeast corner ⇒ reasonable theory of matrix reps

Adjoining identities is “free” and there is no essential difference between semigroups and monoids. The main difference is monoids vs. groups.

I will stick with the more familiar monoids and groups.

In a monoid information is destroyed. The point of monoid theory is to keep track of information loss.

Monoids appear naturally in categorification.

Examples of monoids:

- Groups
- Multiplicative closed sets of matrices (these need not to be unital, but anyway)
- Symmetric groups, \(\text{Aut}\left(\{1, \ldots, n\}\right)\)
- Transformation monoids, \(\text{End}\left(\{1, \ldots, n\}\right)\)

Example:

- \(\mathbb{Z}\) is a group
- \(\mathbb{N}\) is a monoid

Example:

- \(C_n = \langle a \mid a^n = 1 \rangle\) is a group
- \(C_n, p = \langle a \mid a^{n+p} = a^n \rangle\) is a monoid

Example (now with notation):

- \(S_n = \text{Aut}\left(\{1, \ldots, n\}\right)\) is a group
- \(T_n = \text{End}\left(\{1, \ldots, n\}\right)\) is a monoid

Finite groups are kind of random...

Monoids have almost no structure and there are zillions of them. ⇒ not clear that there is a satisfying (rep) theory of monoids.

Spoiler: There is :-)

Example (group-like):

- All invertible elements form the smallest cell

Example (cells of \(\mathbb{N}\)):

- Every element is in its own cell, only 0 is idempotent

Example (cells of \(C_3, 2\), idempotent cells colored)

Examples (no specific monoids):

- Grey boxes are idempotent, \(H\)-cells

Cell theory for algebras

Representation theory of monoids

August 2022
The theory of monoids (∼1950+)

Adjoining identities is "free" and there is no essential difference between semigroups and monoids. The main difference is monoids vs. groups.

I will stick with the more familiar monoids and groups.

In a monoid information is destroyed. The point of monoid theory is to keep track of information loss.

Examples of monoids:
- Groups
- Multiplicative closed sets of matrices (these need not to be unital, but anyway)
- Symmetric groups
- Aut(\{1, \ldots, n\})
- Transformation monoids
- End(\{1, \ldots, n\})

Example: \(\mathbb{Z}\) is a group, \(\mathbb{N}\) is a monoid.

Example: \(C_n = \langle a \mid a^n = 1 \rangle\) is a group, \(C_n, p = \langle a \mid a^n + p = a^n \rangle\) is a monoid.

Example (now with notation): \(S_n = \text{Aut}(\{1, \ldots, n\})\) is a group, \(T_n = \text{End}(\{1, \ldots, n\})\) is a monoid.

Finite groups are kind of random...

Monoids have almost no structure and there are zillions of them.⇒ not clear that there is a satisfying (rep) theory of monoids.

Spoiler: There is ;-)
The theory of monoids (Green \(\sim 1950\++\))

The cell orders and equivalences:

\[
\begin{align*}
x \leq_L y &\iff \exists z : y = zx \\
x \leq_R y &\iff \exists z' : y = xz' \\
x \leq_{LR} y &\iff \exists z, z' : y = zxz'
\end{align*}
\[
\begin{align*}
x \sim_L y &\iff (x \leq_L y) \land (y \leq_L x) \\
x \sim_R y &\iff (x \leq_R y) \land (y \leq_R x) \\
x \sim_{LR} y &\iff (x \leq_{LR} y) \land (y \leq_{LR} x)
\end{align*}
\]

Left, right and two-sided cells (a.k.a. \(L, R\) and \(J\)-cells): equivalence classes

- **\(H\)-cells** = intersections of left and right cells
- **Slogan** Cells measure information loss
The theory of monoids (Green ∼1950++)

- Cells partition monoids into matrix-type-pieces
- L and R-cells ↔ columns/rows

Adjoining identities is "free" and there is no essential difference between semigroups and monoids. The main difference is monoids vs. groups. I will stick with the more familiar monoids and groups.

The point of monoid theory is to keep track of information loss. Monoids appear naturally in categorification.

Examples of monoids:
- Groups
- Multiplicative closed sets of matrices (these need not to be unital, but anyway)
- Symmetric groups $\text{Aut}(\{1, \ldots, n\})$
- Transformation monoids $\text{End}(\{1, \ldots, n\})$

Examples (now with notation):
- \mathbb{Z} is a group (Integers)
- \mathbb{N} is a monoid (Natural numbers)
- $C_n = \langle a \mid a^n = 1 \rangle$ is a group (Cyclic group)
- $C_{n, p} = \langle a \mid a^{n+p} = a^n \rangle$ is a monoid (Cyclic monoid)
- $S_n = \text{Aut}(\{1, \ldots, n\})$ is a group (Symmetric group)
- $T_n = \text{End}(\{1, \ldots, n\})$ is a monoid (Transformation monoid)

Finite groups are kind of random... Monoids have almost no structure and there are zillions of them. ⇒ not clear that there is a satisfying (rep) theory of monoids. Spoiler: There is ;-) Computing these "egg box diagrams" is one of the main tasks of monoid theory. GAP can do these calculations for you (package semigroups).
The theory of monoids (Green ~1950++)

- I-cells = intersections of left and right cells
- The J-cells are matrices with values in H-cells

H-cells = intersections of left and right cells

$H\left(L, R \right)$

H_1^{11}, H_1^{12}, H_1^{13}, H_1^{14}, H_2^{21}, H_2^{22}, H_2^{23}, H_2^{24}, H_3^{31}, H_3^{32}, H_3^{33}, H_3^{34}
The theory of monoids (Green ~1950++)

Each H contains no or 1 idempotent e; every e is contained in some $H(e)$.

Each $H(e)$ is a maximal subgroup. No internal information loss.
The theory of monoids (Green ∼1950+)

Each H contains no or 1 idempotent e; every e is contained in some $H(e)$.

Each $H(e)$ is a maximal subgroup.

No internal information loss.

<table>
<thead>
<tr>
<th>H</th>
<th>$H(e)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_{11}</td>
<td>All invertible elements form the smallest cell</td>
</tr>
<tr>
<td>H_{21}</td>
<td></td>
</tr>
<tr>
<td>H_{22}</td>
<td></td>
</tr>
<tr>
<td>H_{23}</td>
<td></td>
</tr>
<tr>
<td>H_{24}</td>
<td></td>
</tr>
<tr>
<td>H_{31}</td>
<td></td>
</tr>
<tr>
<td>H_{32}</td>
<td></td>
</tr>
<tr>
<td>H_{33}</td>
<td></td>
</tr>
<tr>
<td>H_{34}</td>
<td></td>
</tr>
</tbody>
</table>

Example (group-like)

All invertible elements form the smallest cell.

Example (cells of N)

Every element is in its own cell, only 0 is idempotent.

Example (cells of C_3, P, idempotent cells colored)

Example (cells of T_3, idempotent cells colored; more in a second)

Computing these “egg box diagrams” is one of the main tasks of monoid theory.

GAP can do these calculations for you (package semigroups).

Examples (no specific monoids)

Grey boxes are idempotent H-cells.

Cell theory for algebras

Representation theory of monoids

August 2022 3 / 7
The theory of monoids (Green ∼1950++)

- Each \mathcal{H} contains no or 1 idempotent e; every e is contained in some $\mathcal{H}(e)$
- Each $\mathcal{H}(e)$ is a maximal subgroup

Example (cells of \mathbb{N})

- Every element is in its own cell, only 0 is idempotent

Example (group-like)

- All invertible elements form the smallest cell

Example (cells of $\mathbb{C}_3, 2$, idempotent cells colored)

Example (cells of \mathbb{T}_3, idempotent cells colored; more in a second)

Computing these "egg box diagrams" is one of the main tasks of monoid theory

GAP can do these calculations for you (package semigroups)

Examples (no specific monoids)

- Grey boxes are idempotent
- H-cells

Cell theory for algebras

Representation theory of monoids
The theory of monoids (Green \(\sim 1950++\))

Each \(\mathcal{H}\) contains no or 1 idempotent \(e\); every \(e\) is contained in some \(\mathcal{H}(e)\)

Each \(\mathcal{H}(e)\) is a maximal subgroup

No internal information loss

Example (cells of \(\mathbb{N}\))

Every element is in its own cell, only 0 is idempotent

Example (cells of \(C_{3,2}\), idempotent cells colored)

\[
\begin{align*}
\mathcal{J}_t & : a^3, a^4 & \mathcal{H}(e) \cong \mathbb{Z}/2\mathbb{Z} \\
\mathcal{J}_{a^2} & : a^2 \\
\mathcal{J}_a & : a \\
\mathcal{J}_b & : 1 & \mathcal{H}(e) \cong 1
\end{align*}
\]

Example (cells of \(T_{3}\), idempotent cells colored; more in a second)

Computing these “egg box diagrams” is one of the main tasks of monoid theory

GAP can do these calculations for you (package semigroups)

Examples (no specific monoids)

Grey boxes are idempotent

\(\mathcal{H}_{-}\)-cells

Cell theory for algebras

Representation theory of monoids

August 2022 3 / 7
The theory of monoids (Green $\sim 1950++$)

Example (cells of \mathbb{N})

Every element is in its own cell, only 0 is idempotent

Example (cells of $C_{3,2}$, idempotent cells colored)

\[
\begin{array}{c|cc}
\mathcal{I}_t & a^3, a^4 & \mathcal{H}(e) \cong \mathbb{Z}/2\mathbb{Z} \\
\mathcal{I}_{a^2} & a^2 \\
\mathcal{I}_a & a \\
\mathcal{I}_b & 1 & \mathcal{H}(e) \cong 1
\end{array}
\]

Example (cells of T_3, idempotent cells colored; more in a second)

Each $\mathcal{H}(e)$ is a maximal subgroup

$\mathcal{H}(e)$

Cell theory for algebras

Representation theory of monoids
The theory of monoids (Green ∼1950++)

Computing these “egg box diagrams” is one of the main tasks of monoid theory.

- Each \mathcal{H} contains no or 1 idempotent e; every e is contained in some $\mathcal{H}(e)$.
- Each $\mathcal{H}(e)$ is a maximal subgroup.

No internal information loss.

GAP can do these calculations for you (package semigroups).

Examples (no specific monoids):

- Grey boxes are idempotent H-cells.

Finite groups are kind of random... Monoids have almost no structure and there are zillions of them ⇒ not clear that there is a satisfying (rep) theory of monoids.

Spoiler: There is ;-)

Example (group-like):

- All invertible elements form the smallest cell.

Example (cells of \mathbb{N}):

- Every element is in its own cell, only 0 is idempotent.

Example (cells of $C_3 \times C_2$, idempotent cells colored):

Example (cells of T_3, idempotent cells colored; more in a second).

Computing these “egg box diagrams” is one of the main tasks of monoid theory.

GAP can do these calculations for you (package semigroups).

- Each \mathcal{H} contains no or 1 idempotent e; every e is contained in some $\mathcal{H}(e)$.
- Each $\mathcal{H}(e)$ is a maximal subgroup.

No internal information loss.

Cell theory for algebras

Representation theory of monoids

August 2022
The theory of monoids (Green \(\sim 1950++\))

Each \(H\) contains no or 1 idempotent \(e\); every \(e\) is contained in some \(\mathcal{H}(e)\).

- Each \(\mathcal{H}(e)\) is a maximal subgroup.
- No internal information loss.

Examples (no specific monoids)

Grey boxes are idempotent \(H\)-cells.

Examples (no specific monoids)

Cell theory for algebras
Representation theory of monoids
Cells of some diagram monoids

Connect eight points at the bottom with eight points at the top:

(24138567) ↔

or

(24637158) ↔

We just invented the symmetric group S_8 on \{1, ..., 8\}
Cells of some diagram monoids

My multiplication rule for gh is “stack g on top of h”
Cells of some diagram monoids

- We clearly have $g(hf) = (gh)f$
- There is a do nothing operation $1g = g = g1$

Generators–relations (the Reidemeister moves), e.g.

gens : , rels : = , =
Cells of some diagram monoids

Allow merges and top dots:

(23135555) \leftrightarrow top dot
merge or

(11335577) \leftrightarrow

We just invented the transformation monoid T_8 on $\{1, \ldots, 8\}$
My multiplication rule for gh is “stack g on top of h”
Cells of some diagram monoids

- Generators–relations for $S_n \subset T_n$ (the Reidemeister moves), e.g.

 \[
 \text{gens : } \quad \quad \text{rels : } \quad \quad = \quad \quad =
 \]

- Generators–relations for the non-invertible part of T_n, e.g.

 \[
 \text{gens : } \quad \quad \text{rels : } \quad \quad = \quad \quad =
 \]

- Interactions, e.g.

 \[
 = \quad \quad =
 \]
Cells of some diagram monoids

Generators–relations for $S_n \subset T_n$ (the Reidemeister moves), e.g.

- **Gens:** ϵ, σ, τ
- **Rel:** $\epsilon \circ \sigma = \sigma \circ \epsilon$

Generators–relations for the non-invertible part of T_n, e.g.

- **Gens:** ϵ, σ, τ
- **Rel:** $\epsilon \circ \sigma = \sigma \circ \epsilon$

Interactions, e.g.

- **Gens:** ϵ, σ, τ
- **Rel:** $\epsilon \circ \sigma = \sigma \circ \epsilon$

Theorem (folklore)

- J-cells of T_n are given and ordered by strands.
- All J-cells contain idempotents.
- L-cells correspond to fixed bottom ($\{n\}_{\lambda}$ many), R-cells to fixed top ($\{(n\lambda)\}_{\lambda}$ many).

Example (cells of T_3, idempotent cells colored)

- J_t
 - (111)
 - (222)
 - (333)
 - $\mathcal{H}(e) \cong S_1$

- J_m
 - (122), (211)
 - (121), (212)
 - (221), (112)
 - (133), (311)
 - (313), (131)
 - (113), (331)
 - (233), (322)
 - (323), (232)
 - (223), (332)
 - $\mathcal{H}(e) \cong S_2$

- J_b
 - (123), (213), (132)
 - (231), (312), (321)
 - $\mathcal{H}(e) \cong S_3$

Examples (cell theory for algebras, representation theory of monoids)

- Planar partition monoid ppA_4, ppA_4 via GAP
- Motzkin + rook Brauer monoid Mo_4, RoBr_4 via GAP
- Temperley–Lieb + Brauer monoid TL_4, Br_4 via GAP
- Planar rook monoid pRo_3, Ro_3 by hand

August 2022 4/7
Cells of some diagram monoids

Generators–relations for $S_n \subset T_n$ (the Reidemeister moves), e.g.

<table>
<thead>
<tr>
<th>\mathcal{I}_t</th>
<th>\mathcal{I}_m</th>
<th>\mathcal{I}_b</th>
</tr>
</thead>
<tbody>
<tr>
<td>(111)</td>
<td>(122), (211)</td>
<td>(123), (213), (132)</td>
</tr>
<tr>
<td>(222)</td>
<td>(121), (212)</td>
<td>(231), (312), (321)</td>
</tr>
<tr>
<td>(333)</td>
<td>(221), (112)</td>
<td>(232), (323), (332)</td>
</tr>
</tbody>
</table>

$\mathcal{H}(e) \cong S_1$

$\mathcal{H}(e) \cong S_2$

$\mathcal{H}(e) \cong S_3$

Example (cells of T_3, idempotent cells colored)

J_t

J_m

J_b

Interactions, e.g.

Example (cells of T_3, idempotent cells colored)

J_t

J_m

J_b

$\mathcal{H}(e) \cong S_1$

$\mathcal{H}(e) \cong S_2$

$\mathcal{H}(e) \cong S_3$
Cells of some diagram monoids

Theorem (folklore)

J-cells of T_n are given and ordered by through strands λ

All J-cells contain idempotents

L-cells correspond to fixed bottom ($\{\binom{n}{\lambda}\}$ many), R-cells to fixed top ($\binom{n}{\lambda}$ many)

$\mathcal{H}(e) \cong S_\lambda$ for $\lambda = \#$ through strands

Example (cells of T_3, idempotent cells colored)

Generators–relations for the non-invertible part of T_n, e.g.

$\mathcal{H}(e) \cong S_1$

$\mathcal{H}(e) \cong S_2$

$\mathcal{H}(e) \cong S_3$

Interactions, e.g.
Cells of some diagram monoids

- Generators–relations for $S_n \subset T_n$ (the Reidemeister moves), e.g.
 - gens: \times, \cdot

- Generators–relations for the non-invertible part of T_n, e.g.
 - gens: ∇, \wedge

- Interactions, e.g.
 - $\psi = \sigma$

Example (T_5 via GAP)

Examples ((planar) partition monoid pPa_4 via GAP)

Examples (Motzkin + rook Brauer monoid Mo_4, $RoBr_4$ via GAP)

Examples (Temperley–Lieb + Brauer monoid TL_4, Br_4 via GAP)

Examples (planar) rook monoid pRo_3, Ro_3 by hand

Cell theory for algebras
Representation theory of monoids
August 2022
Cells of some diagram monoids

More examples (details on the exercise sheets)
Planar (left) and symmetric (right) diagram monoids, e.g.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Diagrams</th>
<th>Symbol</th>
<th>Diagrams</th>
</tr>
</thead>
<tbody>
<tr>
<td>pPa_n</td>
<td></td>
<td>Pa_n</td>
<td></td>
</tr>
<tr>
<td>Mo_n</td>
<td></td>
<td>RoBr_n</td>
<td></td>
</tr>
<tr>
<td>TL_n</td>
<td></td>
<td>Br_n</td>
<td></td>
</tr>
<tr>
<td>pRo_n</td>
<td></td>
<td>Ro_n</td>
<td></td>
</tr>
<tr>
<td>pS_n</td>
<td></td>
<td>S_n</td>
<td></td>
</tr>
</tbody>
</table>

The (planar) symmetric groups pS_n, S_n are groups ⇒ Boring cells
Cells of some diagram monoids

More examples (details on the exercise sheets)

Planar (left) and symmetric (right) diagram monoids, e.g.

The (planar) symmetric groups $\mathfrak{S}_n, \mathfrak{S}_n$ are groups ⇒ Boring cells

Example (cells of \mathcal{T}_3)

Example (cells of \mathcal{T}_3)

Theorem (folklore)

J-cells of \mathcal{T}_n are given and ordered by

All J-cells contain idempotents

L-cells correspond to fixed bottom ($\{n_\lambda\}$ many),

R-cells to fixed top ($\{n\}$ many)

$H(e) \sim = \mathfrak{S}_\lambda$ for $\lambda = \# through strands

Example (\mathcal{T}_5 via GAP)

Examples ((planar) partition monoid $\mathfrak{pPa}_4, \mathfrak{Pa}_4$ via GAP)

Examples (Motzkin + rook Brauer monoid $\mathfrak{Mo}_4, \mathfrak{RoBr}_4$ via GAP)

Examples (Temperley–Lieb + Brauer monoid $\mathfrak{TL}_4, \mathfrak{Br}_4$ via GAP)

Examples ((planar) rook monoid $\mathfrak{pRo}_3, \mathfrak{Ro}_3$ by hand)

Cell theory for algebras

Representation theory of monoids
Examples (Motzkin + rook Brauer monoid $\text{Mo}_4, \text{RoBr}_4$ via GAP)
Cells of some diagram monoids

More examples (details on the exercise sheets)

Planar (left) and symmetric (right) diagram monoids, e.g.

The (planar) symmetric groups pS_n, S_n are groups \Rightarrow

Examples (cells of T_3, idempotent cells colored)

Theorem (folklore)

J-cells of T_n are given and ordered by through strands

All J-cells contain idempotents

L-cells correspond to fixed bottom (many),

R-cells to fixed top (many)

$H(e) \sim = S_\lambda$ for $\lambda = # through strands

Examples (via GAP)

Examples (Motzkin + rook Brauer monoid Mo_4, $RoBr_4$ via GAP)

Examples (Temperley–Lieb + Brauer monoid TL_4, Br_4 via GAP)

Examples (planar) rook monoid pRo_3, Ro_3 by hand

Cell theory for algebras

Representation theory of monoids

August 2022 4 / 7
Cells of some diagram monoids

More examples (details on the exercise sheets)

Examples ((planar) rook monoid pR_{o3}, R_{o3} by hand)

The (planar) symmetric groups pS_n, S_n are groups ⇒ Boring cells
The simple reps of monoids

\[\phi: S \to \text{GL}(V) \]
\(S \)-representation on a \(\mathbb{K} \)-vector space \(V \), \(S \) is some monoid

- A \(\mathbb{K} \)-linear subspace \(W \subset V \) is \(S \)-invariant if \(S \cdot W \subset W \) \(\text{Substructure} \)
- \(V \neq 0 \) is called simple if \(0, V \) are the only \(S \)-invariant subspaces \(\text{Elements} \)
- Careful with different names in the literature: \(S \)-invariant \(\iff \) subrepresentation, simple \(\iff \) irreducible
- A crucial goal of representation theory

Find the periodic table of simple \(S \)-representations

<table>
<thead>
<tr>
<th>Chemistry</th>
<th>Group theory</th>
<th>Rep theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matter</td>
<td>Groups</td>
<td>Reps</td>
</tr>
<tr>
<td>Elements</td>
<td>Simple groups</td>
<td>Simple reps</td>
</tr>
<tr>
<td>Simpler substances</td>
<td>Jordan–Hölder theorem</td>
<td>Jordan–Hölder theorem</td>
</tr>
<tr>
<td>Periodic table</td>
<td>Classification of simple groups</td>
<td>Classification of simple reps</td>
</tr>
</tbody>
</table>
The simple reps of monoids

φ: S → GL(V) S-representation on a K-vector space V, S is some monoid

- A K-linear subspace W ⊂ V is S-invariant if S W ⊂ W
- V ≠ 0 is called simple if 0, V are the only S-invariant subspaces
- Careful with different names in the literature: S-invariant ↔ subrepresentation, simple ↔ irreducible
- A crucial goal of representation theory

Find the periodic table of simple S-representations

<table>
<thead>
<tr>
<th>Chemistry</th>
<th>Group theory</th>
<th>Rep theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matter</td>
<td>Groups</td>
<td>Reps</td>
</tr>
<tr>
<td>Elements</td>
<td>Simple groups</td>
<td>Simple reps</td>
</tr>
<tr>
<td>Simpler substances</td>
<td>Jordan–Hölder theorem</td>
<td>Jordan–Hölder theorem</td>
</tr>
<tr>
<td>Periodic table</td>
<td>Classification of simple groups</td>
<td>Classification of simple reps</td>
</tr>
</tbody>
</table>
The simple reps of monoids

\[\phi: S \to \text{GL}(V) \] is an \(S \)-representation on a \(K \)-vector space \(V \), \(S \) is some monoid.

- A \(K \)-linear subspace \(W \subset V \) is \(S \)-invariant if \(S \cdot W \subset W \).
- \(V \not= 0 \) is called simple if \(0, V \) are the only \(S \)-invariant subspaces.

Careful: \(S \)-invariant \(\iff \) subrepresentation, simple \(\iff \) irreducible.

A crucial goal of representation theory: Find the periodic table of simple \(S \)-representations.

- Frobenius \(\sim 1895++ \) and others
- For groups and \(K = \mathbb{C} \) rep theory is really satisfying.

What about monoids?

Me: Probably not much better than general algebra rep theory...
Jeez, was I wrong...

Find the periodic table of simple \(S \)-representations

<table>
<thead>
<tr>
<th>Chemistry</th>
<th>Group theory</th>
<th>Rep theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matter</td>
<td>Groups</td>
<td>Reps</td>
</tr>
<tr>
<td>Elements</td>
<td>Simple groups</td>
<td>Simple reps</td>
</tr>
<tr>
<td>Simpler substances</td>
<td>Jordan–Hölder theorem</td>
<td>Jordan–Hölder theorem</td>
</tr>
<tr>
<td>Periodic table</td>
<td>Classification of simple groups</td>
<td>Classification of simple reps</td>
</tr>
</tbody>
</table>
The simple reps of monoids

\[\phi: S \rightarrow \text{GL}(V) \] S-representation on a \(K \)-vector space \(V \), \(S \) is some monoid

- A \(K \)-linear subspace \(W \subset V \) is \(S \)-invariant if \(S \cdot W \subset W \)

Substructure

- \(V \neq 0 \) is called simple if 0, \(V \) are the only \(S \)-invariant subspaces

Elements

- Careful with different names in the literature: \(S \)-invariant \(\leftrightarrow \) subrepresentation, simple \(\leftrightarrow \) irreducible

A crucial goal of representation theory

Find the periodic table of simple \(S \)-representations

Frobenius \(\sim 1895++ \) and others

For groups and \(K = \mathbb{C} \) rep theory is really satisfying

What about monoids?

Me: Probably not much better than general algebra rep theory...

Jeez, was I wrong...

Clifford, Munn, Ponizovskyi \(\sim 1940++ \) and others

MATRIX REPRESENTATIONS OF COMPLETELY SIMPLE SEMIGROUPS. 1942

By A. H. Clifford.

ON SEMIGROUP ALGEBRAS

By W. D. Munn

Received 21 July 1954

О матричных представлениях ассоциативных систем* 1956

И. С. Понизовский (Кемерово)

The rep theory of monoids is much better than expected!
The simple reps of monoids

Clifford, Munn, Ponizovskii \(\sim 1940 \) \(\uparrow \) \(H \)-reduction

There is a one-to-one correspondence

\[
\begin{align*}
\left\{ \text{simples with apex } J(e) \right\} & \overset{\text{one-to-one}}{\leftrightarrow} \left\{ \text{simples of (any) } H(e) \subset J(e) \right\} \\
\end{align*}
\]

Reps of monoids are controlled by \(H(e) \)-cells

- Each simple has a unique maximal \(J(e) \) whose \(H(e) \) does not kill it \(\text{Apex} \)
- In other words (smod means the category of simples):

\[
S\text{-smod}_{J(e)} \cong H(e)\text{-smod}
\]
There is a one-to-one correspondence\n\[
\{ \text{simpleres of (any)} \ H(e) \subset J(e) \}\n\longleftrightarrow \\{ \text{simpleres of } J(e) \}\n\]

Reps of monoids are controlled by \(H(e) \)-cells

Each simple has a unique maximal \(J(e) \) whose \(H(e) \) does not kill it

Apex

In other words (\text{smod} means the category of simples):

\[
S-\text{smod} J(e) \cong H(e)-\text{smod}
\]

Example (groups)

Groups have only one cell – the group itself

\(H(e) \)-reduction is trivial for groups

Example (cells of \(C_3 \times 2 \), idempotent cells colored)

Three simple reps over \(C_3 \times 2 \):

one for \(J_b \) and two for \(J_t \)

Example (cells of \(T_3 \), idempotent cells colored)

Six simple reps over \(C_3 \times 2 \):

three for \(J_b \), two for \(J_m \) and one for \(J_t \)

Example (cells of \(C_3 \times 2 \), idempotent cells colored)

Trivial rep of \(1 \) induces to \(C_3 \times 2 \) and has apex \(J_b \)

Trivial rep of \(\mathbb{Z}/2\mathbb{Z} \) induces to \(C_3 \times 2 \) and has apex \(J_t \)

Nothing acts by zero

Example (no specific monoid)

Five apexes: bottom cell, big cell, 2x2 cell, 3x3 cell, top cell

Simples for the 2x2 cell are acted on as zero by elements from 3x3 cell, top cell

\(H(e) \)-reduction

It is sufficient to pick one \(H(e) \) per block

\(J \)-reduction = existence of apexes

Basically, there is a monoid \(S_J \) associated to fish with

Simples of \(S_J \) \(\xrightarrow{1:1} \) simples of \(S \) with apex fish

“Apex = fish” means that the red bubble does not annihilate your rep and the rest does
The simple reps of monoids

Clifford, Munn, Ponizovskiǐ \(\sim 1940\)++

There is a one-to-one correspondence

\[
\left\{ \text{simples with apex } \mathcal{J}(e) \right\} \underset{\text{one-to-one}}{\longleftrightarrow} \left\{ \text{simples of } \mathcal{H}(e) \subset \mathcal{J}(e) \right\}
\]

Example (groups)

Groups have only one cell – the group itself

\(H\)-reduction is trivial for groups

- Each simple has a unique maximal \(\mathcal{J}(e)\) whose \(\mathcal{H}(e)\) does not kill it

- In other words (\(\text{smod}\) means the category of simples):

\[
S\text{-smod}_{\mathcal{J}(e)} \cong \mathcal{H}(e)\text{-smod}
\]
The simple reps of monoids
Clifford, Munn, Ponizovski
\sim 1940

There is a one-to-one correspondence
\{ simples \} \leftrightarrow \{ simples of (any) \}
\mathcal{J}(e) \subset \mathcal{J}(e)

Reps of monoids are controlled by \mathcal{H}(e)-cells

- Each simple has a unique maximal \mathcal{J}(e) whose \mathcal{H}(e) does not kill it
- In other words (smod means the category of simples):

$$S\text{-smod}_{\mathcal{J}(e)} \simeq \mathcal{H}(e)\text{-smod}$$
The simple reps of monoids

Clifford, Munn, Ponizovski \(\sim \) 1940+

There is a one-to-one correspondence

\[
\{ \text{simples with apex } J(e) \} \quad \longleftrightarrow \quad \{ \text{simples of (any) } \mathcal{H}(e) \subset J(e) \}\]

Reps of monoids are controlled by \(\mathcal{H}(e) \)-cells

▶ Each simple has a unique maximal \(J(e) \) whose \(\mathcal{H}(e) \) does not kill it

Apex

▶ In other words (smod means the category of simples):

\[
S\text{-smod } J(e) \cong \mathcal{H}(e)\text{-smod}
\]

Frobenius \(\sim \) 1895+ and others

For groups and \(K = C \) rep theory is really satisfying

What about monoids?

Me: Probably not much better than general algebra rep theory...

Jeez, was I wrong...

Clifford, Munn, Ponizovski \(\sim \) 1940+ and others

The rep theory of monoids is much better than expected!

Example (anti apex predator)

"Apex = fish" means that the red bubble does not annihilate your rep and the rest does

J-reduction = existence of apexes

Basically, there is a monoid \(S \) associated to fish with

\[
\text{Simples of } S \cong \text{Simples of } S \text{ with apex fish}
\]

Example (groups)

Groups have only one cell – the group itself

H-reduction is trivial for groups

Example (cells of \(C_{3,2} \), idempotent cells colored)

Three simple reps over \(\mathbb{C} \):

one for \(J_b \) and two for \(J_t \)

Example (cells of \(T_{3,2} \), idempotent cells colored)

Six simple reps over \(\mathbb{C} \):

three for \(J_b \), two for \(J_m \) and one for \(J_t \)
The simple reps of monoids

Clifford, Munn, Ponizovskii ~1940++

There is a one-to-one correspondence

\[
\{ \text{simples with apex } J(e) \} \leftrightarrow \{ \text{simples of (any) } H(e) \}
\]

Reps of monoids are controlled by \(H(e) \)-cells

▶ Each simple has a unique maximal \(J(e) \) whose \(H(e) \) does not kill it

▶ In other words (\(\text{smod} \) means the category of simples):

\[
S\text{-smod} J(e) \cong H(e)\text{-smod}
\]

Frobenius \(\sim \) 1895++ and others

For groups and \(K = C \) rep theory is really satisfying

What about monoids?

Me: Probably not much better than general algebra rep theory...

Jeez, was I wrong...

Clifford, Munn, Ponizovskii \(\sim \) 1940++ and others

The rep theory of monoids is much better than expected!

Example (anti apex predator)

“Apex = fish” means that the red bubble does not annihilate your rep and the rest does

\(J \)-reduction = existence of apexes

Basically, there is a monoid \(S \) associated to fish with

\[
\{ \text{simples of } S \} \leftrightarrow \{ \text{simples of } S \text{ with apex fish} \}
\]

Example (groups)

Groups have only one cell – the group itself

\(H \)-reduction is trivial for groups

Example (cells of \(C_3, 2 \), idempotent cells colored)

Three simple reps over \(C_3, 2 \):

- one for \(J_b \)
- two for \(J_t \)

Example (cells of \(T_3 \), idempotent cells colored)

Six simple reps over \(C_3, 2 \):

- three for \(J_b \)
- two for \(J_t \)
- one for \(J_t \)

Trivial rep of \(1 \) induces to \(C_3, 2 \) and has apex \(J_b \)

\(J_a, J_{a^2}, J_t \) act by zero

Trivial rep of \(\mathbb{Z}/2\mathbb{Z} \) induces to \(C_3, 2 \) and has apex \(J_t \)

Nothing acts by zero

Cell theory for algebras

Representation theory of monoids

August 2022 5 / 7
There is a one-to-one correspondence:
\[
\{\text{simples with apex } J(e) \} \leftrightarrow \{\text{simples of } (H \cap e) \subset J(e) \}\]

Reps of monoids are controlled by \(H(e)\)-cells.
Each simple has a unique maximal \(J(e)\) whose \(H(e)\) does not kill it.

In other words (\(\text{smod}\) means the category of simples):
\[
\text{smod } J(e) \cong \text{smod } H(e)
\]

What about monoids?
Me: Probably not much better than general algebra rep theory...
Jeez, was I wrong...
Clifford, Munn, Ponizovski ∼ 1940+ + and others

The rep theory of monoids is much better than expected!

Example (anti apex predator)
"Apex = fish" means that the red bubble does not annihilate your rep and the rest does.
\(J\)-reduction = existence of apexes.
Basically, there is a monoid \(S\) associated to fish with:
\[
\{\text{simples of } S\} \leftrightarrow \{\text{simples of } S \text{ with apex fish} \}.
\]

Example (groups)
Groups have only one cell – the group itself.
\(H\)-reduction is trivial for groups.

Example (cells of \(C_3, 2\), idempotent cells colored)
Three simple reps over \(C_3\):
one for \(J_b\) and two for \(J_t\).

Example (cells of \(T_3\), idempotent cells colored)
Six simple reps over \(C_3\):
three for \(J_b\), two for \(J_m\) and one for \(J_t\).

Trivial rep of \(1\) induces to \(C_3, 2\) and has apex \(J_b\), \(J_a\), \(J_a^2\), \(J_t\) act by zero.
Trivial rep of \(\mathbb{Z}/2\mathbb{Z}\) induces to \(C_3, 2\) and has apex \(J_t\), nothing acts by zero.

Example (no specific monoid)
Five apexes: bottom cell, big cell, 2x2 cell, 3x3 cell, top cell.
Simples for the 2x2 cell are acted on as zero by elements from 3x3 cell, top cell.

\(H\)-reduction It is sufficient to pick one \(H(e)\) per block.
The simple reps of monoids

Clifford, Munn, Ponizovskii ~1940++ \(H\)-reduction

► There are **cell representations**

Cells can be considered S-representations, called cell representations or Schützenberger representations, up to higher order terms:

Lemma 3B.1. Each left cell \(L\) of \(S\) gives rise to a left \(S\)-representation \(\Delta_L = \mathbb{K}L\) by

\[
\delta \cdot l \in \Delta_L = \begin{cases}
al & \text{if } a \in L, \\
0 & \text{else.}
\end{cases}
\]

Similarly, right cells give right representations \(\Delta_R\) and \(J\)-cells give birepresentations (often called bimodules). We have \(\dim_{\mathbb{K}}(\Delta_L) = |L|\) and \(\dim_{\mathbb{K}}(\Delta_R) = |R|\).

► There is a sandwich matrix which takes values in the \(H\)-cells

► There is an **isomorphism of rings**

\[
[S\text{-mod}] \cong \prod_{J(e)} [H(e)\text{-mod}]
\]

► \(S\) is semisimple if and only if all \(J\)-cells are idempotent and square, all \(H(e)\) are semisimple + a condition on cell representations

► Many more...
The simple reps of some diagram monoids

The transformation monoid T_3 has three apexes, five left cell modules $\Delta(\lambda, i)$, seven right cell modules $\nabla(\lambda, i)$.

Over \mathbb{C} we find $3+2+1$ simple modules.
The simple reps of some diagram monoids

The transformation monoid T_3 has three apexes, five left cell modules $\Delta(\lambda, i)$, seven right cell modules $\nabla(\lambda, i)$.

Over \mathbb{C} we find $3 + 2 + 1$ simple modules.
The simple reps of some diagram monoids

The transformation monoid T_3 has three apexes, five left cell modules $\Delta(\lambda, i)$, seven right cell modules $\nabla(\lambda, i)$.

Over \mathbb{C} we find $3 + 2 + 1$ simple modules.

Summary: H-reduction reduces monoid rep theory to group rep theory.
The simple reps of some diagram monoids

The transformation monoid \(T_3 \) has three apexes, five left cell modules \(\Delta(\lambda, i) \), seven right cell modules \(\nabla(\lambda, i) \).

Over \(\mathbb{C} \) we find 3 + 2 + 1 simple modules.

The bottom cell

\(\Delta(b) \) is the regular rep of \(S_3 \) inflated to \(T_3 \):

\[
\begin{align*}
\Delta(b) & \in J_b \quad \text{but} \quad \Delta(b) \notin J_b
\end{align*}
\]

The middle cell, left column (the others are similar)

\(\Delta(m, 1) \) is the regular rep of \(S_2 \) induced to \(T_3 \):

\[
\begin{align*}
\Delta(m, 1) & \in J_b \quad \text{and} \quad \Delta(m, 1) \in J_b
\end{align*}
\]

\[
\begin{align*}
\Delta(m, 1) & \notin J_b
\end{align*}
\]

The top cell

\(\Delta(t) \) is the regular rep of \(S_1 \) induced to \(T_3 \)

Theorem (folklore)

The simple \(T_n \)-reps are \(L(\lambda, K) \) for \(K \) a simple \(S_\lambda \)-rep.

Unless \(K \) is the sign \(S_\lambda \)-rep the induction to the cell is simple.

For \(K = \text{sign} \) the \(L(\lambda, K) \) are of dimension \((n - 1)\lambda - 1)\).

Summary

H-reduction reduces monoid rep theory to group rep theory.
The simple reps of some diagram monoids

The bottom cell over \(\mathbb{C} \)

\(\Delta(b) \) contributes three simple of \(S_3 \) that inflate to \(T_3 \)
dims are 1, 2, 1 as \(T_3 \) reps

The transformation monoid \(T_3 \) has three apexes, five left cell modules \(\Delta(\lambda, i) \),
seven right cell modules \(\nabla(\lambda, i) \)

Over \(\mathbb{C} \) we find **3+2+1** simple modules

Theorem (folklore)
The simple \(T_n \)-reps are \(L(\lambda, K) \) for \(K \) a simple \(S_\lambda \)-rep
Unless \(K \) is the sign \(S_\lambda \)-rep the induction to the cell is simple
For \(K = \text{sign} \) the \(L(\lambda, K) \) are of dimension \((n-1)\lambda - 1 \)

Summary
\(H \)-reduction reduces monoid rep theory to group rep theory
The simple reps of some diagram monoids

The bottom cell over \mathbb{C}

$\Delta(b)$ contributes three simple of S_3 that inflate to T_3

dims are 1, 2, 1 as T_3 reps

$\mathcal{H}(e) \cong S_1$

The middle cell over \mathbb{C}

$\Delta(b, 1)$ contributes two simple of S_2 that induce to T_3 (one of them decomposes), e.g.

is an S_2-invariant vector + track its image \leadsto simple
dims are 3, 2 as T_3 reps

- The transformation monoid T_3 has three apexes, five left cell modules $\Delta(\lambda, i)$, seven right cell modules $\nabla(\lambda, i)$
- Over \mathbb{C} we find $3+2+1$ simple modules
The simple reps of some diagram monoids

The bottom cell over \mathbb{C}

$\Delta(b)$ contributes three simple of S_3 that inflate to T_3
dims are 1, 2, 1 as T_3 reps

The middle cell over \mathbb{C}

$\Delta(b, 1)$ contributes two simple of S_2 that induce to T_3 (one of them decomposes), e.g.

\[
+ \xrightarrow{\sim} \text{simple}
\]

dims are 3, 2 as T_3 reps

The top cell

$\Delta(t)$ contributes the trivial T_3 module
dim is 1 as T_3 rep
The transformation monoid T_3 has three apexes, five left cell modules $\Delta(\lambda, i)$, seven right cell modules $\nabla(\lambda, i)$.

Over \mathbb{C} we find $3+2+1$ simple modules.
The simple reps of some diagram monoids

The transformation monoid T_3 has three apexes, five left cell modules $\Delta(\lambda, i)$, seven right cell modules $\nabla(\lambda, i)$.

Over \mathbb{C} we find $3+2+1$ simple modules.

Sandwich matrices for the middle cell

$S_{m, \text{triv}} = \begin{pmatrix}
\text{triv} & \text{triv} & \text{triv} & \text{triv} & 0 & 0 \\
\text{triv} & \text{triv} & \text{triv} & \text{triv} & 0 & 0 \\
\text{triv} & \text{triv} & 0 & 0 & \text{triv} & \text{triv} \\
\text{triv} & \text{triv} & 0 & 0 & \text{triv} & \text{triv} \\
0 & 0 & \text{triv} & \text{triv} & \text{triv} & \text{triv} \\
0 & 0 & \text{triv} & \text{triv} & \text{triv} & \text{triv}
\end{pmatrix}$

$S_{m, \text{sign}} = \begin{pmatrix}
\text{sign} & -\text{sign} & \text{sign} & -\text{sign} & 0 & 0 \\
-\text{sign} & \text{sign} & -\text{sign} & \text{sign} & 0 & 0 \\
\text{sign} & -\text{sign} & 0 & 0 & -\text{sign} & \text{sign} \\
-\text{sign} & \text{sign} & 0 & 0 & \text{sign} & -\text{sign} \\
0 & 0 & -\text{sign} & \text{sign} & -\text{sign} & \text{sign} \\
0 & 0 & \text{sign} & -\text{sign} & \text{sign} & -\text{sign}
\end{pmatrix}$

Ranks are 3 and 2 = dims of simples

Theorem (folklore)

The simple T_n-reps are $L(\lambda, K)$ for K a simple S_λ-rep

Unless K is the sign S_λ-rep the induction to the cell is simple

For $K = \text{sign}$ the $L(\lambda, K)$ are of dimension $\binom{n-1}{\lambda-1}$
The simple reps of some diagram monoids

- The Brauer monoid Br_3 has two apexes, four left/right cell modules
- Over \mathbb{C} we find $3 + 1$ simple modules
- Other diagram algebras are similar; more on the exercise sheets
The simple reps of some diagram monoids

The Brauer monoid Br_3 has two apexes, four left/right cell modules

Over \mathbb{C} we find $3 + 1$ simple modules

Other diagram algebras are similar; more on the exercise sheets

The bottom cell $\Delta(b)$ is the regular rep of S_3 inflated to T_3:

$$b \in J \quad \text{but} \quad b \notin J$$

The middle cell, left column (the others are similar)

$\Delta(m, 1)$ is the regular rep of S_2 induced to T_3:

$$= \in J \quad \text{and} \quad = \notin J$$

The top cell $\Delta(t)$ is the regular rep of S_1 induced to T_3:

The bottom cell over \mathbb{C} $\Delta(b)$ contributes three simple of S_3 that inflate to T_3;

dims are 1, 2, 1 as T_3 reps

The middle cell over \mathbb{C} $\Delta(b, 1)$ contributes two simple of S_2 that induce to T_3 (one of them decomposes), e.g.

$+$ is an S_2-invariant vector \Rightarrow simple
dims are 3, 2 as T_3 reps

The top cell $\Delta(t)$ contributes the trivial T_3 module

dim is 1 as T_3 rep

Sandwich matrices for the middle cell

Ranks are 3 and 2 = dims of simples

Theorem (folklore)

The simple T_n-reps are $L(\lambda, K)$ for K a simple S_λ-rep

Unless K is the sign S_λ-rep the induction to the cell is simple

For $K = \text{sign}$ the $L(\lambda, K)$ are of dimension

$$\left(n - 1 \right)$$

Summary

H-reduction reduces monoid rep theory to group rep theory

Clifford, Munn, Ponizovskii ~ 1940++ (H-reduction)

There is a one-to-one correspondence

$$\left\{ \text{simples with apex } \mathcal{J}(e) \right\} \xleftrightarrow{\text{one-to-one}} \left\{ \text{simples of (any) } \mathcal{H}(e) \subseteq \mathcal{J}(e) \right\}$$

Reps of monoids are controlled by $\mathcal{H}(e)$ cells
There is still much to do...
Where do we want to go?

- Green, Clifford, Munn, Ponizovskii –1940++ + many others
- Goal: Find some categorical analog
- Appear in interactions, e.g.
 - The (planar) symmetric groups

The theory of monoids (Green –1950++)

- Monoids appear naturally in categorification
- Cell theory for algebras
- The theory of monoids is not clear that there is a satisfying (rep) theory of monoids
-

The simple reps of monoids

Clifford, Munn, Ponizovskii –1940++

- There is a one-to-one correspondence
- Simple reps of any $J(e)$:
 \[
 \begin{align*}
 & \text{appl \ } J(e) \\
 \quad \text{one-to-one} \quad & \text{simples of any } J(e) \\
 \quad \text{of any } J(e) \quad & \text{by control by } H(e) \subset J(e)
 \end{align*}
 \]

- Each simple has a unique maximal $J(e)$ whose $H(e)$ does not kill it
- In other words (mod) means the category of simples:
 \[S\text{-mod}_{\text{mod}} \cong H(e)\text{-mod} \]

The rep theory of monoids is really satisfying

- Finite groups are kind of random...
- Three simple reps over \mathbb{C}, idempotent cells colored
- \[\begin{align*}
 \{ & J_1, J_2, J_3 \} \\
 \{ & J_1, J_2, J_3 \} \\
 \{ & J_1, J_2, J_3 \}
 \end{align*} \]
- Nothing acts by zero

The rep theory of monoids is really satisfying

- Many examples:
 - Temperley-Lieb + Brauer monoid
 - Motzkin + rook Brauer monoid
 - (planar) rook monoid
 - Cyclic group
 - Symmetric group
 - Transformation monoid

Example (anti apex predator)

- Apex \subseteq fish
- Basically, there is a monoid $S_+ \cong J$ associated to fish with simples of S_+

Thanks for your attention!