Lecture 4: main exercises

Exercise 4.1. Let $Q(A_n)$ be the following quiver, that has no frozen vertices:

$$(1) \longrightarrow (2) \longrightarrow \cdots \longrightarrow (n).$$

Show that $Q(A_n)$ has really full rank if and only if n is even.

Exercise 4.2. Let Q be a quiver, and let x be a frozen vertex of Q. Construct a new quiver Q' using the following procedure.

- (a) Make the vertex x mutable.
- (b) Add an arbitrary number of arrows (in any direction, as long as you don't create oriented 2-cycles) between x and frozen vertices of Q that did not previously have arrows to/from x.
- (c) Add a new frozen vertex, y, and an arrow $x \to y$ (and this is the only arrow incident to y). Show that if Q has really full rank, then so does Q'.

Exercise 4.3. Let Q be the Markov quiver introduced in the previous exercise sheet, with upper cluster algebra \mathcal{U} and cluster algebra \mathcal{A} . The variables $x_1, x_2, x_3 \in \mathcal{A}$ are pairwise coprime, and they are coprime with x'_1, x'_2, x'_3 . But $\mathcal{U} \nsubseteq \mathcal{A}$. Does this contradict the Starfish Lemma?

Exercise 4.4. Let Q be an ice quiver. Show that if Q has really full rank, then any of its mutations also has really full rank.

Exercise 4.5. In this exercise we will construct a cluster structure on the coordinate ring of the positroid variety $\Pi_w^e \subseteq Gr(2,n)$, where $w = (n-1)n12\cdots(n-2)$. Recall that this is described as the set where the Plücker coordinates $p_{12}, p_{23}, \ldots, p_{(n-1)n}, p_{1n}$ are nonvanishing.

Consider a convex n-gon P_n and let T be a triangulation by diagonals. To T, we associate a seed as follows:

- Frozen variables: $p_{12}, p_{23}, \ldots, p_{(n-1)n}, p_{1n}$. These correspond to the sides of P_n .
- Mutable variables: p_{ij} , where ij runs over all diagonals of T.
- Quiver: Mutable vertices are in correspondence with diagonals of T, and frozen vertices with the sides of T. In each triangle we draw a counterclockwise cycle, ignoring arrows between frozen vertices. See the following example.

- (a) Consider a mutable variable corresponding to the diagonal ij. Note that this diagonal belongs to exactly two triangles, that together form a quadrilateral. Show that mutation at this variable corresponds to substituting this diagonal by the other diagonal in the same quadrilateral (in the example above, mutating at 25 substitutes 25 by 14).
- (b) From the Starfish lemma, you may want to conclude that this gives a cluster structure on $\mathbb{C}[\Pi_w^e]$. But note that this cannot be true on the nose! In the example above, there are 9 cluster variables while dim $\Pi_w^e = 2(6-2) = 8$. This can be explained from the fact that p_{ij} are projective coordinates. If p_{ij} is nowhere vanishing on Π_w^e , we may as well restrict to the chart where $p_{ij} \equiv 1$. Show that deleting one (any) frozen variable from the construction above gives a cluster structure on $\mathbb{C}[\Pi_w^e]$.
- (c) Show that the cluster structure above has really full rank.