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Exercises - hints and remarks 3

SageMath online calculator https://sagecell.sagemath.org/ with the relevant material sum-
marized on

https://doc.sagemath.org/html/en/thematic_tutorials/lie/weyl_character_ring.html
Magma online calculator http://magma.maths.usyd.edu.au/calc/

Hints for Exercise 1
For this exercise observe that all hom spaces are trivial and thus, all calculations are just shifting scalars
around.
For the background on (strict and nonstrict monoidal) categories see for example Chapter 2 of

https://math.mit.edu/~etingof/egnobookfinal.pdf, and a recollection on braided categories
can be found in Chapter 8 of that book.

For a group G, one can define a cohomology theoryH∗(G,ℂ∗), called group cohomology. As usual
these are constructed from a certain cochain complex and H i(G,ℂ∗) = Z i(G,ℂ∗)∕Bi(G,ℂ∗), so i
cocycles modulo i coboundaries. All we need to know about group cohomology are the 3 cocycles
which are functions !∶ G × G × G → ℂ∗ satisfying

These 3-cocycles give the obstruction set for twisting a monoidal structure on V ecG. Moreover,
V ec!G ≅ V ec

�
G if and only if ! and � distinct in H3(G,ℂ∗). Monoidal categories of the form V ec!Gare nonstrict and skeletal, showing that MacLane’s celebrated strictness theorem can not be proven by

going to the skeleton.
The category V ec1ℤ∕2ℤ can be endowed with two braidings, the so-called standard braiding �st1,1 = 1and the super braiding �su1,1 = −1. These are nonequivalent. For V ec!ℤ∕2ℤ the 3-cocycle ! only allows

one braiding up to equivalence.
Hints for Exercise 2
The Jordan decomposition over ℂ (or rather ℚ since the Jordan decomposition is unstable over inexact
rings) and over F3 can be done using SageMath as above by using:

matrix(QQbar,[[0,1,0],[0,0,1],[1,0,0]]).jordan_form(subdivide=False)

matrix(GF(3),[[0,1,0],[0,0,1],[1,0,0]]).jordan_form(subdivide=False)
Knowing this, you should be able to give a complete classification of indecomposables modules.

To guess the tensor product rule (and thus, the cell structure) use
M=matrix(GF(3),[[1,0],[1,1]]);
M.tensor_product(M).jordan_form()

M=matrix(GF(3),[[1,0,0],[1,1,0],[0,1,1]]);
M.tensor_product(M).jordan_form()
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Hints (or rather comments) for Exercise 3
There is a Hopf algebra Tn realizing the fiat monoidal category S : the Taft algebra. It is defined by
Tn = ⟨g, x|gn = 1, xn = 0, gx = �xg⟩ where � is a complex primitive nth root of unity.
The Taft algebra is a notorious counterexample in Hopf algebra theory. For example, although

M ⊗N ≅ N ⊗M holds, the category S is not braided. For n = 2 we also get an example of a fiat
monoidal category with four indecomposable objects and infinitely many simples representations.
Hints for Exercise 4
LetUk(X) be the Chebyshev polynomial defined byU0(X) = 1,U1(X) = X andUk+1(X) = XUk(X)−
Uk−1(X) for k > 1. The defining relations of the b1 and b2 generators are the coefficients of these
polynomials. That is, define Uk(b2, b1) by replacing Xk with an alternating string… b1b2b1 of length k(always having b1 to the right), and define Un−1(b2, b1) similarly. Then Un−1(b1, b2) = 0 = Un−1(b2, b1).Thus, the graphs for which one gets a well-defined action must have their spectrum being a subset of
the roots of the Chebyshev polynomial. The graphs satisfying this property are the ADE graphs.

If you are up for a challenge: you can construct the associated simple representations of the Soergel
calculus. This is (up to some scaling) straightforward if you have worked with Soergel calculus before:

∙ You need an algebra whose category of projectives you would like to act on: take the zigzag
algebra associated to the graph Γ.

∙ The projective endofunctors Θ you need to use for the generating KL basis elements are direct
sums of projective endofunctors over the colored vertices:

Spinach = sum over tensoring with spinach projectives of the zigzag algebra and vise versa for
tomato.

∙ All of the maps in Soergel land are then easy to guess.
∙ Warning: For Soergel calculus the scaling is often annoying, and this is the case here as well.
The scaling has driven me insane.

Anyway, the answer is not so bad in the end. You need to rescale everything using the entries
of the Perron–Frobenius eigenvector of Γ, e.g. in ADE type:

Here [a]q denote the usual quantum numbers evaluated at an 2nth primitive complex root of
unity. Scale the idempotents of the zigzag algebra using the values associated to the vertices,
which are the aforementioned entries of the Perron–Frobenius eigenvector.

∙ Fingers crossed!
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