EXERCISES FOR LECTURE 7

1. Main exercise

Exercise 1. Let X be a variety equipped with a stratification $(X_s)_{s\in\mathscr{S}}$, and let $\mathcal{F}\in D^{\mathrm{b}}_{\mathscr{S}}(X)$ be a constructible complex. In general, you cannot recover \mathcal{F} from its table of stalks, i.e., from knowledge of the local systems $\mathcal{H}^i(\mathcal{F}|_{X_s})$ for all i and all s

- (1) Exhibit explicit examples of two nonisomorphic complexes of sheaves \mathcal{F} and \mathcal{G} that have the same table of stalks.
- (2) Suppose you are given the additional information that \mathcal{F} is a semisimple perverse sheaf. Show that in this case, \mathcal{F} is determined by its table of stalks: in fact,

$$\mathcal{F} \cong \bigoplus_{s \in \mathscr{S}} \mathrm{IC}(X_s, \mathcal{H}^{-\dim X_s}(\mathcal{F}|_{X_s})).$$

2. Additional exercise

Exercise 2. This exercise gives more practice computing with fibers and orbits, in the setting of finite Grassmannians (this isn't related to affine Grassmannians). Let $G = GL_4$, and let Q be the subgroup of all invertible matrices of the form

$$Q = \left\{ \begin{pmatrix} * & * & * & * \\ * & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & * & * \end{pmatrix} \right\}.$$

Then Q is the stabilizer in G of a the plane P spanned by the first basis vectors e_1 and e_2 .

For any $0 \le k \le 4$, Q acts on the Grassmannian Gr(k,4) of k-planes (i.e. k-dimensional subspaces) in \mathbb{C}^4 . For each $d \ge 0$, let

$$\operatorname{Gr}_d(k,4) = \{ M \subset \mathbb{C}^4 \mid \dim(M) = k, \dim(M \cap P) = d \}.$$

- (1) Prove that $Gr_d(k, 4)$ is preserved by the Q action, for each k and d. Indeed, these are actually the Q orbits on Gr(k, 4).
- (2) For each $0 \le k \le 4$, how does Gr(k,4) split into Q orbits? That is, which orbits are non-empty? Which orbits are contained in the closure of the others?
- (3) Let Y be the following space:

$$Y = \{(L, M) \in Gr(1, 4) \times Gr(2, 4) \mid L \subset (M \cap P)\}.$$

What is the image of Y under the forgetful map $\pi: Y \to Gr(2,4)$, and how does it decompose into Q orbits? Identify the different fibers of π . Is π semismall?

(4) What is the image of Y under the forgetful map $\rho: Y \to Gr(1,4)$? What is the fiber over each point in the image? Deduce that Y is smooth, and compute its dimension.

1

Exercise 3. This is a continuation of the previous exercise. Let d_Y denote the complex dimension of Y.

- (1) Compute the table of stalks of $R\pi_* \underline{\mathbb{C}}_Y[d_Y]$ living on Gr(2,4).
- (2) Compute the table of stalks of $R\rho_*\underline{\mathbb{C}}_Y[d_Y]$ living on Gr(1,4).
- (3) Compute the dimensions of all the orbits in Gr(2,4) and Gr(1,4). Note that the dimension of Gr(k,n) is k(n-k).
- (4) For each of the pushforwards above: is it perverse? If not, it is semisimple by the Decomposition theorem, so decompose it into shifts of simple perverse sheaves.

Exercise 4. Suppose G is a group acting on a variety X. Let $a: G \times X \to X$ be the action map, and let $p: G \times X \to X$ be the projection map. Recall that a G-equivariant sheaf on X is a sheaf \mathcal{F} together with an isomorphism $\theta: a^*\mathcal{F} \cong p^*\mathcal{F}$ satisfying various conditions.

Now let \mathcal{L} be a local system on G. Let $m: G \times G \to G$ be the multiplication map. The local system \mathcal{L} is called *multiplicative* if $m^*\mathcal{L} \cong \mathcal{L} \boxtimes \mathcal{L}$. A (G, \mathcal{L}) -twisted equivariant sheaf is a sheaf \mathcal{F} together with an isomorphism $\theta: a^*\mathcal{F} \cong \mathcal{L} \boxtimes \mathcal{F}$ satisfying various conditions.

- (1) Let Y be another variety with a G-action, and let $f: X \to Y$ be a G-equivariant map. Show that if (\mathcal{F}, θ) is a (G, \mathcal{L}) -equivariant sheaf on X, then the cohomology sheaves $\mathcal{H}^i(f_*\mathcal{F})$ and $\mathcal{H}^i(f_!\mathcal{L})$ admit natural (G, \mathcal{L}) -twisted equivariant structures.
- (2) Consider the group $G = \mathbb{C}^{\times}$, and let \mathcal{L} be the rank-1 local system in which a generator of $\pi_1(\mathbb{C}^{\times}) = \mathbb{Z}$ acts by -1. Show that \mathcal{L} is multiplicative.
- (3) Let n > 0, and let $G = \mathbb{C}^{\times}$ act on \mathbb{P}^1 by the formula $z \cdot [a : b] = [z^n a : z^n b]$. This action has three orbits. If \mathcal{L} is as before, which orbits can support a nonzero $(\mathbb{C}^{\times}, \mathcal{L})$ -twisted equivariant sheaf? (The answer depends on n.)
- (4) Let $U = \mathbb{P}^1 \setminus \{0, \infty\}$, and let $j : U \to \mathbb{P}^1$ be the inclusion map. Consider the action of the preceding question with n = 1. Show that if \mathcal{F} is a $(\mathbb{C}^{\times}, \mathcal{L})$ -twisted equivariant sheaf on U, then $j_!\mathcal{F} = j_*\mathcal{F}$.