EXERCISES FOR LECTURE 13

1. Main exercise

Exercise 1. Let X be a variety equipped with a stratification $(X_s)_{s \in \mathscr{S}}$, and assume that every stratum is simply connected. What is the Grothendieck group $K(\operatorname{Perv}_{\mathscr{S}}(X))$?

Exercise 2. Let \mathcal{A} be the category of (not necessarily finite-dimensional) vector spaces over a field k. Show that $K(\mathcal{A}) = 0$ (!).

Exercise 3. Let G be a connected reductive group, and let $\operatorname{Rep}^{\operatorname{fd}}(G)$ be the category of finite-dimensional representations of G. The tensor product operation makes the Grothendieck group $K(\operatorname{Rep}^{\operatorname{fd}}(G))$ into a ring.

Now let T be a maximal torus; let W be the Weyl group; and let X be the character lattice of T. Show that there is a ring isomorphism

$$K(\operatorname{Rep}^{\mathrm{fd}}(G)) \cong \mathbb{Z}[\mathbf{X}]^W$$

where the right-hand side is the set of W-invariant elements in the group ring $\mathbb{Z}[\mathbf{X}]$.

EXERCISES FOR LECTURE 13

2. Additional exercise

Exercise 4. Let \mathcal{A} be the category of finitely generated modules over a polynomial ring $R = \mathbb{C}[x_1, x_2, \ldots, x_n]$. Let $\mathcal{B} \subset \mathcal{A}$ be the full subcategory consisting of modules that are finite-dimensional over \mathbb{C} .

- (1) Show that $K(\mathcal{A}) \cong \mathbb{Z}$, and that it is generated by the class of the free module [R]. (If you are stuck, do the case n = 1 first. For general n, you will need to use some form of Hilbert's syzygy theorem.). Under this isomorphism, what is the class of a 1-dimensional module?
- (2) What is $K(\mathcal{B})$?
- (3) The inclusion functor $\mathcal{B} \to \mathcal{A}$ induces a homomorphism of Grothendieck groups $K(\mathcal{B}) \to K(\mathcal{A})$. Describe this homomorphism explicitly.
- (4) Regard $R = \mathbb{C}[x_1, \ldots, x_n]$ as a graded ring by setting deg $x_1 = \cdots = \deg x_n = 1$. Let \mathcal{A}' be the category of finitely-generated graded modules. Show that $K(\mathcal{A}')$ is isomorphic (at least as an abelian group) to $\mathbb{Z}[v, v^{-1}]$.

Exercise 5. Let $R = \mathbb{C}[x]$, and let \mathcal{A} be the category of R-modules that are finite-dimensional over \mathbb{C} , and on which x acts nilpotently.

- (1) Show that $K(\mathcal{A}) \cong \mathbb{Z}$.
- (2) Because tensor product of *R*-modules is not exact, tensor product does not induce a ring structure on $K(\mathcal{A})$. In fact, the "map"

$$K(\mathcal{A}) \times K(\mathcal{A}) \to K(\mathcal{A})$$
 given by $([M], [N]) \mapsto [M \otimes N]$

is not even well-defined. Give an explicit example showing that it is not well-defined.

(3) This can be fixed using derived functors: the map

 $K(\mathcal{A}) \times K(\mathcal{A}) \to K(\mathcal{A})$ given by $([M], [N]) \mapsto \sum_{i>0} [\operatorname{Tor}_i(M, N)]$

is well defined, and equips $K(\mathcal{A})$ with a ring structure. What is this ring structure? (Hint: ummm, you have to be a bit generous with what you think counts as a "ring.")