EXERCISES FOR LECTURE 15

1. Main exercise

Exercise 1. This problem deals with the Artin–Schreier local system <u>AS</u> on \mathbb{A}^1 . (We'll informally treat <u>AS</u> as a sheaf of "complex" vector spaces.)

- (1) Regard \mathbb{A}^1 as an algebraic group under addition. Show that <u>AS</u> is a multiplicative local system.
- (2) Show that $\Gamma(\mathbb{A}^1, \underline{\mathrm{AS}}) = 0$. Also show that $\operatorname{Ext}^1(\underline{\mathbb{C}}, \underline{\mathrm{AS}}) = 0$. Hint: If this Ext^1 -group is nonzero, there is a nonsplit extension of $\underline{\mathrm{AS}}$ by the constant sheaf. This local system on \mathbb{A}^1 becomes trivial after pullback along the covering map $x \mapsto x^p x$ (why?), so it corresponds to some indecomposable representation of $\mathbb{Z}/p\mathbb{Z}$. But in terms of representations, there is no such extension.

Artin's vanishing theorem implies that $\operatorname{Ext}^{k}(\underline{\mathbb{C}}, \underline{\operatorname{AS}}) = 0$ for $k \geq 2$, so in fact $R\Gamma(\underline{\operatorname{AS}}) = 0$.

(3) Let x be a point in \mathbb{A}^1 . Show that

$$H^{k}(\mathbb{A}^{1} \smallsetminus \{x\}, \underline{\mathrm{AS}}|_{\mathbb{A}^{1} \smallsetminus \{x\}}) = \begin{cases} \mathbb{C} & \text{if } k = 1, \\ 0 & \text{otherwise.} \end{cases}$$

EXERCISES FOR LECTURE 15

2. Additional exercise

Exercise 2. This problem deals with the Artin–Schreier local system <u>AS</u>. Let $U = \{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \}$ and $U^- = \{ \begin{bmatrix} 1 & 0 \\ * & 1 \end{bmatrix} \}$. Both groups act on \mathbb{A}^2 and hence on \mathbb{P}^1 in the usual way. Denote their orbits as follows:

U-orbits:
$$\{[1:0]\}, V = \{[*:1]\}$$
 U⁻-orbits: $\{[1:0]\}, V^- = \{[1:*]\}$

Since U^- is isomorphic to $\mathbb{A}^1,$ we can regard $\underline{\mathrm{AS}}$ as a (multiplicative) local sytem on it.

Let $a_-: U^- \times \mathbb{P}^1 \to \mathbb{P}^1$ be the action map. Define a functor

$$\operatorname{Av}: D_U^{\operatorname{b}}(\mathbb{P}^1) \to D_{U^-, \operatorname{AS}}^{\operatorname{b}}(\mathbb{P}^1)$$

by

$$\operatorname{Av}(\mathcal{F}) = (a_{-})_{*}(\underline{\operatorname{AS}} \boxtimes \mathcal{F})[1].$$

Compute the table of stalks for the image under Av of each simple $U\mbox{-}{\rm equivariant}$ perverse sheaf.