EXERCISES FOR LECTURE 2

1. Main exercise

Exercise 1. In this exercise we take $F=\mathbb{F}_{q}((t)), \varpi=t$ and $\underline{G}=\mathrm{PGL}_{2}$, with the standard choices of Borel subgroup and maximal torus. Then \underline{U} identifies with the subgroup of matrices of the form $\left(\begin{array}{ll}1 & * \\ 0 & 1\end{array}\right)$. In particular we have a canonical identification $\mathcal{U}=F$. We have $\mathbf{X}^{\vee}=\mathbb{Z} \omega^{\vee}$, where ω^{\vee} is the cocharacter

$$
z \mapsto\left[\begin{array}{ll}
z & 0 \\
0 & 1
\end{array}\right]
$$

We have $\left\langle\omega^{\vee}, \rho\right\rangle=\frac{1}{2}$, and

$$
r \omega^{\vee} \preceq s \omega^{\vee} \quad \text { iff } \quad s-r \in 2 \mathbb{Z}_{\geq 0}
$$

(1) Without using any property stated in the lecture, show that for any $n \in \mathbb{Z}$ we have $\mathrm{d}_{\mathcal{U}}\left(t^{n} \cdot \mathbb{F}_{q}[[t]]\right)=q^{-n}$.
(2) Check that the intersections $\mathcal{U} \cap\left(t^{-\mu} \cdot \mathcal{K} t^{\lambda} \mathcal{K}\right)$ (for $\mu \in \mathbf{X}^{\vee}$ and $\lambda \in \mathbf{X}_{+}^{\vee}$) are given as follows.

- If $\lambda=2 r \omega^{\vee}$ with $r \in \mathbb{Z}_{\geq 0}$ and if $\ell \in \mathbb{Z}$ satisfies $-r \leq \ell \leq r$, then

$$
\mathcal{U} \cap\left(t^{-2 \ell \omega^{\vee}} \mathcal{K} t^{2 r \omega^{\vee}} \mathcal{K}\right)= \begin{cases}t^{-2 r} \mathbb{F}_{q}[[t]] & \text { if } \ell=r \\ \mathbb{F}_{q}^{\times} \cdot t^{-r-\ell}+t^{-r-\ell+1} \mathbb{F}_{q}[[t]] & \text { if }-r<\ell<r \\ \mathbb{F}_{q}[[t]] & \text { if } \ell=-r\end{cases}
$$

- If $\lambda=(2 r+1) \omega^{\vee}$ with $r \in \mathbb{Z}_{\geq 0}$ and if $\ell \in \mathbb{Z}$ satisfies $-r-1 \leq \ell \leq r$, then

$$
\mathcal{U} \cap\left(t^{-(2 \ell+1) \omega^{\vee}} \mathcal{K} t^{(2 r+1) \omega^{\vee}} \mathcal{K}\right)= \begin{cases}t^{-2 r-1} \mathbb{F}_{q}[[t]] & \text { if } \ell=r \\ \mathbb{F}_{q}^{\times} \cdot t^{-\ell-r-1}+t^{-\ell-r} \mathbb{F}_{q}[[t]] & \text { if }-r-1<\ell \\ \mathbb{F}_{q}[[t]] & \text { if } \ell=-r-1\end{cases}
$$

Hint: You might check the containment \supset explicitly in each case, considering the following products:
-

$$
\left(\begin{array}{cc}
t^{r-\ell} & -t^{r+\ell} Q \\
R & 0
\end{array}\right) \cdot\left(\begin{array}{cc}
t^{\ell} & t^{\ell} Q \\
0 & t^{-\ell}
\end{array}\right)
$$

where $Q \in \mathbb{F}_{q}^{\times} \cdot t^{-r-\ell}+t^{-r-\ell+1} \mathbb{F}_{q}[[t]]$ and $R \in \mathbb{F}_{q}[[t]]$ is the inverse to $t^{r+\ell} Q$.

$$
\left(\begin{array}{cc}
t^{r-\ell} & -t^{r+\ell+1} Q \\
R & 0
\end{array}\right) \cdot\left(\begin{array}{cc}
t^{\ell+1} & t^{\ell+1} Q \\
0 & t^{-\ell}
\end{array}\right)
$$

where $Q \in \mathbb{F}_{q}^{\times} \cdot t^{-\ell-r-1}+t^{-\ell-r} \mathbb{F}_{q}[[t]]$ and $R \in \mathbb{F}_{q}[[t]]$ is the inverse to $t^{r+\ell+1} Q$.
Then you might check that for any fixed ℓ, varying $r \in \mathbb{Z}_{\geq 0}$ the subsets in the right-hand side form a partition of \mathcal{U}, and finally conclude using the Cartan decomposition.
(3) Show that, for $\lambda \in \mathbf{X}_{+}^{\vee}$, the expansion of $\mathcal{S}\left(1_{\mathcal{K} t^{\lambda} \mathcal{K}}\right)$ in the basis $\left(1_{t^{\mu}(\mathcal{T} \cap \mathcal{K})}\right.$: $\left.\mu \in \mathbf{X}^{\vee}\right)$ of $\mathrm{H}_{\mathcal{T}}$ is as follows.

- If $\lambda=2 r \omega^{\vee}$ with $r \in \mathbb{Z}_{\geq 0}$, then
$\mathcal{S}\left(1_{\mathcal{K} t^{2 r \omega}} \mathcal{K}\right)=q^{r} \cdot\left(1_{t^{2 r \omega}}(\mathcal{T} \cap \mathcal{K})+1_{t-2 r \omega}{ }^{\text {(} \cap \cap \mathcal{K})}\right)$

$$
+\left(q^{r}-q^{r-1}\right) \cdot\left(\sum_{-r<\ell<r} 1_{t^{2 \ell \omega}(\mathcal{T} \cap \mathcal{K})}\right) .
$$

- If $\lambda=(2 r+1) \omega^{\vee}$ with $r \in \mathbb{Z}_{\geq 0}$, then
$\mathcal{S}\left(1_{\mathcal{K} t^{(2 r+1) \omega \vee} \mathcal{K}}\right)=q^{r+\frac{1}{2}} \cdot\left(1_{t^{(2 r+1) \omega \vee}(\mathcal{T} \cap \mathcal{K})}+1_{t^{(-2 r-1) \omega \vee}(\mathcal{T} \cap \mathcal{K})}\right)$

$$
+\left(q^{r+\frac{1}{2}}-q^{r-\frac{1}{2}}\right) \cdot\left(\sum_{-r-1<\ell<r} 1_{t^{(2 \ell+1) \omega^{\vee}(\mathcal{T} \cap \mathcal{K})}}\right)
$$

(4) Check explicitly that \mathcal{S} satisfies the properties stated in the lecture in this case.

2. Additional exercise

Exercise 2. We continue with the setting of the preceding exercise.
(1) For $\lambda \in \mathbf{X}_{+}^{\vee}$ we set

$$
M_{\lambda}=q^{-\langle\lambda, \rho\rangle} \cdot \sum_{\substack{\nu \in \mathbf{X}_{+}^{\vee} \\ \nu \preceq \lambda}} 1_{\mathcal{K} t^{\nu} \mathcal{K}} \quad \in \mathrm{H}_{\mathcal{G}}
$$

Show that

$$
\mathcal{S}\left(M_{\lambda}\right)=\sum_{\substack{\mu \in \mathbf{X}^{\vee} \\-\lambda \preceq \mu \preceq \lambda}} 1_{t^{\mu}(\mathcal{T} \cap \mathcal{K})}
$$

(2) Check that the right-hand side is the character of the simple $\mathrm{SL}_{2}(\mathbb{C})$-module of highest weight λ, cf. Lecture 1. (In particular, this shows that the elements M_{λ} indeed correspond to those denoted similarly in the lecture.)
(3) Show using the previous formula that for $\lambda \in \mathbf{X}_{+}^{\vee} \backslash\{0\}$ we have

$$
M_{\omega^{\vee}} \cdot M_{\lambda}=M_{\lambda+\omega^{\vee}}+M_{\lambda-\omega^{\vee}} .
$$

(4) Prove the equalities of the previous question directly, without using the Satake isomorphism (at least for small values of λ).

