Exercises - hints and remarks 2

SageMath online calculator https://sagecell.sagemath.org/ with the relevant material summarized on
https://doc.sagemath.org/html/en/thematic_tutorials/lie/weyl_character_ring.html
Magma online calculator http://magma.maths.usyd.edu.au/calc/

Hints for Exercise 2

The one dimensional representations are easy to construct. For the two dimensional representations use

$$
1 \longmapsto\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad 2 \longmapsto\left(\begin{array}{cc}
\cos (2 \pi k / n) & -\sin (2 \pi k / n) \\
-\sin (2 \pi k / n) & -\cos (2 \pi k / n)
\end{array}\right) .
$$

Via easy calculations (seriously: these are 2×2 matrices!) one verifies: The matrices satisfy the relations of D_{n} and have no common eigenvector, so the associated representations are simple. They are also nonconjugate for $k \in\left\{1, \ldots,\left\lfloor\frac{n-1}{2}\right\rfloor\right\}$. Finally, the sum of the squares of their dimensions is $2 n$, so we are done.

In general, $D_{n} \cong \mathbb{Z} / n \mathbb{Z} \rtimes \mathbb{Z} / 2 \mathbb{Z}$, and one can use 12 and 1 as the generators of the two groups in this semidirect product. Now induce from those two groups and hope for the best.

Hints for Exercise 3

Unless the characteristic of \mathbb{K} is two, the picture should look like

$$
\begin{array}{c|c|cc}
\mathcal{J}_{m} & b_{1}, b_{121}, \ldots & b_{12}, b_{1212}, \ldots & \\
\mathcal{S}_{21}, b_{2121}, \ldots & b_{2}, b_{212}, \ldots & S_{\mathcal{H}} \cong \mathbb{K}[\mathbb{Z}] \\
\mathcal{J}_{\emptyset} & b_{\emptyset} & S_{\mathcal{H}} \cong \mathbb{K}
\end{array}
$$

The Grothendieck algebra (abelian or additive, that does not make a difference) of $\mathrm{SO}_{3}(\mathbb{C})$ can be computed via the SageMath online calculator, see above, with the code

```
A=WeylCharacterRing(A1,style=coroots);
k=5;
j=4;
A}(2*\textrm{k},0)*\textrm{A}(2*\textrm{j},0
```

You need to vary k and j, and identify b_{121} with $A(2)=A(2,0)$ up to scaling. Neither b_{121} nor $A(2)$ satisfy any polynomial relation, but both generate the respective algebras.

Hints for Exercise 4

Unless the characteristic of \mathbb{K} is nonzero and small, the picture for n being odd should look like

That the diagonal $S_{\mathcal{H}}$ have pseudo idempotents is clear by $b_{1} b_{1}=2 b_{1}$. For the off-diagonal elements let us take $n=7$ and $b=b_{12}-b_{1212}+b_{121212}$. Then the multiplication table

	b_{12}	$-b_{1212}$	b_{121212}
b_{12}	$2 b_{12}+b_{1212}$	$-b_{12}-2 b_{1212}-b_{121212}$	$b_{1212}+b_{121212}$
$-b_{1212}$	$-b_{12}-2 b_{1212}-b_{121212}$	$2 b_{12}+2 b_{1212}+b_{121212}$	$-b_{12}-b_{1212}$
b_{121212}	$b_{1212}+b_{121212}$	$-b_{12}-b_{1212}$	b_{12}

verifies that $b^{2}=b$. The general case is similar. (Note that b would be an infinite alternating sum for $n=\infty$, and that is why the off-diagonal $S_{\mathcal{H}}$ do not have pseudo idempotents in the infinite case.)

The isomorphism $S_{\mathcal{H}} \cong_{s} \mathbb{K}\left[\mathbb{Z} / \frac{n-1}{2} \mathbb{Z}\right]$ for nonsilly \mathbb{K} can be verified as follows. Let $U_{k}^{3}(X)$ be the (Chebyshev-like multiplication by quantum three) polynomial defined via $U_{0}^{3}(X)=1, U_{1}^{3}(X)=X$ and

$$
U_{k}^{3}(X)=(X-1) U_{k-1}^{3}(X)-U_{k-2}^{3}(X) .
$$

This polynomial is the defining polynomial for $\mathrm{SO}_{3}(\mathbb{C})$ in the sense that $U_{k}^{3}(X)$ corresponds to the highest weight summand in the tensor product $\left(X=\mathbb{C}^{3}\right)^{\otimes k}$. Here is some SageMath code:

```
A=WeylCharacterRing(A1,style=coroots);
gen=A(2,0);
k=7;
def U(n,x):
if n == 0:
return 1
elif n == 1:
return x
else:
return (x-1) * U(n-1,x) - U(n-2,x)
print(U(k,gen))
```

Now $U_{m}^{3}\left(b_{121}\right)=0$ for $m=\frac{n-1}{2}$, so $S_{\mathcal{H}} \cong_{s} \mathbb{K}[X] /\left(U_{m}^{3}(X)\right)$. Since $U_{m}^{3}(X)$ has distinct roots, we can then rescale $\mathbb{K}[X] /\left(U_{m}^{3}(X)\right)$ to $\mathbb{K}[X] /\left(X^{m}-1\right) \cong \mathbb{K}[\mathbb{Z} / m \mathbb{Z}]$.

That was the case of $\mathrm{SO}_{3}(\mathbb{C})$, so you need to argue why this implies the same for the KL basis of the finite dihedral group.

