Exercises 1

1. Two trivial representations!?

Let S be a finite monoid.

- a) Show that S has a unique bottom and top J-cell.
- b) Show that both of these *J*-cells are idempotent.
- c) Let \mathbb{K} be some field and $G \subset S$ be the subgroup of all invertible elements. Then we define trivial representations (yes, a monoid has two trivial representations):

$$M_b: S \to \mathbb{K}, s \longmapsto \begin{cases} 1 & \text{if } s \in G, \\ 0 & \text{else,} \end{cases} \quad M_t: S \to \mathbb{K}, s \longmapsto 1.$$

Identify the apexes of the simple S-modules M_b and M_t .

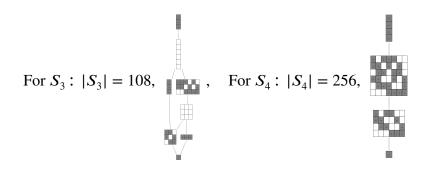
2. Endomorphisms of graphs

Let Γ be a graph. The set $S = \text{End}(\Gamma)$ of graph endomorphisms is a monoid via composition.

a) Compute the cell structure and classify simple modules for $S = \text{End}(\Gamma)$ and $T = \text{End}(\Gamma')$ for the following two graphs.



- b) If you have done (a), then you should have seen two familiar monoids. Can you guess the general picture how they arise as graph monoids?
- c) (*) Here are a few more graph monoids $S_i = \text{End}(\Gamma_i)$ and their cell pictures. I do not know the general pattern; maybe someone has an idea.



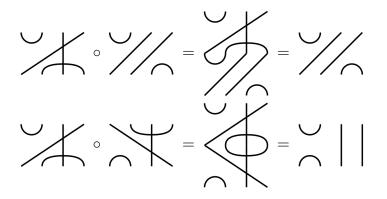
3. Diagram monoids and *H*-reduction

The Brauer monoid Br_n on *n* strands is the monoid consisting of all perfect matchings of $\{1, ..., n\}$ with $\{-1, ..., -n\}$, which we identify with points in the strip $\mathbb{R} \times [0, 1]$, with *n* points for $\{1, ..., n\}$ at the bottom and *n* points for $\{-1, ..., -n\}$ at the top line of the strip. For example

$$\bigcup_{\substack{\longleftarrow}} \longleftrightarrow \{\{1, -4\}, \{2, 4\}, \{3, -3\}, \{-1, -2\}\}$$

Two diagrams represent the same element if and only if they represent the same perfect matching.

Stacking and removing of internal components defines a multiplication \circ on Br_n , e.g.



(Associativity of \circ is not immediate, but also not hard to see.)

- a) Compute the L, R and J-cells of Br_3 .
- b) Compute the idempotent *J*-cells.
- c) Compute the $\mathcal{H}(e)$ -cells.
- d) Parameterize the simple Br_3 -modules.
- e) Guess the picture for general *n* from the one for Br_3 .

4. Binomial coefficients

Let \mathbb{K} be an arbitrary field. Let $S = pRo_n$ be the planar rook monoid (the monoid of all planar partitions of $\{1, ..., n\} \cup \{-1, ..., -n\}$ with at most two parts and no connections within $\{1, ..., n\}$ or $\{-1, ..., -n\}$; see also the remarks).

- a) Show that *S* is semisimple.
- b) Compute the dimensions of the simple S-modules.
 - There might be typos on the exercise sheets, my bad. Be prepared.
 - Star exercises are a bit trickier; prime exercises use notions I haven't explained.