EXERCISES FOR LECTURE 13

1. Main exercise

Exercise 1. Let X be a variety equipped with a stratification $\left(X_{s}\right)_{s \in \mathscr{S}}$, and assume that every stratum is simply connected. What is the Grothendieck group $K\left(\operatorname{Perv}_{\mathscr{S}}(X)\right)$?

Exercise 2. Let \mathcal{A} be the category of (not necessarily finite-dimensional) vector spaces over a field \mathbb{k}. Show that $K(\mathcal{A})=0(!)$.
Exercise 3. Let G be a connected reductive group, and let $\operatorname{Rep}^{\mathrm{fd}}(G)$ be the category of finite-dimensional representations of G. The tensor product operation makes the Grothendieck group $K\left(\operatorname{Rep}^{\mathrm{fd}}(G)\right)$ into a ring.

Now let T be a maximal torus; let W be the Weyl group; and let \mathbf{X} be the character lattice of T. Show that there is a ring isomorphism

$$
K\left(\operatorname{Rep}^{\mathrm{fd}}(G)\right) \cong \mathbb{Z}[\mathbf{X}]^{W}
$$

where the right-hand side is the set of W-invariant elements in the group ring $\mathbb{Z}[\mathbf{X}]$.

2. Additional exercise

Exercise 4. Let \mathcal{A} be the category of finitely generated modules over a polynomial ring $R=\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. Let $\mathcal{B} \subset \mathcal{A}$ be the full subcategory consisting of modules that are finite-dimensional over \mathbb{C}.
(1) Show that $K(\mathcal{A}) \cong \mathbb{Z}$, and that it is generated by the class of the free module $[R]$. (If you are stuck, do the case $n=1$ first. For general n, you will need to use some form of Hilbert's syzygy theorem.). Under this isomorphism, what is the class of a 1-dimensional module?
(2) What is $K(\mathcal{B})$?
(3) The inclusion functor $\mathcal{B} \rightarrow \mathcal{A}$ induces a homomorphism of Grothendieck groups $K(\mathcal{B}) \rightarrow K(\mathcal{A})$. Describe this homomorphism explicitly.
(4) Regard $R=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ as a graded ring by setting $\operatorname{deg} x_{1}=\cdots=$ $\operatorname{deg} x_{n}=1$. Let \mathcal{A}^{\prime} be the category of finitely-generated graded modules. Show that $K\left(\mathcal{A}^{\prime}\right)$ is isomorphic (at least as an abelian group) to $\mathbb{Z}\left[v, v^{-1}\right]$.

Exercise 5. Let $R=\mathbb{C}[x]$, and let \mathcal{A} be the category of R-modules that are finite-dimensional over \mathbb{C}, and on which x acts nilpotently.
(1) Show that $K(\mathcal{A}) \cong \mathbb{Z}$.
(2) Because tensor product of R-modules is not exact, tensor product does not induce a ring structure on $K(\mathcal{A})$. In fact, the "map"

$$
K(\mathcal{A}) \times K(\mathcal{A}) \rightarrow K(\mathcal{A}) \quad \text { given by } \quad([M],[N]) \mapsto[M \otimes N]
$$

is not even well-defined. Give an explicit example showing that it is not well-defined.
(3) This can be fixed using derived functors: the map

$$
K(\mathcal{A}) \times K(\mathcal{A}) \rightarrow K(\mathcal{A}) \quad \text { given by } \quad([M],[N]) \mapsto \sum_{i \geq 0}\left[\operatorname{Tor}_{i}(M, N)\right]
$$

is well defined, and equips $K(\mathcal{A})$ with a ring structure. What is this ring structure? (Hint: ummm, you have to be a bit generous with what you think counts as a "ring.")

