Exercises 1

1. Two trivial representations!?

Let S be a finite monoid.
a) Show that S has a unique bottom and top J-cell.
b) Show that both of these J-cells are idempotent.
c) Let \mathbb{K} be some field and $G \subset S$ be the subgroup of all invertible elements. Then we define trivial representations (yes, a monoid has two trivial representations):

$$
M_{b}: S \rightarrow \mathbb{K}, s \longmapsto\left\{\begin{array}{ll}
1 & \text { if } s \in G, \\
0 & \text { else },
\end{array} \quad M_{t}: S \rightarrow \mathbb{K}, s \longmapsto 1 .\right.
$$

Identify the apexes of the simple S-modules M_{b} and M_{t}.

2. Endomorphisms of graphs

Let Γ be a graph. The set $S=\operatorname{End}(\Gamma)$ of graph endomorphisms is a monoid via composition.
a) Compute the cell structure and classify simple modules for $S=\operatorname{End}(\Gamma)$ and $T=\operatorname{End}\left(\Gamma^{\prime}\right)$ for the following two graphs.

b) If you have done (a), then you should have seen two familiar monoids. Can you guess the general picture how they arise as graph monoids?
c) $\left.{ }^{*}\right)$ Here are a few more graph monoids $S_{i}=\operatorname{End}\left(\Gamma_{i}\right)$ and their cell pictures. I do not know the general pattern; maybe someone has an idea.

For $S_{0}:\left|S_{0}\right|=24, \quad * \quad, \quad$ For $S_{1}:\left|S_{1}\right|=34, \quad \mid \quad$, For $S_{2}:\left|S_{2}\right|=56$,

3. Diagram monoids and H-reduction

The Brauer monoid $B r_{n}$ on n strands is the monoid consisting of all perfect matchings of $\{1, \ldots, n\}$ with $\{-1, \ldots,-n\}$, which we identify with points in the strip $\mathbb{R} \times[0,1]$, with n points for $\{1, \ldots, n\}$ at the bottom and n points for $\{-1, \ldots,-n\}$ at the top line of the strip. For example

Two diagrams represent the same element if and only if they represent the same perfect matching.
Stacking and removing of internal components defines a multiplication o on $B r_{n}$, e.g.

(Associativity of \circ is not immediate, but also not hard to see.)
a) Compute the L, R and J-cells of $B r_{3}$.
b) Compute the idempotent J-cells.
c) Compute the $\mathcal{H}(e)$-cells.
d) Parameterize the simple Br_{3}-modules.
e) Guess the picture for general n from the one for $B r_{3}$.

4. Binomial coefficients

Let \mathbb{K} be an arbitrary field. Let $S=p R o_{n}$ be the planar rook monoid (the monoid of all planar partitions of $\{1, \ldots, n\} \cup\{-1, \ldots,-n\}$ with at most two parts and no connections within $\{1, \ldots, n\}$ or $\{-1, \ldots,-n\}$; see also the remarks).
a) Show that S is semisimple.
b) Compute the dimensions of the simple S-modules.

- There might be typos on the exercise sheets, my bad. Be prepared.
- Star exercises are a bit trickier; prime exercises use notions I haven't explained.

