EXERCISES FOR LECTURE 9

1. Main exercise

Exercise 1. This problem deals with perverse sheaves on \mathbb{P}^1 . Let $U = \mathbb{P}^1 \setminus \{[1:0]\}$, and let \mathscr{S} denote the stratification $\mathbb{P}^1 = \{[1:0]\} \sqcup U$. Let $j: U \to \mathbb{P}^1$ be the inclusion map.

- (1) Show that $j_{!}\mathbb{C}_{U}[1]$ is a projective object in $\operatorname{Perv}_{\mathscr{S}}(\mathbb{P}^{1})$, and that $j_{*}\mathbb{C}_{U}[1]$ is injective.
- (2) On the other hand, show that $j_! \underline{\mathbb{C}}_U[1]$ is not injective: specifically,

$$\operatorname{Ext}^{1}(j_{!}\mathbb{C}_{U}[1], \operatorname{IC}(U)) \cong \mathbb{C}.$$

Therefore, there exists a perverse sheaf \mathcal{T} that fits into a nonsplit short exact sequence

$$0 \to \mathrm{IC}(U) \to \mathcal{T} \to j_! \underline{\mathbb{C}}_U[1] \to 0.$$

Moreover, \mathcal{T} is unique up to isomorphism.

- (3) Find a composition series for \mathcal{T} . What are its composition factors?
- (4) Compute the table of stalks for \mathcal{T} and for $\mathbb{D}\mathcal{T}$. (You should get the same answers for both.)
- (5) Let \mathcal{F} be any perverse sheaf with the following property: its table of stalks and that of $\mathbb{D}\mathcal{F}$ both agree with that of \mathcal{T} . Show that

 $\operatorname{Hom}(\mathcal{F},\mathcal{T}) \to \operatorname{Hom}(\mathcal{F}|_U,\mathcal{T}|_U)$ and $\operatorname{Hom}(\mathcal{T},\mathcal{F}) \to \operatorname{Hom}(\mathcal{T}|_U,\mathcal{F}|_U)$

are both surjective. (Hint: use the distinguished triangle $i_*i^!\mathcal{T} \to \mathcal{T} \to j_*j^*\mathcal{T}_U \to$.) Deduce as a special case that the map $\operatorname{End}(\mathcal{T}) \to \operatorname{End}(\mathcal{T}|_U)$ is surjective.

- (6) Compute End(*T*) as a ring. (Answer: it is 2-dimensional, and isomorphic to C[u]/(u²).)
- (7) Show that \mathcal{T} is both projective and injective as an object in $\operatorname{Perv}_{\mathscr{S}}(\mathbb{P}^1)$.

EXERCISES FOR LECTURE 9

2. Additional exercise

Exercise 2. This problem deals with perverse sheaves on \mathbb{C} stratified by $\mathbb{C} = \{0\} \sqcup \mathbb{C}^{\times}$.

(1) Show that $\operatorname{Ext}^{1}(\underline{\mathbb{C}}_{\mathbb{C}^{\times}}, \underline{\mathbb{C}}_{\mathbb{C}^{\times}}) \cong \mathbb{C}$, so there is a nonsplit short exact sequence $0 \to \underline{\mathbb{C}}_{\mathbb{C}^{\times}} \to \mathcal{L} \to \underline{\mathbb{C}}_{\mathbb{C}^{\times}} \to 0.$

Here \mathcal{L} is a locally constant sheaf, but *not* a constant sheaf.

(2) Show that there is an indecomposable perverse sheaf \mathcal{F} with the following table of stalks:

	$\mathbb{C}^{ imes}$	$\{0\}$
0		
-1	\mathcal{L}	$\underline{\mathbb{C}}_{\{0\}}$

Find a composition series for \mathcal{F} .