LECTURE 1: COMBINATORICS AND REPRESENTATION THEORY OF REDUCTIVE ALGEBRAIC GROUPS

1. Reductive algebraic groups

1.1. Subgroups. Let \mathbb{k} be an algebraically closed field. We will work with the following notions:

- G : connected reductive algebraic group over \mathbb{k}.
- B: Borel subgroup.
- T : maximal torus contained in B.
- U : unipotent radical of B.

We will not define these things properly. One should keep in mind the following examples.

Example 1.1. (1) $G=\mathrm{GL}_{n}(\mathbb{k})$. One can choose for B the subgroup of upper triangular matrices and for T the subgroup of diagonal matrices. Then U is the subgroup of unipotent upper triangular matrices.
(2) $G=\mathrm{SL}_{n}(\mathbb{k})$. One can choose for B and T the intersections of the previous subgroups with $\mathrm{SL}_{n}(\mathbb{k})$.
(3) $G=\mathrm{Sp}_{2 n}(\mathbb{k})$ or $\mathrm{SO}_{m}(\mathbb{k})$.
1.2. Characters and cocharacters. The multiplicative group \mathbb{G}_{m} is the group $\mathrm{GL}_{1}(\mathbb{k})$. We will denote by $\mathbf{X}=X^{*}(T)$ the group of morphisms of algebraic groups from T to \mathbb{G}_{m}, and by $\mathbf{X}^{\vee}=X_{*}(T)$ the group of morphisms of algebraic groups from \mathbb{G}_{m} to T. These are free \mathbb{Z}-modules of finite rank, and we have a canonical perfect pairing

$$
\mathbf{X} \times \mathbf{X}^{\vee} \rightarrow \mathbb{Z}
$$

given by composition of morphisms, based on the fact that the group of algebraic group morphisms from \mathbb{G}_{m} to \mathbb{G}_{m} identifies with \mathbb{Z} via $n \leftrightarrow\left(z \mapsto z^{n}\right)$. Elements of \mathbf{X} are called characters, and those of \mathbf{X}^{\vee} are called cocharacters.
Example 1.2. (1) When $G=\mathrm{GL}_{n}(\mathbb{k})$, with T as above, we have canonical identifications $\mathbf{X}=\mathbb{Z}^{n}$ and $\mathbf{X}^{\vee}=\mathbb{Z}^{n}$. Here $\left(\lambda_{1}, \cdots, \lambda^{n}\right)$ corresponds to the character

$$
\operatorname{diag}\left(t_{1}, \ldots, t_{n}\right) \mapsto \prod_{i}\left(t_{i}\right)^{\lambda_{i}}
$$

and to the cocharacter

$$
z \mapsto \operatorname{diag}\left(z^{\lambda_{1}}, \ldots, z^{\lambda_{n}}\right)
$$

We will denote by $\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$ the canonical basis of \mathbb{Z}^{n} identified with \mathbf{X}, and by $\left(\delta_{1}, \ldots, \delta_{n}\right)$ the canonical basis of \mathbb{Z}^{n} identified with \mathbf{X}^{\vee}.
(2) When $G=\mathrm{SL}_{n}(\mathbb{k})$, with T as above, we have canonical identifications

$$
\mathbf{X}=\mathbb{Z}^{n} / \Delta \mathbb{Z}
$$

and

$$
\mathbf{X}^{\vee}=\left\{\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{Z}^{n} \mid \sum_{i} \lambda_{i}=0\right\}
$$

1.3. Roots. Let \mathfrak{g}, resp. \mathfrak{b}, be the Lie algebra of G, resp. B (i.e. the tangent space at the unit element). The action of G on itself by conjugation induces an action on \mathfrak{g}. It is a basic fact that the restriction to T is semisimple, i.e. we have a decomposition

$$
\mathfrak{g}=\bigoplus_{\lambda \in \mathbf{X}} \mathfrak{g}_{\lambda} \quad \text { with } \mathfrak{g}_{\lambda}=\{x \in \mathfrak{g} \mid \forall t \in T, t \cdot x=\lambda(t) x\}
$$

The root system is

$$
\mathfrak{R}=\left\{\lambda \in \mathbf{X} \backslash\{0\} \mid \mathfrak{g}_{\lambda} \neq 0\right\} \subset \mathbf{X} .
$$

The positive roots is the subset

$$
\mathfrak{R}_{+}=\left\{\lambda \in \mathbf{X} \backslash\{0\} \mid \mathfrak{b}_{\lambda} \neq 0\right\}
$$

The simple roots $\mathfrak{R}_{s} \subset \mathfrak{R}_{+}$are the positive roots that cannot be written as the sum of several positive roots.

There is also a subset $\mathfrak{R}^{\vee} \subset \mathbf{X}^{\vee}$ of coroots, with a bijection $\mathfrak{R} \xrightarrow{\sim} \mathfrak{R}^{\vee}$. (This construction is more technical, and will not be explained.)

Example 1.3. If $G=\mathrm{GL}_{n}(\mathbb{k})$, with the choices of B and T as above we have

$$
\begin{aligned}
\mathfrak{R} & =\left\{\varepsilon_{i}-\varepsilon_{j}: 1 \leq i \neq j \leq n\right\}, \\
\Re_{+} & =\left\{\varepsilon_{i}-\varepsilon_{j}: 1 \leq i<j \leq n\right\}, \\
\mathfrak{R}_{s} & =\left\{\varepsilon_{i}-\varepsilon_{i+1}: 1 \leq i<n\right\} .
\end{aligned}
$$

In fact, if $i \neq j$ the subspace $\mathfrak{g}_{\varepsilon_{i}-\varepsilon_{j}}$ is the line spanned by the matrix $E_{i, j}$ with coefficient 1 is place (i, j) and 0 's elsewhere.
1.4. Weyl group. The associated Weyl group is

$$
W=N_{G}(T) / T
$$

There exist natural actions of W on \mathbf{X} and \mathbf{X}^{\vee}, which are faithful. Seen as a subgroup of the group of (linear) automorphisms of \mathbf{X}, W contains (and, in fact, is generated by) the elements ($\left.s_{\alpha}: \alpha \in \mathfrak{R}\right)$ defined by

$$
s_{\alpha}(\lambda)=\lambda-\left\langle\lambda, \alpha^{\vee}\right\rangle \alpha
$$

Example 1.4. If $G=\mathrm{GL}_{n}(\mathbb{k})$, with the choices of B and T as above we have a canonical identification $W=\mathfrak{S}_{n}$. (Think of permutation matrices.)
1.5. Bruhat decomposition. The group W can be seen in geometry as follows. Consider the quotient G / B. This set has a canonical structure of algebraic variety over \mathbb{k} (it is smooth and projective). For any $w \in W$ and any choice of preimage \dot{w} of w in $N_{G}(T)$ we can consider the double coset $B \dot{w} B \subset G$; it does not depend on the choice of \dot{w} hence is denoted $B w B$. Then the Bruhat decomposition says that

$$
G=\bigsqcup_{w \in W} B w B
$$

hence

$$
G / B=\bigsqcup_{w \in W} B w B / B
$$

The subset $B w B / B \subset G / B$ is a locally closed algebraic subvariety, and it is isomorphic to an affine space.

Example 1.5. In case $G=\mathrm{GL}_{n}(\mathbb{k})$ with B and T as above, the flag variety is the variety of flags of linear subspaces

$$
\{0\}=V_{0} \subset V_{1} \subset \cdots \subset V_{n-1} \subset V_{n}=\mathbb{k}^{n}
$$

with $\operatorname{dim}\left(V_{i}\right)=i$.
The Bruhat decomposition is the familiar statement that any invertible matrix M can be written as a product $M=M_{1} M_{2} M_{3}$ where M_{1}, M_{3} are upper triangular matrices and M_{2} is a permutation matrix, and that moreover M_{2} is uniquely determined.
1.6. Affine Weyl group. The extended affine Weyl group is the semidirect product

$$
W_{\mathrm{ext}}=W \ltimes \mathbf{X}^{\vee}
$$

It acts naturally on \mathbf{X}^{\vee} by affine transformations, via

$$
\left(w t_{\lambda}\right) \cdot \mu=w(\mu+\lambda)
$$

for $w \in W$ and $\lambda, \mu \in \mathbf{X}^{\vee}$.
1.7. Langlands duality. The root datum of G is the quadruple ($\mathbf{X}, \mathfrak{R}, \mathbf{X}^{\vee}, \mathfrak{R}^{\vee}$) together with the perfect pairing between \mathbf{X} and \mathbf{X}^{\vee} and the bijection between \mathfrak{R} and \mathfrak{R}^{\vee}. It turns out that this datum does not depend (up to isomorphism) on the choices made above, and that G is characterized up to isomorphism by it.

There is an obvious "duality" on root data, given by

$$
\left(\mathbf{X}, \mathfrak{R}, \mathbf{X}^{\vee}, \mathfrak{R}^{\vee}\right) \leftrightarrow\left(\mathbf{X}^{\vee}, \mathfrak{R}^{\vee}, \mathbf{X}, \mathfrak{R}\right) .
$$

Two connected reductive groups (possibly over different base fields) are called Langlands dual if their root data are dual. If G and G^{\vee} are Langlands dual, then we have maximal tori $T \subset G$ and $T^{\vee} \subset G^{\vee}$ such that

$$
X_{*}(T)=X^{*}\left(T^{\vee}\right)
$$

In this case, the Weyl groups of G and G^{\vee} identify, in such a way that the action of the Weyl group of G on $X_{*}(T)$ coincides with the action of Weyl group of G^{\vee} on $X^{*}\left(T^{\vee}\right)$.

Example 1.6. (1) GL_{n} is Langlands self dual. The groups SL_{n} and PGL_{n} are Langlands dual.
(2) $\mathrm{SO}_{2 n+1}$ and $\mathrm{Sp}_{2 n}$ are Langlands dual.
(3) $\mathrm{SO}_{2 n}$ is Langlands self dual.

2. Representations

2.1. Definition. Let G be an algebraic group over \mathbb{k}. A (finite-dimensional, algebraic) representation of G is a pair (V, ϱ) where V is a finite-dimensional \mathbb{k}-vector space and $\varrho: G \rightarrow \mathrm{GL}(V)$ is a morphism of algebraic groups.

For any affine algebraic variety X over \mathbb{k} one can consider the \mathbb{k}-algebra $\mathcal{O}(X)$ of algebraic functions on X. In practice, an affine variety admits a description as the subset of the affine space \mathbb{A}^{n} determined by the equations

$$
P_{1}(x)=P_{2}(x)=\cdots=P_{r}(x)=0
$$

for some $n \geq 1$ and some polynomials $P_{1}, \cdots, P_{r} \in \mathbb{k}\left[X_{1}, \cdots, X_{n}\right]$, and then

$$
\mathcal{O}(X)=\mathbb{k}\left[X_{1}, \cdots, X_{n}\right] / \sqrt{\left(P_{1}, \cdots, P_{r}\right)}
$$

Given two affine algebraic varieties X, Y, we have

$$
\mathcal{O}(X \times Y)=\mathcal{O}(X) \otimes \mathcal{O}(Y)
$$

where the map $\mathcal{O}(X) \rightarrow \mathcal{O}(X \times Y)$ is composition with the projection map $X \times Y \rightarrow$ X, and similarly for the map $\mathcal{O}(Y) \rightarrow \mathcal{O}(X \times Y)$.

In particular, consider the algebra $\mathcal{O}(G)$ of algebraic functions from G to \mathbb{k}. This algebra has another operation (called "comultiplication")

$$
\Delta: \mathcal{O}(G) \rightarrow \mathcal{O}(G) \otimes \mathcal{O}(G)
$$

which is the result on functions of the multiplication operation $G \times G \rightarrow G$, and which makes it a Hopf algebra. Then the datum of a representation of G is equivalent to that of a finite-dimensional comodule for this Hopf algebra, i.e. a finitedimensional vector space V endowed with a "coaction"

$$
\Delta_{V}: V \rightarrow V \otimes \mathcal{O}(G)
$$

which is compatible with Δ in a natural sense. In fact, $V \otimes \mathcal{O}(G)$ identifies with the space of algebraic functions from G to V, and Δ_{V} corresponds to $v \mapsto(g \mapsto \varrho(g)(v))$.

Example 2.1. (1) When $G=\left(\mathbb{G}_{\mathrm{m}}\right)^{n}$, we have $\mathcal{O}(G)=\mathbb{k}\left[x_{i}^{ \pm 1}: 1 \leq i \leq n\right]$ with the comultiplication determined by

$$
\Delta\left(x_{i}\right)=x_{i} \otimes x_{i}
$$

(For that, we identify $\left(\mathbb{G}_{\mathrm{m}}\right)^{n}$ with the subset of $\mathbb{k}^{2 n}$ determined by the equations $X_{i} X_{n+i}=1$ for $i \in\{1, \ldots, n\}$.)
(2) When $G=\mathrm{GL}_{n}$ we have

$$
\mathcal{O}(G)=\mathbb{k}\left[x_{i, j}: 1 \leq i, j \leq n\right]\left[\operatorname{det}^{-1}\right]
$$

with the comultiplication determined by

$$
\Delta\left(x_{i, j}\right)=\sum_{k} x_{i, k} \otimes x_{k, j}
$$

(Here we identify GL_{n} with the subset of $\mathrm{M}_{n}(\mathbb{k}) \times \mathbb{A}^{1}$ determined by the equation $\operatorname{det}(M) \cdot X=1$.) Then vector space $V=\mathbb{k}^{n}$ has a canonical structure of representation GL_{n}. The coaction is given by

$$
\Delta\left(e_{i}\right)=\sum_{k} e_{k} \otimes x_{k, i}
$$

where $\left(e_{1}, \ldots, e_{n}\right)$ is the canonical basis of \mathbb{K}^{n}.
The category of representations of G will be denoted $\operatorname{Rep}(G)$.
2.2. Chevalley's theorem. The subset of dominant weights $\mathbf{X}^{+} \subset \mathbf{X}$ is defined by

$$
\mathbf{X}^{+}=\left\{\lambda \in \mathbf{X} \mid \forall \alpha \in \mathfrak{R}_{+},\left\langle\lambda, \alpha^{\vee}\right\rangle \geq 0\right\} .
$$

(This subset is a system of representatives for the W-orbits in \mathbf{X}.)
Theorem 2.2 (Chevalley's theorem). (1) There exists a canonical bijection between \mathbf{X}^{+}and the set of isomorphism classes of simple objects in $\operatorname{Rep}(G)$.
(2) If $\operatorname{char}(\mathbb{k})=0$, then the category $\operatorname{Rep}(G)$ is semisimple, i.e. every representation is a direct sum of simple representations.

Example 2.3. Consider the case $G=\mathrm{SL}_{2}(\mathbb{k})$. We have a canonical identification $\mathbf{X}=\mathbb{Z}$, where $n \in \mathbb{Z}$ corresponds to the morphism

$$
\operatorname{diag}\left(z, z^{-1}\right) \mapsto z^{n}
$$

Under this identification, $\mathbf{X}^{+}=\mathbb{Z}_{\geq 0}$.
We have a natural action on \mathbb{k}^{2}, hence on the space

$$
\mathbb{k}[x, y]
$$

of algebraic functions on \mathbb{k}^{2}. For any $n \in \mathbb{Z}_{\geq 0}$, the subspace

$$
V_{n}=\mathbb{k}_{n}[x, y]
$$

of homogeneous polynomials of degree n is stable. In case $\operatorname{char}(\mathbb{k})=0, V_{n}$ is simple and the bijection of Chevalley's theorem is given by

$$
n \mapsto V_{n} .
$$

2.3. Grothendieck group. Consider the Grothendieck group $\mathrm{K}^{0}(\operatorname{Rep}(G))$. It is a basic fact that any representation of T is a sum of its weight spaces: for any $V \in \operatorname{Rep}(T)$ we have

$$
V=\bigoplus_{\lambda \in X^{*}(G)} V_{\lambda} \quad \text { where } V_{\lambda}=\{v \in V \mid \in T, t \cdot v=\lambda(t) v\}
$$

This applies in particular to (restrictions of) representations of G. We therefore have a canonical "character" morphism

$$
\operatorname{ch}: \mathrm{K}^{0}(\operatorname{Rep}(G)) \rightarrow \mathbb{Z}[\mathbf{X}]
$$

given by

$$
\operatorname{ch}([V])=\sum_{\lambda \in \mathbf{X}} \operatorname{dim}\left(V_{\lambda}\right) \cdot e^{\lambda}
$$

Corollary 2.4. The morphism ch induces an isomorphism

$$
\mathrm{K}^{0}(\operatorname{Rep}(G)) \rightarrow(\mathbb{Z}[\mathbf{X}])^{W}
$$

where W acts on the right-hand side with its action on \mathbf{X}.
Sketch of proof. Using the action of $N_{G}(T) \subset G$ on representations one sees that our map factors through $(\mathbb{Z}[\mathbf{X}])^{W}$. Then, by Chevalley's theorem $\mathrm{K}^{0}(\operatorname{Rep}(G))$ admits a \mathbb{Z}-basis consisting of classes of simple modules. One easily sees that the coefficients of the images of these classes in the basis

$$
\left(\sum_{\mu \in W \lambda} e^{\mu}: \lambda \in \mathbf{X}^{+}\right)
$$

of $(\mathbb{Z}[\mathbf{X}])^{W}$ is lower triangular with 1 's on the diagonal for an appropriate order, which implies that these images form a basis, hence that our morphism is an isomorphism.

Remark 2.5. The tensor product of representations equips $\mathrm{K}^{0}(\operatorname{Rep}(G))$ with the structure of a ring. For this structure, the isomorphism of Corollary 2.4 is a ring isomorphism.
3. Complement on the Weyl group (probably not covered in the LECTURE)

Setting

$$
S=\left\{s_{\alpha}: \alpha \in \mathfrak{R}_{s}\right\}
$$

it turns out that (W, S) is a Coxeter system; this means that W admits a presentation with generators S, and the following relations:

- $s^{2}=1$ for all $s \in S$;
- $\underbrace{s t \cdots}_{m_{s, t} \text { terms }}=\underbrace{t s \cdots}_{m_{s, t} \text { terms }}$ for all $s \neq t \in S$
for some integers $m_{s, t} \geq 2$. (In fact, $m_{s, t}$ is the order of $s t$ in W.) Associated with this structure we have a "length function"

$$
\ell: W \rightarrow \mathbb{Z}_{\geq 0}
$$

such that $\ell(w)$ is the smallest integer r such that there exists a sequence s_{1}, \ldots, s_{r} of elements of S such that $w=s_{1} \cdots s_{r}$.

Example 3.1. If $G=\mathrm{GL}_{n}(\mathbb{k})$, with the choices of B and T as above we have explained that $W=\mathfrak{S}_{n}$. Via this identification we have

$$
S=\{(i, i+1): 1 \leq i<n\}
$$

Moreover, $\ell(w)$ is the number of inversions of w.
This structure appears in the Bruhat decomposition (see §1.5), since the dimension of the affine space $B w B / B$ is $\ell(w)$.

The root lattice $\mathbb{Z} \mathfrak{R}$ is the \mathbb{Z}-submodule of \mathbf{X} generated by \mathfrak{R}. It admits a basis consisting of the simple roots. The affine Weyl group is the subgroup

$$
W_{\mathrm{aff}}=W \ltimes \mathbb{Z} \mathfrak{R}
$$

of $W_{\text {ext }}$. It turns out that $W_{\text {aff }}$ is generated by the elements of the form $t_{n \alpha} s_{\alpha}$ for $\alpha \in \mathfrak{R}$ and $n \in \mathbb{Z}$. There is a subset $S_{\text {aff }} \subset W_{\text {aff }}$ containing S and such that $\left(W_{\mathrm{aff}}, S_{\mathrm{aff}}\right)$ is a Coxeter system, and the associated length function extends to a function $W_{\text {ext }} \rightarrow \mathbb{Z}_{\geq 0}$.
Example 3.2. If $G=\operatorname{GL}_{n}(\mathbb{k})$, with the choices of B and T as above we have

$$
S_{\mathrm{aff}}=S \sqcup\left\{t_{\varepsilon_{1}-\varepsilon_{n}} s_{\varepsilon_{1}-\varepsilon_{n}}\right\} .
$$

