Exercises 3

1. Twisting super vector spaces

Let $\mathscr{V} \mathrm{ec}_{\mathbb{Z} / 2 \mathbb{Z}}$ be the \mathbb{C}-linear monoidal category with objects given by the elements of $\mathbb{Z} / 2 \mathbb{Z}, \otimes$ on objects $=$ group multiplication and trivial hom spaces.

Let $\omega: \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \rightarrow \mathbb{C}^{*}$ be the 3-cocycle with $\omega(1,1,1)=-1$, and twist $\mathscr{V} \mathrm{ec}_{\mathbb{Z} / 2 \mathbb{Z}}^{1}=$ $\mathscr{V} \mathrm{ec}_{\mathbb{Z} / 2 \mathbb{Z}}$ on the associator α and unitors λ, ρ by

$$
\alpha_{i, j, k}=\omega(i, j, k) \mathrm{id}_{i j k}, \quad \lambda_{i}=\omega(1,1, i)^{-1} \mathrm{id}_{i}, \quad \rho_{i}=\omega(i, 1,1) \mathrm{id}_{i},
$$

and obtain $\mathscr{V} \mathrm{ec}_{\mathbb{Z} / 2 \mathbb{Z}}^{\omega}$.
a) Show that $\mathscr{V} \mathrm{ec}_{\mathbb{Z} / 2 \mathbb{Z}}^{\omega}$ is nonstrict and skeletal at the same time.
b) Show that the additive Grothendieck algebra []$_{\oplus}$ of the additive closure of $\mathscr{V} \mathrm{ec}_{\mathbb{Z} / 2 \mathbb{Z}}^{x}$ is $\left[\mathscr{V} \mathrm{ec}_{\mathbb{Z} / 2 \mathbb{Z}}^{x}\right]_{\oplus} \cong$ $\mathbb{Z}[\mathbb{Z} / 2 \mathbb{Z}]$, regardless of $x \in\{1, \omega\}$.
c) Show that $\mathscr{V} \mathrm{ec}_{\mathbb{Z} / 2 \mathbb{Z}}^{1}$ is not monoidally equivalent to $\mathscr{V} \mathrm{ec}_{\mathbb{Z} / 2 \mathbb{Z}}^{\omega}$.
d) (') Classify braiding on $\mathscr{V} \mathrm{ec}_{\mathbb{Z} / 2 \mathbb{Z}}^{x}$ for $x \in\{1, \omega\}$ (up to braided equivalence).

2. Jordan decomposition in prime characteristic

Let $G=\mathbb{Z} / p \mathbb{Z}$ for some prime p, and let $\mathbb{K}=\overline{\mathbb{F}}_{p}$.
a) Show that $\mathscr{R} \mathrm{ep}(\boldsymbol{G}, \mathbb{K})$ is a fiat monoidal category with one simple and p indecomposable objects.
b) Compute the cell structure of $\mathscr{R} \operatorname{ep}(G, \mathbb{K})$.

3. Taft and friends

For fixed $n \in \mathbb{Z}_{>1}$, let \mathscr{S} be a fiat monoidal category over \mathbb{C} with indecomposable objects $Z_{l, r}$ for $1 \leq l \leq n$ and $0 \leq r \leq n-1$, with r read modulo n. The objects $L_{r}=Z_{1, r}$ are simple and their projective covers are $P_{r}=Z_{n, r}$.

The monoidal structure is $M \otimes N \cong N \otimes M$ and

$$
\begin{aligned}
L_{r} \otimes L_{r^{\prime}} \cong L_{r+r^{\prime}}, \quad L_{r} \otimes Z_{l, r^{\prime}} \cong Z_{l, r+r^{\prime}}, \quad L_{r} \otimes P_{r^{\prime}} \cong P_{r+r^{\prime}}, \\
Z_{l, r} \otimes Z_{l l^{\prime}, r^{\prime}} \cong\left\{\begin{array}{cc}
\bigoplus_{i=1}^{\min \left(l, l^{\prime}\right)} Z_{l l-l^{\prime} \mid+2 i-1, r+r^{\prime}-i+\min \left(l, l^{\prime}\right)}, & \text { if } l+l^{\prime} \leq n, \\
\bigoplus_{i=1}^{n-\max \left(l, l^{\prime}\right)} Z_{l l-l^{\prime} \mid+2 i-1, r+r^{\prime}-i+\min \left(l, l^{\prime}\right)} & \text { if } l+l^{\prime}>n, \\
\oplus \bigoplus_{i=1}^{l+l^{\prime}-n} P_{r+r^{\prime}-i+1}, & \\
Z_{l, r} \otimes P_{r^{\prime}} \cong \bigoplus_{i=1}^{l} P_{r+r^{\prime}-i+l}, \quad P_{r} \otimes P_{r^{\prime}} \cong \bigoplus_{i=1}^{n} P_{r+r^{\prime}-i+n} .
\end{array}\right.
\end{aligned}
$$

Let us define a two-variable Chebyshev-type polynomial by $U_{0}(X, Y)=1, U_{1}(X, Y)=X$ and $U_{e+1}(X, Y)=X U_{e}(X, Y)-Y U_{e-1}(X, Y)$ for $e>0$. Let []$_{\text {exact }}$ denote the abelian and [_] $]_{\oplus}$ the additive Grothendieck algebra.
a) Compare \mathscr{S} with $\mathscr{R} \operatorname{ep}(\mathbb{Z} / n \mathbb{Z}, \mathbb{C})$ and $\mathscr{R} \mathrm{ep}\left(\mathbb{Z} / n \mathbb{Z}, \overline{\mathbb{F}_{n}}\right)$ (the latter assuming that n is prime).
b) Show that $[\mathscr{S}]_{\text {exact }} \cong \mathbb{Z}[Y] /\left(Y^{n}-1\right)$ but $[\mathscr{S}]_{\oplus} \cong \mathbb{Z}[X, Y] /\left(Y^{n}-1,(X-Y-1) U_{n-1}(X, Y)\right)$.
c) Compute the cell structure of \mathscr{S}.

4. More fun with dihedral groups $-\mathbb{N}$-representations

As on the previous exercise sheet, let \emptyset denote the unit and let $D_{n}=\left\langle 1,2 \mid 1^{2}=2^{2}=(12)^{n}=\emptyset\right\rangle$ be the dihedral group of the n gon.

We also allow $n=\infty$, and we consider the KL basis $\left\{b_{w} \mid w \in D_{n}\right\}$ as before. We think of 1 as being colored spinach and 2 as being colored tomato . Take any simple connected bipartite graph $\Gamma=(V, E)$ with spinach \underline{i} and tomato \bar{i} colored vertices such as

Define an \mathbb{N}-representation of D_{n} on $\mathbb{N} V$ by

$$
b_{1} \cdot \underline{i}=2 \cdot \underline{i}, \quad b_{1} \cdot \bar{i}=\sum_{\underline{j}-\bar{i} \underline{i}}, \quad b_{2} \cdot \bar{i}=2 \cdot \bar{i}, \quad b_{2} \cdot \underline{i}=\sum_{\bar{j}-\underline{-i}} \bar{j},
$$

where $a-b$ means a and b are connected.
a) Verify that the above defines an \mathbb{N}-representation of D_{∞} for any graph Γ.
b) (*) Let $e=n-2$. Verify that the above defines an \mathbb{N}-representation of D_{n} if and only if Γ is of ADE type

where type A_{m} shows up for $n=m+1$, type D_{m} for $n=2 m-2$ and types E_{6}, E_{7} and E_{8} for $n=12,18,30$, respectively.
(Aside: $e=n-2$ is often called the level, with 2 being a reference to $\mathrm{SL}_{2}(\mathbb{C})$ or $\mathrm{SO}_{3}(\mathbb{C})$ and the above is essentially a statement about \mathbb{N}-representations of the Grothendieck algebras of these beasts.)
c) (') If you know Soergel bimodules, then you should be able to guess a categorification.

- There might be typos on the exercise sheets, my bad. Be prepared.
- Star exercises are a bit trickier; prime exercises use notions I haven't explained.

