EXERCISES FOR LECTURE 17

1. Main exercise

Exercise 1. Recall that a 2×2 matrix is nilpotent if and only if its trace and determinant are both 0. (Prove this for yourself if you didn't know this before.) Let \mathcal{N} be the nilpotent cone for SL_2 , so

$$\mathcal{N} = \left\{ \begin{bmatrix} x & y \\ z & -x \end{bmatrix} \mid x^2 + yz = 0 \right\}$$

Let $R = \mathbb{C}[\mathcal{N}]$ be its coordinate ring, so that

 $R = \mathbb{C}[x, y, z] / (x^2 + yz).$

Make R into a graded ring by declaring that x, y, and z all have degree 2. The conjugation action of SL_2 on \mathcal{N} induces an action on R by ring automorphisms. Moreover, this action preserves the grading. Let

R-mod^{fg}

denote the category of finitely-generated graded R-modules with a compatible SL_2 action. This is equivalent to the category

$$\operatorname{Coh}^{\operatorname{SL}_2 \times \mathbb{C}^{\times}}(\mathcal{N})$$

of $(SL_2 \times \mathbb{C}^{\times})$ -equivariant coherent sheaves on \mathcal{N} , where \mathbb{C}^{\times} acts on \mathcal{N} by $z \cdot N =$ $z^{-2}N$ for $N \in \mathcal{N}$.

- (1) There is another description of R that is sometimes useful. Let $A = \mathbb{C}[u, v]$ be the polynomial ring in 2 variables, graded so that $\deg u = \deg v = 1$. Show that R is isomorphic to the subring $\mathbb{C}[u^2, uv, v^2] \subset A$ of polynomials with only even degree terms. Can you make SL_2 act on A by ring automorphisms in a way that extends the action on R?
- (2) Let R_0 be the "trivial" *R*-module, i.e., the 1-dimensional vector space R/(x, y, z). Let K be the kernel of $R \rightarrow R_0$.

For any $n \geq 0$, let V(n) denote the irreducible SL₂-representation of highest weight n. Then one can consider the object $V(n) \otimes R \in R$ -gmod^{fg,SL₂}. Show that $V(2) \otimes$ admits a 3-step filtration

$$0 = M_0 \subset M_1 \subset M_2 \subset M_3 = V(2) \otimes R$$

where

$$M_1 \cong R\langle -2 \rangle, \qquad M_2/M_1 \cong K, \qquad M_3/M_2 \cong K\langle 2 \rangle.$$

- (3) Show that $\operatorname{Ext}_{R}^{1}(M_{3}/M_{1}, R) \cong R_{0}\langle 2 \rangle$. Also describe $\operatorname{Hom}_{R}(M_{3}/M_{1}, R)$. (4) Show that $R \operatorname{Hom}_{R}(R_{0}, R) \cong R_{0}[-2]\langle 2 \rangle$. Deduce that the object

 $V(n) \otimes R_0[-1]\langle 1 \rangle \in D^{\mathrm{b}}R\operatorname{-gmod}^{\mathrm{fg},\mathrm{SL}_2}$

is "self-dual" with respect to $R \operatorname{Hom}_R(-, R)$.

(5) As an *R*-module, A decomposes as a $A = R \oplus A^{\text{odd}}$, where A^{odd} is spanned by odd-degree monomials. Show that

R and A^{odd}

are also self-dual with respect to $R \operatorname{Hom}_{R}(-, R)$.

The self-dual objects you have determined above are precisely the simple objects in a certain abelian category

$$\mathrm{PCoh}^{\mathrm{SL}_2 \times \mathbb{C}^{\times}}(\mathcal{N}) \subset D^{\mathrm{b}}\mathrm{Coh}^{\mathrm{SL}_2 \times \mathbb{C}^{\times}}(\mathcal{N}),$$

called the category of *perverse-coherent sheaves*. They are precisely the *R*-modules that can arise as $H^{\bullet}(\mathsf{u}_q(\mathfrak{sl}_2), \text{tilting module})$.

 $\mathbf{2}$