
LECTURE 1: COMBINATORICS AND REPRESENTATION

THEORY OF REDUCTIVE ALGEBRAIC GROUPS

1. Reductive algebraic groups

1.1. Subgroups. Let k be an algebraically closed field. We will work with the
following notions:

• G: connected reductive algebraic group over k.
• B: Borel subgroup.
• T : maximal torus contained in B.
• U : unipotent radical of B.

We will not define these things properly. One should keep in mind the following
examples.

Example 1.1. (1) G = GLn(k). One can choose for B the subgroup of upper
triangular matrices and for T the subgroup of diagonal matrices. Then U
is the subgroup of unipotent upper triangular matrices.

(2) G = SLn(k). One can choose for B and T the intersections of the previous
subgroups with SLn(k).

(3) G = Sp2n(k) or SOm(k).

1.2. Characters and cocharacters. The multiplicative group Gm is the group
GL1(k). We will denote by X = X∗(T ) the group of morphisms of algebraic groups
from T to Gm, and by X∨ = X∗(T ) the group of morphisms of algebraic groups
from Gm to T . These are free Z-modules of finite rank, and we have a canonical
perfect pairing

X×X∨ → Z
given by composition of morphisms, based on the fact that the group of algebraic
group morphisms from Gm to Gm identifies with Z via n ↔ (z 7→ zn). Elements of
X are called characters, and those of X∨ are called cocharacters.

Example 1.2. (1) When G = GLn(k), with T as above, we have canonical
identifications X = Zn and X∨ = Zn. Here (λ1, · · · , λn) corresponds to
the character

diag(t1, . . . , tn) 7→
∏
i

(ti)
λi

and to the cocharacter

z 7→ diag(zλ1 , . . . , zλn).

We will denote by (ε1, . . . , εn) the canonical basis of Zn identified with X,
and by (δ1, . . . , δn) the canonical basis of Zn identified with X∨.

(2) When G = SLn(k), with T as above, we have canonical identifications

X = Zn/∆Z
and

X∨ = {(λ1, . . . , λn) ∈ Zn |
∑
i

λi = 0}.
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1.3. Roots. Let g, resp. b, be the Lie algebra of G, resp. B (i.e. the tangent space
at the unit element). The action of G on itself by conjugation induces an action
on g. It is a basic fact that the restriction to T is semisimple, i.e. we have a
decomposition

g =
⊕
λ∈X

gλ with gλ = {x ∈ g | ∀t ∈ T, t · x = λ(t)x}.

The root system is

R = {λ ∈ X∖ {0} | gλ ̸= 0} ⊂ X.

The positive roots is the subset

R+ = {λ ∈ X∖ {0} | bλ ̸= 0}.

The simple roots Rs ⊂ R+ are the positive roots that cannot be written as the sum
of several positive roots.

There is also a subset R∨ ⊂ X∨ of coroots, with a bijection R
∼−→ R∨. (This

construction is more technical, and will not be explained.)

Example 1.3. If G = GLn(k), with the choices of B and T as above we have

R = {εi − εj : 1 ≤ i ̸= j ≤ n},
R+ = {εi − εj : 1 ≤ i < j ≤ n},
Rs = {εi − εi+1 : 1 ≤ i < n}.

In fact, if i ̸= j the subspace gεi−εj is the line spanned by the matrix Ei,j with
coefficient 1 is place (i, j) and 0’s elsewhere.

1.4. Weyl group. The associated Weyl group is

W = NG(T )/T.

There exist natural actions of W on X and X∨, which are faithful. Seen as a
subgroup of the group of (linear) automorphisms of X, W contains (and, in fact, is
generated by) the elements (sα : α ∈ R) defined by

sα(λ) = λ− ⟨λ, α∨⟩α.

Example 1.4. If G = GLn(k), with the choices of B and T as above we have a
canonical identification W = Sn. (Think of permutation matrices.)

1.5. Bruhat decomposition. The group W can be seen in geometry as follows.
Consider the quotient G/B. This set has a canonical structure of algebraic variety
over k (it is smooth and projective). For any w ∈ W and any choice of preimage ẇ
of w in NG(T ) we can consider the double coset BẇB ⊂ G; it does not depend on
the choice of ẇ hence is denoted BwB. Then the Bruhat decomposition says that

G =
⊔

w∈W

BwB,

hence

G/B =
⊔

w∈W

BwB/B.

The subset BwB/B ⊂ G/B is a locally closed algebraic subvariety, and it is iso-
morphic to an affine space.
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Example 1.5. In case G = GLn(k) with B and T as above, the flag variety is the
variety of flags of linear subspaces

{0} = V0 ⊂ V1 ⊂ · · · ⊂ Vn−1 ⊂ Vn = kn

with dim(Vi) = i.
The Bruhat decomposition is the familiar statement that any invertible matrix

M can be written as a product M = M1M2M3 where M1,M3 are upper triangu-
lar matrices and M2 is a permutation matrix, and that moreover M2 is uniquely
determined.

1.6. Affine Weyl group. The extended affine Weyl group is the semidirect prod-
uct

Wext = W ⋉X∨.

It acts naturally on X∨ by affine transformations, via

(wtλ) · µ = w(µ+ λ)

for w ∈ W and λ, µ ∈ X∨.

1.7. Langlands duality. The root datum of G is the quadruple (X,R,X∨,R∨)
together with the perfect pairing between X and X∨ and the bijection between R
and R∨. It turns out that this datum does not depend (up to isomorphism) on the
choices made above, and that G is characterized up to isomorphism by it.

There is an obvious “duality” on root data, given by

(X,R,X∨,R∨) ↔ (X∨,R∨,X,R).

Two connected reductive groups (possibly over different base fields) are called Lang-
lands dual if their root data are dual. If G and G∨ are Langlands dual, then we
have maximal tori T ⊂ G and T∨ ⊂ G∨ such that

X∗(T ) = X∗(T∨).

In this case, the Weyl groups of G and G∨ identify, in such a way that the action
of the Weyl group of G on X∗(T ) coincides with the action of Weyl group of G∨

on X∗(T∨).

Example 1.6. (1) GLn is Langlands self dual. The groups SLn and PGLn are
Langlands dual.

(2) SO2n+1 and Sp2n are Langlands dual.
(3) SO2n is Langlands self dual.

2. Representations

2.1. Definition. Let G be an algebraic group over k. A (finite-dimensional, alge-
braic) representation of G is a pair (V, ϱ) where V is a finite-dimensional k-vector
space and ϱ : G → GL(V ) is a morphism of algebraic groups.

For any affine algebraic variety X over k one can consider the k-algebra O(X)
of algebraic functions on X. In practice, an affine variety admits a description as
the subset of the affine space An determined by the equations

P1(x) = P2(x) = · · · = Pr(x) = 0

for some n ≥ 1 and some polynomials P1, · · · , Pr ∈ k[X1, · · · , Xn], and then

O(X) = k[X1, · · · , Xn]/
√
(P1, · · · , Pr).
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Given two affine algebraic varieties X,Y , we have

O(X × Y ) = O(X)⊗O(Y )

where the map O(X) → O(X×Y ) is composition with the projection mapX×Y →
X, and similarly for the map O(Y ) → O(X × Y ).

In particular, consider the algebra O(G) of algebraic functions from G to k. This
algebra has another operation (called “comultiplication”)

∆ : O(G) → O(G)⊗O(G)

which is the result on functions of the multiplication operation G × G → G, and
which makes it a Hopf algebra. Then the datum of a representation of G is equiv-
alent to that of a finite-dimensional comodule for this Hopf algebra, i.e. a finite-
dimensional vector space V endowed with a “coaction”

∆V : V → V ⊗O(G)

which is compatible with ∆ in a natural sense. In fact, V ⊗O(G) identifies with the
space of algebraic functions fromG to V , and ∆V corresponds to v 7→ (g 7→ ϱ(g)(v)).

Example 2.1. (1) When G = (Gm)
n, we have O(G) = k[x±1

i : 1 ≤ i ≤ n] with
the comultiplication determined by

∆(xi) = xi ⊗ xi.

(For that, we identify (Gm)
n with the subset of k2n determined by the

equations XiXn+i = 1 for i ∈ {1, . . . , n}.)
(2) When G = GLn we have

O(G) = k[xi,j : 1 ≤ i, j ≤ n][det−1],

with the comultiplication determined by

∆(xi,j) =
∑
k

xi,k ⊗ xk,j .

(Here we identify GLn with the subset of Mn(k) × A1 determined by the
equation det(M) · X = 1.) Then vector space V = kn has a canonical
structure of representation GLn. The coaction is given by

∆(ei) =
∑
k

ek ⊗ xk,i

where (e1, . . . , en) is the canonical basis of kn.

The category of representations of G will be denoted Rep(G).

2.2. Chevalley’s theorem. The subset of dominant weights X+ ⊂ X is defined
by

X+ = {λ ∈ X | ∀α ∈ R+, ⟨λ, α∨⟩ ≥ 0}.
(This subset is a system of representatives for the W -orbits in X.)

Theorem 2.2 (Chevalley’s theorem). (1) There exists a canonical bijection be-
tween X+ and the set of isomorphism classes of simple objects in Rep(G).

(2) If char(k) = 0, then the category Rep(G) is semisimple, i.e. every repre-
sentation is a direct sum of simple representations.



LECTURE 1: COMBINATORICS AND REPRESENTATION THEORY 5

Example 2.3. Consider the case G = SL2(k). We have a canonical identification
X = Z, where n ∈ Z corresponds to the morphism

diag(z, z−1) 7→ zn.

Under this identification, X+ = Z≥0.
We have a natural action on k2, hence on the space

k[x, y]

of algebraic functions on k2. For any n ∈ Z≥0, the subspace

Vn = kn[x, y]

of homogeneous polynomials of degree n is stable. In case char(k) = 0, Vn is simple
and the bijection of Chevalley’s theorem is given by

n 7→ Vn.

2.3. Grothendieck group. Consider the Grothendieck group K0(Rep(G)). It is
a basic fact that any representation of T is a sum of its weight spaces: for any
V ∈ Rep(T ) we have

V =
⊕

λ∈X∗(G)

Vλ where Vλ = {v ∈ V |∈ T, t · v = λ(t)v}.

This applies in particular to (restrictions of) representations of G. We therefore
have a canonical “character” morphism

ch : K0(Rep(G)) → Z[X]

given by

ch([V ]) =
∑
λ∈X

dim(Vλ) · eλ.

Corollary 2.4. The morphism ch induces an isomorphism

K0(Rep(G)) → (Z[X])W

where W acts on the right-hand side with its action on X.

Sketch of proof. Using the action of NG(T ) ⊂ G on representations one sees that
our map factors through (Z[X])W . Then, by Chevalley’s theorem K0(Rep(G))
admits a Z-basis consisting of classes of simple modules. One easily sees that the
coefficients of the images of these classes in the basis ∑

µ∈Wλ

eµ : λ ∈ X+


of (Z[X])W is lower triangular with 1’s on the diagonal for an appropriate order,
which implies that these images form a basis, hence that our morphism is an iso-
morphism. □

Remark 2.5. The tensor product of representations equips K0(Rep(G)) with the
structure of a ring. For this structure, the isomorphism of Corollary 2.4 is a ring
isomorphism.
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3. Complement on the Weyl group (probably not covered in the
lecture)

Setting
S = {sα : α ∈ Rs},

it turns out that (W,S) is a Coxeter system; this means that W admits a presen-
tation with generators S, and the following relations:

• s2 = 1 for all s ∈ S;
• st · · ·︸ ︷︷ ︸

ms,t terms

= ts · · ·︸ ︷︷ ︸
ms,t terms

for all s ̸= t ∈ S

for some integers ms,t ≥ 2. (In fact, ms,t is the order of st in W .) Associated with
this structure we have a “length function”

ℓ : W → Z≥0

such that ℓ(w) is the smallest integer r such that there exists a sequence s1, . . . , sr
of elements of S such that w = s1 · · · sr.

Example 3.1. If G = GLn(k), with the choices of B and T as above we have
explained that W = Sn. Via this identification we have

S = {(i, i+ 1) : 1 ≤ i < n}.
Moreover, ℓ(w) is the number of inversions of w.

This structure appears in the Bruhat decomposition (see §1.5), since the dimen-
sion of the affine space BwB/B is ℓ(w).

The root lattice ZR is the Z-submodule of X generated by R. It admits a basis
consisting of the simple roots. The affine Weyl group is the subgroup

Waff = W ⋉ ZR
of Wext. It turns out that Waff is generated by the elements of the form tnαsα
for α ∈ R and n ∈ Z. There is a subset Saff ⊂ Waff containing S and such that
(Waff , Saff) is a Coxeter system, and the associated length function extends to a
function Wext → Z≥0.

Example 3.2. If G = GLn(k), with the choices of B and T as above we have

Saff = S ⊔ {tε1−εnsε1−εn}.
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