LECTURE 1: COMBINATORICS AND REPRESENTATION THEORY OF REDUCTIVE ALGEBRAIC GROUPS

1. Reductive Algebraic groups

1.1. **Subgroups.** Let \Bbbk be an algebraically closed field. We will work with the following notions:

- G: connected reductive algebraic group over k.
- *B*: Borel subgroup.
- T: maximal torus contained in B.
- U: unipotent radical of B.

We will not define these things properly. One should keep in mind the following examples.

- *Example* 1.1. (1) $G = \operatorname{GL}_n(\Bbbk)$. One can choose for *B* the subgroup of upper triangular matrices and for *T* the subgroup of diagonal matrices. Then *U* is the subgroup of *unipotent* upper triangular matrices.
 - (2) $G = SL_n(\Bbbk)$. One can choose for B and T the intersections of the previous subgroups with $SL_n(\Bbbk)$.
 - (3) $G = \operatorname{Sp}_{2n}(\Bbbk)$ or $\operatorname{SO}_m(\Bbbk)$.

1.2. Characters and cocharacters. The multiplicative group \mathbb{G}_m is the group $\mathrm{GL}_1(\Bbbk)$. We will denote by $\mathbf{X} = X^*(T)$ the group of morphisms of algebraic groups from T to \mathbb{G}_m , and by $\mathbf{X}^{\vee} = X_*(T)$ the group of morphisms of algebraic groups from \mathbb{G}_m to T. These are free \mathbb{Z} -modules of finite rank, and we have a canonical perfect pairing

$$\mathbf{X}\times\mathbf{X}^{\vee}\to\mathbb{Z}$$

given by composition of morphisms, based on the fact that the group of algebraic group morphisms from \mathbb{G}_m to \mathbb{G}_m identifies with \mathbb{Z} via $n \leftrightarrow (z \mapsto z^n)$. Elements of **X** are called *characters*, and those of \mathbf{X}^{\vee} are called *cocharacters*.

Example 1.2. (1) When $G = \operatorname{GL}_n(\Bbbk)$, with T as above, we have canonical identifications $\mathbf{X} = \mathbb{Z}^n$ and $\mathbf{X}^{\vee} = \mathbb{Z}^n$. Here $(\lambda_1, \dots, \lambda^n)$ corresponds to the character

$$\operatorname{liag}(t_1,\ldots,t_n)\mapsto \prod_i (t_i)^{\lambda_i}$$

and to the cocharacter

$$z \mapsto \operatorname{diag}(z^{\lambda_1}, \ldots, z^{\lambda_n}).$$

We will denote by $(\varepsilon_1, \ldots, \varepsilon_n)$ the canonical basis of \mathbb{Z}^n identified with **X**, and by $(\delta_1, \ldots, \delta_n)$ the canonical basis of \mathbb{Z}^n identified with \mathbf{X}^{\vee} .

(2) When $G = SL_n(\mathbb{k})$, with T as above, we have canonical identifications

$$\mathbf{X} = \mathbb{Z}^n / \Delta \mathbb{Z}$$

and

$$\mathbf{X}^{\vee} = \{ (\lambda_1, \dots, \lambda_n) \in \mathbb{Z}^n \mid \sum_i \lambda_i = 0 \}.$$

1.3. Roots. Let \mathfrak{g} , resp. \mathfrak{b} , be the Lie algebra of G, resp. B (i.e. the tangent space at the unit element). The action of G on itself by conjugation induces an action on \mathfrak{g} . It is a basic fact that the restriction to T is semisimple, i.e. we have a decomposition

$$\mathfrak{g} = \bigoplus_{\lambda \in \mathbf{X}} \mathfrak{g}_{\lambda} \quad \text{with } \mathfrak{g}_{\lambda} = \{ x \in \mathfrak{g} \mid \forall t \in T, \ t \cdot x = \lambda(t)x \}.$$

The root system is

$$\mathfrak{R} = \{\lambda \in \mathbf{X} \smallsetminus \{0\} \mid \mathfrak{g}_{\lambda} \neq 0\} \subset \mathbf{X}.$$

The *positive roots* is the subset

$$\mathfrak{R}_{+} = \{\lambda \in \mathbf{X} \smallsetminus \{0\} \mid \mathfrak{b}_{\lambda} \neq 0\}.$$

The simple roots $\mathfrak{R}_s \subset \mathfrak{R}_+$ are the positive roots that cannot be written as the sum of several positive roots.

There is also a subset $\mathfrak{R}^{\vee} \subset \mathbf{X}^{\vee}$ of *coroots*, with a bijection $\mathfrak{R} \xrightarrow{\sim} \mathfrak{R}^{\vee}$. (This construction is more technical, and will not be explained.)

Example 1.3. If $G = \operatorname{GL}_n(\Bbbk)$, with the choices of B and T as above we have

$$\begin{aligned} \mathfrak{R} &= \{\varepsilon_i - \varepsilon_j : 1 \leq i \neq j \leq n\},\\ \mathfrak{R}_+ &= \{\varepsilon_i - \varepsilon_j : 1 \leq i < j \leq n\},\\ \mathfrak{R}_s &= \{\varepsilon_i - \varepsilon_{i+1} : 1 \leq i < n\}. \end{aligned}$$

In fact, if $i \neq j$ the subspace $\mathfrak{g}_{\varepsilon_i - \varepsilon_j}$ is the line spanned by the matrix $E_{i,j}$ with coefficient 1 is place (i, j) and 0's elsewhere.

1.4. Weyl group. The associated Weyl group is

 $W = N_G(T)/T.$

There exist natural actions of W on \mathbf{X} and \mathbf{X}^{\vee} , which are faithful. Seen as a subgroup of the group of (linear) automorphisms of \mathbf{X} , W contains (and, in fact, is generated by) the elements ($s_{\alpha} : \alpha \in \mathfrak{R}$) defined by

$$s_{\alpha}(\lambda) = \lambda - \langle \lambda, \alpha^{\vee} \rangle \alpha.$$

Example 1.4. If $G = \operatorname{GL}_n(\mathbb{k})$, with the choices of B and T as above we have a canonical identification $W = \mathfrak{S}_n$. (Think of permutation matrices.)

1.5. Bruhat decomposition. The group W can be seen in geometry as follows. Consider the quotient G/B. This set has a canonical structure of algebraic variety over \Bbbk (it is smooth and projective). For any $w \in W$ and any choice of preimage \dot{w} of w in $N_G(T)$ we can consider the double coset $B\dot{w}B \subset G$; it does not depend on the choice of \dot{w} hence is denoted BwB. Then the Bruhat decomposition says that

$$G=\bigsqcup_{w\in W}BwB,$$

hence

$$G/B = \bigsqcup_{w \in W} BwB/B.$$

The subset $BwB/B \subset G/B$ is a locally closed algebraic subvariety, and it is isomorphic to an affine space.

Example 1.5. In case $G = GL_n(\Bbbk)$ with B and T as above, the flag variety is the variety of flags of linear subspaces

$$\{0\} = V_0 \subset V_1 \subset \cdots \subset V_{n-1} \subset V_n = \mathbb{k}^n$$

with $\dim(V_i) = i$.

The Bruhat decomposition is the familiar statement that any invertible matrix M can be written as a product $M = M_1 M_2 M_3$ where M_1, M_3 are upper triangular matrices and M_2 is a permutation matrix, and that moreover M_2 is uniquely determined.

1.6. Affine Weyl group. The *extended affine Weyl group* is the semidirect product

$$W_{\text{ext}} = W \ltimes \mathbf{X}^{\vee}.$$

It acts naturally on \mathbf{X}^{\vee} by affine transformations, via

 $(wt_{\lambda}) \cdot \mu = w(\mu + \lambda)$

for $w \in W$ and $\lambda, \mu \in \mathbf{X}^{\vee}$.

1.7. Langlands duality. The root datum of G is the quadruple $(\mathbf{X}, \mathfrak{R}, \mathbf{X}^{\vee}, \mathfrak{R}^{\vee})$ together with the perfect pairing between \mathbf{X} and \mathbf{X}^{\vee} and the bijection between \mathfrak{R} and \mathfrak{R}^{\vee} . It turns out that this datum does not depend (up to isomorphism) on the choices made above, and that G is characterized up to isomorphism by it.

There is an obvious "duality" on root data, given by

$$(\mathbf{X}, \mathfrak{R}, \mathbf{X}^{\vee}, \mathfrak{R}^{\vee}) \leftrightarrow (\mathbf{X}^{\vee}, \mathfrak{R}^{\vee}, \mathbf{X}, \mathfrak{R}).$$

Two connected reductive groups (possibly over different base fields) are called *Langlands dual* if their root data are dual. If G and G^{\vee} are Langlands dual, then we have maximal tori $T \subset G$ and $T^{\vee} \subset G^{\vee}$ such that

$$X_*(T) = X^*(T^{\vee}).$$

In this case, the Weyl groups of G and G^{\vee} identify, in such a way that the action of the Weyl group of G on $X_*(T)$ coincides with the action of Weyl group of G^{\vee} on $X^*(T^{\vee})$.

Example 1.6. (1) GL_n is Langlands self dual. The groups SL_n and PGL_n are Langlands dual.

- (2) SO_{2n+1} and Sp_{2n} are Langlands dual.
- (3) SO_{2n} is Langlands self dual.

2. Representations

2.1. **Definition.** Let G be an algebraic group over k. A (finite-dimensional, algebraic) representation of G is a pair (V, ϱ) where V is a finite-dimensional k-vector space and $\varrho: G \to \operatorname{GL}(V)$ is a morphism of algebraic groups.

For any affine algebraic variety X over \Bbbk one can consider the \Bbbk -algebra $\mathcal{O}(X)$ of algebraic functions on X. In practice, an affine variety admits a description as the subset of the affine space \mathbb{A}^n determined by the equations

$$P_1(x) = P_2(x) = \dots = P_r(x) = 0$$

for some $n \ge 1$ and some polynomials $P_1, \dots, P_r \in \mathbb{k}[X_1, \dots, X_n]$, and then

$$\mathcal{O}(X) = \mathbb{k}[X_1, \cdots, X_n] / \sqrt{(P_1, \cdots, P_r)}.$$

Given two affine algebraic varieties X, Y, we have

$$\mathcal{O}(X \times Y) = \mathcal{O}(X) \otimes \mathcal{O}(Y)$$

where the map $\mathcal{O}(X) \to \mathcal{O}(X \times Y)$ is composition with the projection map $X \times Y \to X$, and similarly for the map $\mathcal{O}(Y) \to \mathcal{O}(X \times Y)$.

In particular, consider the algebra $\mathcal{O}(G)$ of algebraic functions from G to \Bbbk . This algebra has another operation (called "comultiplication")

$$\Delta: \mathcal{O}(G) \to \mathcal{O}(G) \otimes \mathcal{O}(G)$$

which is the result on functions of the multiplication operation $G \times G \to G$, and which makes it a *Hopf algebra*. Then the datum of a representation of G is equivalent to that of a finite-dimensional comodule for this Hopf algebra, i.e. a finitedimensional vector space V endowed with a "coaction"

$$\Delta_V: V \to V \otimes \mathcal{O}(G)$$

which is compatible with Δ in a natural sense. In fact, $V \otimes \mathcal{O}(G)$ identifies with the space of algebraic functions from G to V, and Δ_V corresponds to $v \mapsto (g \mapsto \varrho(g)(v))$.

Example 2.1. (1) When $G = (\mathbb{G}_m)^n$, we have $\mathcal{O}(G) = \mathbb{k}[x_i^{\pm 1} : 1 \le i \le n]$ with the comultiplication determined by

$$\Delta(x_i) = x_i \otimes x_i.$$

(For that, we identify $(\mathbb{G}_m)^n$ with the subset of \mathbb{k}^{2n} determined by the equations $X_i X_{n+i} = 1$ for $i \in \{1, \ldots, n\}$.)

(2) When $G = GL_n$ we have

$$\mathcal{O}(G) = \Bbbk[x_{i,j} : 1 \le i, j \le n][\det^{-1}],$$

with the comultiplication determined by

$$\Delta(x_{i,j}) = \sum_k x_{i,k} \otimes x_{k,j}.$$

(Here we identify GL_n with the subset of $\operatorname{M}_n(\Bbbk) \times \mathbb{A}^1$ determined by the equation $\det(M) \cdot X = 1$.) Then vector space $V = \Bbbk^n$ has a canonical structure of representation GL_n . The coaction is given by

$$\Delta(e_i) = \sum_k e_k \otimes x_{k,i}$$

where (e_1, \ldots, e_n) is the canonical basis of \mathbb{k}^n .

The category of representations of G will be denoted $\operatorname{Rep}(G)$.

2.2. Chevalley's theorem. The subset of *dominant weights* $\mathbf{X}^+ \subset \mathbf{X}$ is defined by

$$\mathbf{X}^{+} = \{ \lambda \in \mathbf{X} \mid \forall \alpha \in \mathfrak{R}_{+}, \, \langle \lambda, \alpha^{\vee} \rangle \ge 0 \}$$

(This subset is a system of representatives for the W-orbits in \mathbf{X} .)

Theorem 2.2 (Chevalley's theorem). (1) There exists a canonical bijection between \mathbf{X}^+ and the set of isomorphism classes of simple objects in $\operatorname{Rep}(G)$.

(2) If $\operatorname{char}(\mathbb{k}) = 0$, then the category $\operatorname{Rep}(G)$ is semisimple, i.e. every representation is a direct sum of simple representations.

Example 2.3. Consider the case $G = SL_2(\mathbb{k})$. We have a canonical identification $\mathbf{X} = \mathbb{Z}$, where $n \in \mathbb{Z}$ corresponds to the morphism

$$\operatorname{diag}(z, z^{-1}) \mapsto z^n.$$

Under this identification, $\mathbf{X}^+ = \mathbb{Z}_{>0}$.

We have a natural action on k^2 , hence on the space

 $\mathbb{k}[x,y]$

of algebraic functions on \mathbb{k}^2 . For any $n \in \mathbb{Z}_{>0}$, the subspace

$$V_n = \mathbb{k}_n[x, y]$$

of homogeneous polynomials of degree n is stable. In case char(\mathbb{k}) = 0, V_n is simple and the bijection of Chevalley's theorem is given by

$$n \mapsto V_n$$
.

2.3. Grothendieck group. Consider the Grothendieck group $\mathsf{K}^0(\operatorname{Rep}(G))$. It is a basic fact that any representation of T is a sum of its *weight spaces*: for any $V \in \operatorname{Rep}(T)$ we have

$$V = \bigoplus_{\lambda \in X^*(G)} V_{\lambda} \quad \text{where } V_{\lambda} = \{ v \in V \mid \in T, \ t \cdot v = \lambda(t)v \}.$$

This applies in particular to (restrictions of) representations of G. We therefore have a canonical "character" morphism

$$\operatorname{ch}: \mathsf{K}^0(\operatorname{Rep}(G)) \to \mathbb{Z}[\mathbf{X}]$$

given by

$$\operatorname{ch}([V]) = \sum_{\lambda \in \mathbf{X}} \dim(V_{\lambda}) \cdot e^{\lambda}.$$

Corollary 2.4. The morphism ch induces an isomorphism

$$\mathsf{K}^0(\operatorname{Rep}(G)) \to (\mathbb{Z}[\mathbf{X}])^W$$

where W acts on the right-hand side with its action on \mathbf{X} .

Sketch of proof. Using the action of $N_G(T) \subset G$ on representations one sees that our map factors through $(\mathbb{Z}[\mathbf{X}])^W$. Then, by Chevalley's theorem $\mathsf{K}^0(\operatorname{Rep}(G))$ admits a \mathbb{Z} -basis consisting of classes of simple modules. One easily sees that the coefficients of the images of these classes in the basis

$$\left(\sum_{\mu\in W\lambda}e^{\mu}:\lambda\in\mathbf{X}^{+}\right)$$

of $(\mathbb{Z}[\mathbf{X}])^W$ is lower triangular with 1's on the diagonal for an appropriate order, which implies that these images form a basis, hence that our morphism is an isomorphism.

Remark 2.5. The tensor product of representations equips $\mathsf{K}^0(\operatorname{Rep}(G))$ with the structure of a ring. For this structure, the isomorphism of Corollary 2.4 is a ring isomorphism.

3. Complement on the Weyl group (probably not covered in the LECTURE)

Setting

$$S = \{ s_{\alpha} : \alpha \in \mathfrak{R}_s \},\$$

it turns out that (W, S) is a *Coxeter system*; this means that W admits a presentation with generators S, and the following relations:

- $s^2 = 1$ for all $s \in S$; $\underbrace{st \cdots}_{m_{s,t} \text{ terms}} = \underbrace{ts \cdots}_{m_{s,t} \text{ terms}}$ for all $s \neq t \in S$

for some integers $m_{s,t} \geq 2$. (In fact, $m_{s,t}$ is the order of st in W.) Associated with this structure we have a "length function"

$$\ell: W \to \mathbb{Z}_{>0}$$

such that $\ell(w)$ is the smallest integer r such that there exists a sequence s_1, \ldots, s_r of elements of S such that $w = s_1 \cdots s_r$.

Example 3.1. If $G = \operatorname{GL}_n(\Bbbk)$, with the choices of B and T as above we have explained that $W = \mathfrak{S}_n$. Via this identification we have

$$S = \{(i, i+1) : 1 \le i < n\}.$$

Moreover, $\ell(w)$ is the number of inversions of w.

This structure appears in the Bruhat decomposition (see $\S1.5$), since the dimension of the affine space BwB/B is $\ell(w)$.

The root lattice \mathbb{ZR} is the \mathbb{Z} -submodule of **X** generated by \mathfrak{R} . It admits a basis consisting of the simple roots. The affine Weyl group is the subgroup

$$W_{\text{aff}} = W \ltimes \mathbb{ZR}$$

of W_{ext} . It turns out that W_{aff} is generated by the elements of the form $t_{n\alpha}s_{\alpha}$ for $\alpha \in \mathfrak{R}$ and $n \in \mathbb{Z}$. There is a subset $S_{\text{aff}} \subset W_{\text{aff}}$ containing S and such that $(W_{\rm aff}, S_{\rm aff})$ is a Coxeter system, and the associated length function extends to a function $W_{\text{ext}} \to \mathbb{Z}_{>0}$.

Example 3.2. If $G = \operatorname{GL}_n(\Bbbk)$, with the choices of B and T as above we have

$$S_{\text{aff}} = S \sqcup \{ t_{\varepsilon_1 - \varepsilon_n} s_{\varepsilon_1 - \varepsilon_n} \}.$$