EXERCISES FOR LECTURE 10

1. Main exercise

Exercise 1. In this exercise we assume that $G=\mathrm{PGL}_{2}(\mathbb{C})$, with T the maximal torus consisting of (images of) diagonal matrices and B the Borel subgroup consisting of (images of) upper triangular matrices. In this case the lattice \mathbf{X}^{\vee} identifies with \mathbb{Z} via the map

$$
n \mapsto\left(z \mapsto\left[\begin{array}{cc}
z^{n} & 0 \\
0 & 1
\end{array}\right]\right)
$$

and \mathbf{X}_{+}^{\vee} corresponds to $\mathbb{Z}_{\geq 0}$. Under this identification, the pairing with 2ρ is given by $n \mapsto n$; as a consequence $\operatorname{dim}\left(\mathrm{Gr}^{n}\right)=n$.
(1) Prove that for any $n \geq 0$ we have:
(a) $\mathrm{IC}_{n}=\mathbb{C}_{\overline{\mathrm{Gr}^{n}}}[n]$;
(b) $\mathrm{IC}_{1} \star \mathrm{IC}_{n} \cong \mathrm{IC}_{n+1} \oplus \mathrm{IC}_{n-1}$.
(2) Describe, for any $n \geq 0$, the graded vector space $\mathrm{H}^{\bullet}\left(\mathrm{Gr}, \mathrm{IC}_{n}\right)$.
(3) Using the results of the preceding questions, show in this special case that the category $\operatorname{Perv}_{G(\mathscr{O})}(\mathrm{Gr})$ is semisimple.
(4) Using the results of the preceding questions, show in this special case that the convolution product of two perverse sheaves in $\operatorname{Perv}_{G(\mathscr{O})}(\mathrm{Gr})$ is a perverse sheaf.

Hints for (1):

- You might use the exercise for Lecture 3. (This exercise was about the affine Grassmannian of GL_{2} but, for any connected component of $\mathrm{Gr}_{\mathrm{GL}_{2}}$, the natural map $\mathrm{Gr}_{\mathrm{GL}_{2}} \rightarrow \mathrm{Gr}_{\mathrm{PGL}_{2}}$ restricts to an isomorphism from this component to a connected component of $\mathrm{Gr}_{\mathrm{PGL}_{2}}$.
- You might use the fact that if X is a complex algebraic variety of dimension n such that for any $x \in X$ we have

$$
\operatorname{dim} \mathcal{H}^{i}\left(\left(\mathrm{IC}_{X}\right)_{x}\right)= \begin{cases}1 & \text { if } i=-n \\ 0 & \text { otherwise }\end{cases}
$$

then $\mathrm{IC}_{X}=\mathbb{C}_{X}[n]$. (For a proof, see $\S 1.4$ in [W. Borho and R. MacPherson, Partial resolutions of nilpotent varieties].)

2. Additional exercise

Exercise 2. In the setting of the previous exercise, describe the simple summands of each $\mathrm{IC}_{n} \star \mathrm{IC}_{m}$ and their multiplicities.

