EXERCISES FOR LECTURE 7

1. Main exercise

Exercise 1. Let X be a variety equipped with a stratification $\left(X_{s}\right)_{s \in \mathscr{S}}$, and let $\mathcal{F} \in D_{\mathscr{S}}^{\mathrm{b}}(X)$ be a constructible complex. In general, you cannot recover \mathcal{F} from its table of stalks, i.e., from knowledge of the local systems $\mathcal{H}^{i}\left(\left.\mathcal{F}\right|_{X_{s}}\right)$ for all i and all s.
(1) Exhibit explicit examples of two nonisomorphic complexes of sheaves \mathcal{F} and \mathcal{G} that have the same table of stalks.
(2) Suppose you are given the additional information that \mathcal{F} is a semisimple perverse sheaf. Show that in this case, \mathcal{F} is determined by its table of stalks: in fact,

$$
\mathcal{F} \cong \bigoplus_{s \in \mathscr{S}} \operatorname{IC}\left(X_{s}, \mathcal{H}^{-\operatorname{dim} X_{s}}\left(\left.\mathcal{F}\right|_{X_{s}}\right)\right)
$$

2. Additional exercise

Exercise 2. This exercise gives more practice computing with fibers and orbits, in the setting of finite Grassmannians (this isn't related to affine Grassmannians). Let $G=G L_{4}$, and let Q be the subgroup of all invertible matrices of the form

$$
Q=\left\{\left(\begin{array}{cccc}
* & * & * & * \\
* & * & * & * \\
0 & 0 & * & * \\
0 & 0 & * & *
\end{array}\right)\right\}
$$

Then Q is the stabilizer in G of a the plane P spanned by the first basis vectors e_{1} and e_{2}.

For any $0 \leq k \leq 4, Q$ acts on the Grassmannian $\operatorname{Gr}(k, 4)$ of k-planes (i.e. k dimensional subspaces) in \mathbb{C}^{4}. For each $d \geq 0$, let

$$
\operatorname{Gr}_{d}(k, 4)=\left\{M \subset \mathbb{C}^{4} \mid \operatorname{dim}(M)=k, \operatorname{dim}(M \cap P)=d\right\}
$$

(1) Prove that $\mathrm{Gr}_{d}(k, 4)$ is preserved by the Q action, for each k and d. Indeed, these are actually the Q orbits on $\operatorname{Gr}(k, 4)$.
(2) For each $0 \leq k \leq 4$, how does $\operatorname{Gr}(k, 4)$ split into Q orbits? That is, which orbits are non-empty? Which orbits are contained in the closure of the others?
(3) Let Y be the following space:

$$
Y=\{(L, M) \in \operatorname{Gr}(1,4) \times \operatorname{Gr}(2,4) \mid L \subset(M \cap P)\}
$$

What is the image of Y under the forgetful map $\pi: Y \rightarrow \operatorname{Gr}(2,4)$, and how does it decompose into Q orbits? Identify the different fibers of π. Is π semismall?
(4) What is the image of Y under the forgetful map $\rho: Y \rightarrow \operatorname{Gr}(1,4)$? What is the fiber over each point in the image? Deduce that Y is smooth, and compute its dimension.

Exercise 3. This is a continuation of the previous exercise. Let d_{Y} denote the complex dimension of Y.
(1) Compute the table of stalks of $R \pi_{*} \mathbb{C}_{Y}\left[d_{Y}\right]$ living on $\operatorname{Gr}(2,4)$.
(2) Compute the table of stalks of $R \rho_{*} \underline{\mathbb{C}}_{Y}\left[d_{Y}\right]$ living on $\operatorname{Gr}(1,4)$.
(3) Compute the dimensions of all the orbits in $\operatorname{Gr}(2,4)$ and $\operatorname{Gr}(1,4)$. Note that the dimension of $\operatorname{Gr}(k, n)$ is $k(n-k)$.
(4) For each of the pushforwards above: is it perverse? If not, it is semisimple by the Decomposition theorem, so decompose it into shifts of simple perverse sheaves.

Exercise 4. Suppose G is a group acting on a variety X. Let $a: G \times X \rightarrow X$ be the action map, and let $p: G \times X \rightarrow X$ be the projection map. Recall that a G-equivariant sheaf on X is a sheaf \mathcal{F} together with an isomorphism $\theta: a^{*} \mathcal{F} \cong p^{*} \mathcal{F}$ satisfying various conditions.

Now let \mathcal{L} be a local system on G. Let $m: G \times G \rightarrow G$ be the multiplication map. The local system \mathcal{L} is called multiplicative if $m^{*} \mathcal{L} \cong \mathcal{L} \boxtimes \mathcal{L}$. A (G, \mathcal{L})-twisted equivariant sheaf is a sheaf \mathcal{F} together with an isomorphism $\theta: a^{*} \mathcal{F} \cong \mathcal{L} \boxtimes \mathcal{F}$ satisfying various conditions.
(1) Let Y be another variety with a G-action, and let $f: X \rightarrow Y$ be a G equivariant map. Show that if (\mathcal{F}, θ) is a (G, \mathcal{L})-equivariant sheaf on X, then the cohomology sheaves $\mathcal{H}^{i}\left(f_{*} \mathcal{F}\right)$ and $\mathcal{H}^{i}\left(f_{!} \mathcal{L}\right)$ admit natural (G, \mathcal{L}) twisted equivariant structures.
(2) Consider the group $G=\mathbb{C}^{\times}$, and let \mathcal{L} be the rank- 1 local system in which a generator of $\pi_{1}\left(\mathbb{C}^{\times}\right)=\mathbb{Z}$ acts by -1 . Show that \mathcal{L} is multiplicative.
(3) Let $n>0$, and let $G=\mathbb{C}^{\times}$act on \mathbb{P}^{1} by the formula $z \cdot[a: b]=\left[z^{n} a: z^{n} b\right]$. This action has three orbits. If \mathcal{L} is as before, which orbits can support a nonzero $\left(\mathbb{C}^{\times}, \mathcal{L}\right)$-twisted equivariant sheaf? (The answer depends on n.)
(4) Let $U=\mathbb{P}^{1} \backslash\{0, \infty\}$, and let $j: U \rightarrow \mathbb{P}^{1}$ be the inclusion map. Consider the action of the preceding question with $n=1$. Show that if \mathcal{F} is a $\left(\mathbb{C}^{\times}, \mathcal{L}\right)$-twisted equivariant sheaf on U, then $j_{!} \mathcal{F}=j_{*} \mathcal{F}$.

