EXERCISES FOR LECTURE 10

1. Main exercise

Exercise 1. In this exercise we assume that $G = \text{PGL}_2(\mathbb{C})$, with T the maximal torus consisting of (images of) diagonal matrices and B the Borel subgroup consisting of (images of) upper triangular matrices. In this case the lattice \mathbf{X}^{\vee} identifies with \mathbb{Z} via the map

$$n \mapsto \left(z \mapsto \begin{bmatrix} z^n & 0\\ 0 & 1 \end{bmatrix} \right),$$

and \mathbf{X}_{+}^{\vee} corresponds to $\mathbb{Z}_{\geq 0}$. Under this identification, the pairing with 2ρ is given by $n \mapsto n$; as a consequence dim(Grⁿ) = n.

- (1) Prove that for any $n \ge 0$ we have:
 - (a) $IC_n = \underline{\mathbb{C}}_{\overline{\operatorname{Gr}}^n}[n];$
 - (b) $\operatorname{IC}_1 \star \operatorname{IC}_n \cong \operatorname{IC}_{n+1} \oplus \operatorname{IC}_{n-1}$.
- (2) Describe, for any $n \ge 0$, the graded vector space $H^{\bullet}(Gr, IC_n)$.
- (3) Using the results of the preceding questions, show in this special case that the category $\operatorname{Perv}_{G(\mathscr{O})}(\operatorname{Gr})$ is semisimple.
- (4) Using the results of the preceding questions, show in this special case that the convolution product of two perverse sheaves in $\operatorname{Perv}_{G(\mathcal{O})}(\operatorname{Gr})$ is a perverse sheaf.

Hints for (1):

- You might use the exercise for Lecture 3. (This exercise was about the affine Grassmannian of GL_2 but, for any connected component of Gr_{GL_2} , the natural map $Gr_{GL_2} \rightarrow Gr_{PGL_2}$ restricts to an isomorphism from this component to a connected component of Gr_{PGL_2} .
- You might use the fact that if X is a complex algebraic variety of dimension n such that for any $x \in X$ we have

$$\dim \mathcal{H}^{i}((\mathrm{IC}_{X})_{x}) = \begin{cases} 1 & \text{if } i = -n; \\ 0 & \text{otherwise,} \end{cases}$$

then $IC_X = \underline{\mathbb{C}}_X[n]$. (For a proof, see §1.4 in [W. Borho and R. MacPherson, *Partial resolutions of nilpotent varieties*].)

EXERCISES FOR LECTURE 10

2. Additional exercise

Exercise 2. In the setting of the previous exercise, describe the simple summands of each $IC_n \star IC_m$ and their multiplicities.