Exercises 3

1. Twisting super vector spaces

Let $\mathscr{V}ec_{\mathbb{Z}/2\mathbb{Z}}$ be the \mathbb{C} -linear monoidal category with objects given by the elements of $\mathbb{Z}/2\mathbb{Z}$, \otimes on objects = group multiplication and trivial hom spaces.

Let $\omega : \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \to \mathbb{C}^*$ be the 3-cocycle with $\omega(1, 1, 1) = -1$, and twist $\mathscr{V}ec^1_{\mathbb{Z}/2\mathbb{Z}} = \mathscr{V}ec_{\mathbb{Z}/2\mathbb{Z}}$ on the associator α and unitors λ , ρ by

$$\alpha_{i,j,k} = \omega(i, j, k) \mathrm{id}_{ijk}, \quad \lambda_i = \omega(1, 1, i)^{-1} \mathrm{id}_i, \quad \rho_i = \omega(i, 1, 1) \mathrm{id}_i,$$

and obtain $\mathscr{V}ec^{\omega}_{\mathbb{Z}/2\mathbb{Z}}$.

- a) Show that $\mathscr{V}ec^{\omega}_{\mathbb{Z}/2\mathbb{Z}}$ is nonstrict and skeletal at the same time.
- b) Show that the additive Grothendieck algebra $[_]_{\oplus}$ of the additive closure of $\mathscr{V}ec_{\mathbb{Z}/2\mathbb{Z}}^{x}$ is $[\mathscr{V}ec_{\mathbb{Z}/2\mathbb{Z}}^{x}]_{\oplus} \cong \mathbb{Z}[\mathbb{Z}/2\mathbb{Z}]$, regardless of $x \in \{1, \omega\}$.
- c) Show that $\mathscr{V}ec^{1}_{\mathbb{Z}/2\mathbb{Z}}$ is not monoidally equivalent to $\mathscr{V}ec^{\omega}_{\mathbb{Z}/2\mathbb{Z}}$.
- d) (') Classify braiding on $\mathscr{V}ec_{\mathbb{Z}/2\mathbb{Z}}^{x}$ for $x \in \{1, \omega\}$ (up to braided equivalence).

2. Jordan decomposition in prime characteristic

Let $G = \mathbb{Z}/p\mathbb{Z}$ for some prime *p*, and let $\mathbb{K} = \overline{\mathbb{F}_p}$.

- a) Show that $\Re ep(G, \mathbb{K})$ is a fiat monoidal category with one simple and *p* indecomposable objects.
- b) Compute the cell structure of $\mathscr{R}ep(G, \mathbb{K})$.

3. Taft and friends

For fixed $n \in \mathbb{Z}_{>1}$, let \mathscr{S} be a fiat monoidal category over \mathbb{C} with indecomposable objects $Z_{l,r}$ for $1 \le l \le n$ and $0 \le r \le n-1$, with *r* read modulo *n*. The objects $L_r = Z_{1,r}$ are simple and their projective covers are $P_r = Z_{n,r}$.

The monoidal structure is $M \otimes N \cong N \otimes M$ and

$$\begin{split} L_r \otimes L_{r'} &\cong L_{r+r'}, \quad L_r \otimes Z_{l,r'} \cong Z_{l,r+r'}, \quad L_r \otimes P_{r'} \cong P_{r+r'}, \\ Z_{l,r} \otimes Z_{l',r'} &\cong \begin{cases} \bigoplus_{i=1}^{\min(l,l')} Z_{|l-l'|+2i-1,r+r'-i+\min(l,l')}, & \text{if } l+l' \leq n, \\ \bigoplus_{i=1}^{n-\max(l,l')} Z_{|l-l'|+2i-1,r+r'-i+\min(l,l')} & \text{if } l+l' > n, \\ \bigoplus_{i=1}^{l+l'-n} P_{r+r'-i+1}, & P_r \otimes P_{r'} \cong \bigoplus_{i=1}^{n} P_{r+r'-i+n}. \end{cases} \end{split}$$

Let us define a two-variable Chebyshev-type polynomial by $U_0(X,Y) = 1$, $U_1(X,Y) = X$ and $U_{e+1}(X,Y) = XU_e(X,Y) - YU_{e-1}(X,Y)$ for e > 0. Let $[_]_{exact}$ denote the abelian and $[_]_{\oplus}$ the additive Grothendieck algebra.

- a) Compare \mathscr{S} with $\mathscr{R}ep(\mathbb{Z}/n\mathbb{Z},\mathbb{C})$ and $\mathscr{R}ep(\mathbb{Z}/n\mathbb{Z},\overline{\mathbb{F}_n})$ (the latter assuming that *n* is prime).
- b) Show that $[\mathscr{S}]_{exact} \cong \mathbb{Z}[Y]/(Y^n 1)$ but $[\mathscr{S}]_{\oplus} \cong \mathbb{Z}[X, Y]/(Y^n 1, (X Y 1)U_{n-1}(X, Y)).$
- c) Compute the cell structure of \mathscr{S} .

4. More fun with dihedral groups – ℕ-representations

As on the previous exercise sheet, let \emptyset denote the unit and let $D_n = \langle 1, 2 | 1^2 = 2^2 = (12)^n = \emptyset \rangle$ be the dihedral group of the *n* gon.

We also allow $n = \infty$, and we consider the KL basis $\{b_w | w \in D_n\}$ as before. We think of 1 as being colored spinach and 2 as being colored tomato. Take any simple connected bipartite graph $\Gamma = (V, E)$ with spinach \underline{i} and tomato \overline{i} colored vertices such as

Define an \mathbb{N} -representation of D_n on $\mathbb{N}V$ by

$$b_1 \cdot \underline{i} = 2 \cdot \underline{i}, \quad b_1 \cdot \overline{i} = \sum_{\underline{j} - \overline{i}} \underline{j}, \quad b_2 \cdot \overline{i} = 2 \cdot \overline{i}, \quad b_2 \cdot \underline{i} = \sum_{\overline{j} - \underline{i}} \overline{j},$$

where a - b means a and b are connected.

- a) Verify that the above defines an \mathbb{N} -representation of D_{∞} for any graph Γ .
- b) (*) Let e = n 2. Verify that the above defines an \mathbb{N} -representation of D_n if and only if Γ is of ADE type

where type A_m shows up for n = m + 1, type D_m for n = 2m - 2 and types E_6 , E_7 and E_8 for n = 12, 18, 30, respectively.

(Aside: e = n - 2 is often called the level, with 2 being a reference to $SL_2(\mathbb{C})$ or $SO_3(\mathbb{C})$ and the above is essentially a statement about \mathbb{N} -representations of the Grothendieck algebras of these beasts.)

- c) (') If you know Soergel bimodules, then you should be able to guess a categorification.
 - There might be typos on the exercise sheets, my bad. Be prepared.
 - Star exercises are a bit trickier; prime exercises use notions I haven't explained.