Exercise 2.1. Recall from the lecture that

$$X(\mathbf{i}) \cong \{(z_1, \dots, z_r) \in \mathbb{C}^r : B_{i_1}(z_1) \cdots B_{i_r}(z_r) \text{ has zeros above the antidiagonal}\}.$$

For n = 2, find the equations in z_1, z_2, z_3 cutting out X(1, 1, 1). Draw the real points of X(1, 1, 1) (i.e. the real solutions to these equations) in \mathbb{R}^2 .

Exercise 2.2. Determine the values of z'_1, z'_2, z'_3 that make the following equality hold:

$$B_i(z_1)B_{i+1}(z_2)B_i(z_3) = B_{i+1}(z_1')B_i(z_2')B_{i+1}(z_3').$$

Use this to re-derive 1.3(b): if |i - j| = 1, $\mathbf{i} = \mathbf{i}_1 i j i \mathbf{i}_2$ and $\mathbf{j} = \mathbf{i}_1 j i j \mathbf{i}_2$ then the varieties $X(\mathbf{i})$ and $X(\mathbf{j})$ are isomorphic.

Exercise 2.3. Prove that if i is a reduced expression for w_0 , then X(i) is a point.

Exercise 2.4. Suppose $V \in Gr(2, n)$ is the column span of a $n \times 2$ matrix A. Write A_i for the ith row of A, and for $1 \le i < j \le n$, define

$$p_{ij}(A) := \det \begin{bmatrix} -A_i - \\ -A_j - \end{bmatrix}$$
.

(a) Verify that if you choose another $n \times 2$ matrix B whose column span is V, then there is a constant $c \neq 0$ such that for all $1 \leq i < j \leq n$, $c \cdot p_{ij}(A) = p_{ij}(B)$. Use this to conclude that the map

$$\alpha: Gr(2,n) \to \mathbb{P}^{\binom{n}{2}-1}$$
$$V \mapsto \{p_{ij}(A): 1 \le i < j \le n\}$$

is well-defined.

(b) The map α is called the *Plücker embedding* of the Grassmannian, and $p_{ij}(A)$ is called a *Plücker coordinate* of V (and is usually denoted $p_{ij}(V)$). Show that α is injective, or equivalently that V is uniquely determined by its Plücker coordinates.

Hint: If A has an identity matrix in rows 1 and 2, how are the Plücker coordinates related to the entries of A?

(c) Verify (by computer if desired) that for $1 \le i < j < k < \ell \le n$, the following relation holds among the Plücker coordinates of $V \in Gr(2,n)$

$$p_{ik}p_{j\ell} = p_{ij}p_{k\ell} + p_{i\ell}p_{jk}.$$

It turns out that these relations exactly describe the image of the Plücker embedding in $\mathbb{P}^{\binom{n}{2}-1}$.

(d) Let $w = (n-1)n12\cdots(n-2)$. Show that the open positroid variety Π_w^e is the subset of Gr(2,n) where the Plücker coordinates $p_{12}, p_{23}, \ldots, p_{(n-1)n}, p_{1n}$ are nonvanishing.