
LECTURE 10: GEOMETRIC SATAKE EQUIVALENCE, I

1. Geometry

1.1. The affine Grassmannian. Recall from Lecture 3 that we consider a com-
plex reductive algebraic group G, its loop group G(K ), and the arc group (or
positive loop group) G(O). The associated affine Grassmannian is the quotient

Gr = G(K )/G(O).

Here K = C((t)) and O = C[[t]]. We have endowed this set with a topology; in
fact it is an ind-variety, i.e. an increasing union of complex algebraic varieties.

We have an action of G(K ) on Gr by left translation, but we are mainly interesed
in the actions of various subgroups. We choose a Borel subgroup B ⊂ G, a maximal
torus T ⊂ B. The Iwahori subgroup attached to B is the preimage of B under the
morphism

G(O)→ G

sending t to 0. We then consider the actions of G(O) and I on GrG by left multi-
plication.

1.2. Decompositions. Let X∨ be the lattice of cocharacters for T . The choice
of B determines a choice of positive roots for G, hence also a cone X∨+ ⊂ X∨ of
dominant weights. We also have an order ≤ on X∨, such that λ ≤ µ iff µ− λ is a
sum of positive coroots.

1.2.1. The decomposition of Gr into G(O)-orbits is given by the Cartan decom-
position:

Gr =
⊔

λ∈X∨+

Grλ where Grλ = G(O) · tλ ·G(O)/G(O).

Here we have
dim(Grλ) = 〈λ, 2ρ〉

where 2ρ is the sum of the positive roots, and

Grλ =
⊔

µ∈X∨+
µ≤λ

Grµ.

1.2.2. The decomposition into I-orbits is given by the Schubert decomposition:

Gr =
⊔

λ∈X∨
Grλ where Grλ = I · tλ ·G(O)/G(O).

Here Grλ is isomorphic to an affine space, of dimension

Grλ = |〈λ, 2ρ〉| − δλ
where δλ is the length of the shortest w ∈ W such that wλ is dominant. This
decomposition is related to the previous one by

Grλ =
⊔

µ∈W (λ)

Grµ.
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1.3. Convolution diagram. We will also consider

Conv = G(K )×G(O) Gr

where G(K )×G(O) Gr is the quotient of G(K )×Gr by the action of G(O) given
by g · (h, x) = (hg−1, g · x). We have an action of G(O) on Conv induced by
multiplication on the left on G(K ).

In terms of quotient stacks, we have morphisms

(1.1) (G(O)\Gr)× (G(O)\Gr)
p←− G(O)\Conv

m−→ G(O)\Gr

given by

(G(O) · hG(O), G(O) · x)←[ G(O) · [h : x] 7→ G(O) · hx.

2. The Satake category

2.1. Derived Satake category. Recall that in Lectures 4 and 6 we have seen,
given a complex algebraic variety X and a complex algebraic group H acting on
it, how to define the derived category Db(H\X) of complexes of C-sheaves on the
quotient stack H\X, i.e. “H-equivariant sheaves on X.” Here we want to use this
to define the category

Db(G(O)\Gr).

This does not really make sense, since Gr is not a variety and G(O) is not an
algebraic group (it is not of finite type). One can make sense of this category as
follows: one writes

Gr =
⋃

n∈Z≥0

Xn

where each Xn is an algebraic variety which is stable under the action of G(O), and
such that the action of G(O) factors through an action of a quotient Kn of finite
type such that the map G(O)→ G factors through Kn. We can choose these data
in such a way that the map G(O)→ Kn factors through Kn+1. Then we set

Db(G(O)\Gr) = lim−→
n≥0

Db(Kn\Xn)

where the (fully faithful!) functor

Db(Kn\Xn)→ Db(Kn+1\Xn+1)

is the composition

Db(Kn\Xn)→ Db(Kn+1\Xn)→ Db(Kn+1\Xn+1)

where the second functor is pushforward under the embedding Xn → Xn+1.
There exists a bifunctor

? : Db(G(O)\Gr)×Db(G(O)\Gr)→ Db(G(O)\Gr)

given by

F ? G = m∗p
∗(F � G).

(To make sense of this, one really wants to “approximate” the ind-variety Conv by
algebraic varieties, but writing down the details is really cumbersome, and hence
omitted.)

Fact 2.1. This defines a monoidal structure on the category Db(G(O)\Gr).
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Remark 2.2. One should think of Db(G(O)\Gr) as a “categorical upgrade” of the
vector space HG from Lecture 2, and of the monoidal product ? as a “categorical
upgrade” of the product on this vector space.

2.2. The abelian Satake category. In Lectures 7 and 9 we have seen how to de-
fine the “perverse t-structure” on a category Db(H\X). Using “finite-dimensional
approximations” like in §2.1, this defines a perverse t-structure on Db(G(O)\Gr).
The heart of this t-structure is the category

PervG(O)(Gr)

of G(O)-equivariant perverse sheaves on Gr.
We can now state the geometric Satake equivalence as follows. Consider the

complex reductive group G∨ which is Langlands dual to G.

Theorem 2.3. (1) If F ,G belong to PervG(O)(Gr), then F ? G belongs to the
subcategory PervG(O)(Gr). As a consequence, the bifunctor ? restricts to a
monoidal product on the abelian category PervG(O)(Gr).

(2) There exists an equivalence of monoidal categories

S : (PervG(O)(Gr), ?) ∼= (Rep(G∨),⊗)

such that the following diagram commutes:

(PervG(O)(Gr), ?)
S
∼

//

H•(Gr,−) ''PP
PPP

PPP
PPP

(Rep(G∨),⊗)

Forxxppp
ppp

ppp
pp

VectC.

2.3. The case of a torus. Assume that G = T is a torus. In this case we have
seen that Gr is discrete; in fact we have

Gr = X∨.

Since T (K ) is abelian, the action of T (O) on Gr is trivial; as a consequence we
have

Conv = (T (K )/T (O))×Gr = X∨ ×X∨.

The convolution diagram (1.1) identifies with the diagram

(T (O)\X∨)× (T (O)\X∨)← T (O)\(X∨ ×X∨)→ T (O)\X∨

where the left arrow is the obvious morphism and the right one is induced by the
sum morphism

X∨ ×X∨ → X∨.

The category PervT (O)(Gr) identifies with the category of finite-dimensional X∨-
graded vector spaces, where the component in degree λ ∈ X∨ records the restriction
of the perverse sheaf to the point λ ∈ X∨. Under this identification, the convolution
product ? corresponds to the tensor product of graded vector spaces. Note that the
dual group T∨ has lattice of characters X∨, so that this category identifies with
Rep(T∨).
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2.4. Simple objects. We come back to the general setting.
The general theory of perverse sheaves provides a bijection between isomorphism

classes of simple objects in PervG(O)(Gr) and the set of pairs (X,L) where X ⊂ Gr
is a G(O)-orbit and L is an isomorphism class of simple G(O)-equivariant local

systems on X. By the Cartan decomposition, X is of the form Grλ with λ ∈ X∨+.
One can check that these orbits are simply connected; therefore any local system
is constant, hence there is only one possible choice for L: the rank-1 constant local
system CGrλ .

All in all, we therefore have a bijection between the set of isomorphism classes of
simple objects in PervG(O)(Gr) and X∨+. We will denote by ICλ the simple object
associated with λ.

With this notation we can now state one of the main results of [2], which was
mentioned in Lecture 2.

Theorem 2.4 (Lusztig). For any λ ∈ X∨+ we have

Mλ =
∑
µ∈X∨+

∑
n∈Z

qn/2 · rk(Hn(ICλ|Grµ)).

Proposition 2.5. The category PervG(O)(Gr) is semisimple.

Idea of proof. We consider the category Perv(G(O))(Gr) of perverse sheaves on Gr
which are constructible with respect to the stratification by G(O)-orbits. Then we
have a forgetful functor

PervG(O)(Gr)→ Perv(G(O))(Gr),

which is fully faithful by the general theory of perverse sheaves. It therefore suffices
to prove that the category Perv(G(O))(Gr) is semisimple. (In passing, this will prove
that the functor above is an equivalence of categories.) The essential ingredient in
the proof of the latter fact is the property that if 〈λ, 2ρ〉 is even, resp. odd, then for
any µ ∈ X∨+ such that ICλ|Grµ is nonzero, this complex has nonzero cohomology
objects only in even, resp. odd, degrees. �

Since the category Rep(G∨) is also semisimple with isomorphism classes para-
metrized by X∨+ (see Lecture 1), we therefore have an equivalence of abelian cate-
gories

PervG(O)(Gr) ∼= Rep(G∨).

But Theorem 2.3 is stronger: it says that this equivalence identifies convolution with
tensor product, and also describes the underlying vector space of the representation
corresponding to a given perverse sheaf.
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