EXERCISES FOR LECTURE 8

1. Main exercise

Exercise 1. Let H be a complex algebraic group, and consider the tautological monoidal functor

$$
\text { Oblv : } \operatorname{Rep}(H) \xrightarrow{\otimes} \text { Vect }_{\mathbb{C}} \text {. }
$$

Recall the isomorphism of abstract groups $H(\mathbb{C}) \simeq$ Aut $_{\otimes}($ Oblv $)$.
(1) Call a natural transformation ξ : Oblv \rightarrow Oblv an infinitesimal automorphism if it satisfies the identity

$$
\xi_{V \otimes W}=\xi_{V} \otimes \mathrm{id}_{W}+\mathrm{id}_{V} \otimes \xi_{W}
$$

for all $V, W \in \operatorname{Rep}(H)$. Show that if ξ and η are infinitesimal automorphisms, so is any linear combination

$$
\lambda_{1} \xi+\lambda_{2} \eta, \quad \lambda_{1}, \lambda_{2} \in \mathbb{C} .
$$

(2) For ξ and η as above, show that their commutator $\xi \circ \eta-\eta \circ \xi$ is again an infinitesimal automorphism. Deduce that the set of infinitesimal automorphisms naturally forms a complex Lie algebra $\operatorname{InfAut}_{\otimes}(\mathrm{Oblv})$.
(3) Writing \mathfrak{h} for the Lie algebra of H, give a canonical isomorphism of Lie algebras

$$
\mathfrak{h} \simeq \operatorname{InfAut}_{\otimes}(\mathrm{Oblv}) .{ }^{1}
$$

[^0]Argue that $\xi_{\mathcal{O}_{H}}$ must be (i) a derivation, with respect to the usual algebra structure on \mathcal{O}_{H}, and (ii) invariant under the right translation action. Recall (or prove, or believe) that derivations satisfying (i) and (ii) are exactly the left infinitesimal translation action of \mathfrak{h} on \mathcal{O}_{H}. Finally, deduce the case of general V from that of \mathcal{O}_{H}.

2. Additional exercises

Exercise 2. (1) Let k be a field. For an algebraic group H over k, and a k-linear symmetric monoidal functor

$$
\Psi: \operatorname{Rep}_{k}(H) \rightarrow \operatorname{Vect}_{k}
$$

show that $\Psi\left(\mathcal{O}_{H}\right)$ is naturally a commutative algebra in Vect $_{k}$ with an action of H by algebra automorphisms, such that for the usual forgetful functor

$$
\text { Oblv : } \operatorname{Rep}_{k}(H) \rightarrow \operatorname{Vect}_{k},
$$

this recovers \mathcal{O}_{H} with its right translation action of H.
(2) Consider the order two group $\mu_{2}=\{ \pm 1\}$, and its symmetric monoidal category of real representations. Check that the usual forgetful functor

$$
\text { Oblv : } \operatorname{Rep}_{\mathbb{R}}\left(\mu_{2}\right) \rightarrow \operatorname{Vect}_{\mathbb{R}}
$$

sends $\mathcal{O}_{\mu_{2}}$ to the algebra $\mathbb{R} \times \mathbb{R}$, where $-1 \in \mu_{2}$ acts by swapping the two factors

$$
\left(r_{1}, r_{2}\right) \mapsto\left(r_{2}, r_{1}\right)
$$

(3) Show there exists a unique \mathbb{R}-linear symmetric monoidal functor

$$
\Psi: \operatorname{Rep}_{\mathbb{R}}\left(\mu_{2}\right) \rightarrow \operatorname{Vect}_{\mathbb{R}}
$$

which sends $\Psi\left(\mathcal{O}_{\mu_{2}}\right)$ to the field \mathbb{C}, considered as an \mathbb{R}-algebra, with $-1 \in \mu_{2}$ acting by complex conjugation. Deduce that, for a general field k and group H, Oblv is not the only k-linear symmetric monoidal functor from $\operatorname{Rep}_{k}(H)$ to Vect.

Exercise 3. ${ }^{2}$ Let k be a field, and H and X an algebraic group and variety over k, respectively. Consider a colimit preserving k-linear symmetric monoidal functor

$$
\Xi: \operatorname{Rep}(H) \rightarrow \mathrm{QCoh}(X),
$$

where the right hand side denotes quasicoherent sheaves on X, under usual tensor product.
(1) Recall or convince yourself that every finite dimensional representation V in $\operatorname{Rep}(H)$ is dualizable, in the sense of monoidal categories, with dual the usual contragredient representation. Deduce that $\Xi(V)$ is a dualizable object of $\mathrm{QCoh}(X)$.
(2) Recall or convince yourself that every dualizable object of $\mathrm{QCoh}(X)$ is a vector bundle on X. Recall or convince yourself that every object W of $\operatorname{Rep}(H)$ is the union of its finite dimensional submodules, and deduce that $\Xi(W)$ is a flat \mathcal{O}_{X}-module, which is faithfully flat if W is nonzero.
(3) Show that $\Xi\left(\mathcal{O}_{H}\right)$ is a faithfully flat commutative \mathcal{O}_{X}-algebra with a compatible right action of H. Denote the associated variety (technically, a priori a scheme) over X by $\mathcal{P} \rightarrow X$.

[^1](4) Check that \mathcal{P} is an H-torsor, i.e., that the natural map
$$
\mathcal{P} \times H \rightarrow \mathcal{P} \underset{X}{\times} \mathcal{P}
$$
is an isomorphism. ${ }^{3}$
(5) Check that the original symmetric monoidal functor Ξ was given by the associated bundle construction
$$
\Xi(V) \simeq \mathcal{P} \stackrel{H}{\times} V .
$$
(6) Show that the above constructions define inverse equivalences between the groupoid of symmetric monoidal functors $\Xi: \operatorname{Rep}(H) \rightarrow \mathrm{QCoh}(X)$ and the groupoid of H-torsors over X. How does this relate to Exercise 2?

[^2]
[^0]: ${ }^{1}$ Hint: Consider plugging in the left translation regular representation, i.e., $\xi_{\mathcal{O}_{H}}: \mathcal{O}_{H} \rightarrow \mathcal{O}_{H}$.

[^1]: ${ }^{2}$ Feel extremely free to skip or skim the following exercise, especially if you have not played with faithfully flat descent before. It may also be a bit trickier than a usual exercise, so don't stress about it.

[^2]: ${ }^{3} H$ int: recall that, for a representation V of H, there is a canonical isomorphism of $H \times H$ representations $V \otimes \mathcal{O}_{H} \simeq \mathcal{O}_{H} \otimes V$, where the actions are given at the level of k-points by $\left(h_{1}, h_{2}\right) \cdot(v \otimes f)=h_{1}(v) \otimes h_{1} \cdot f \cdot h_{2}, \quad\left(h_{1}, h_{2}\right) \cdot(f \otimes v)=h_{1} \cdot f \cdot h_{2} \otimes h_{2}(v)$, for $h_{1}, h_{2} \in H(k), f \in \mathcal{O}_{H}, v \in V$.

