
LECTURE 11: GEOMETRIC SATAKE EQUIVALENCE, II

Recall that we have fixed a complex connected reductive algebraic group G, with
a Borel subgroup B and a maximal torus T ⊂ B. We have the loop group G(K ),
the arc group G(O), the affine Grassmannian Gr = G(K )/G(O), and the “Satake
category”

PervG(O)(Gr)

of G(O)-equivariant perverse sheaves on Gr. Recall also that we have the (associa-
tive) convolution product ? on the derived category Db(G(O)\Gr) of sheaves on
the quotient stack G(O)\Gr.

With this notation, the statement of the geometric Satake equivalence is as
follows.

Theorem 0.1. (1) If F ,G belong to PervG(O)(Gr), then F ? G belongs to the
subcategory PervG(O)(Gr). As a consequence, the bifunctor ? restricts to a
monoidal product on the abelian category PervG(O)(Gr).

(2) There exists an equivalence of monoidal categories

S : (PervG(O)(Gr), ?) ∼= (Rep(G∨),⊗)

such that the following diagram commutes:

(PervG(O)(Gr), ?)
S
∼

//

H•(Gr,−) ''OO
OOO

OOO
OOO

(Rep(G∨),⊗)

Forxxppp
ppp

ppp
pp

VectC.

In this lecture we want to discuss the proof of this theorem.

1. Weight functors

1.1. Semiinfinite orbits. Consider the unipotent radical U of B, and the unipo-
tent radical U− of the opposite Borel subgroup. The decompositions of Gr into
U(K ) and U−(K ) are given by the Iwasawa decompositions:

Gr =
⊔

λ∈X∨
S+
λ where S+

λ = U(K ) · tλ ·G(O)/G(O)

and

Gr =
⊔

λ∈X∨
S−λ where S−λ = U−(K ) · tλ ·G(O)/G(O).

Here each S±λ is infinite-dimensional, but we control the dimension of their inter-
sections with the G(O)-orbits: we have

(1.1) dim(Grλ ∩ S+
µ ) = 〈ρ, λ+ µ〉 and dim(Grλ ∩ S−µ ) = 〈ρ, λ− µ〉.

We also know when these intersections are nonempty: this happens precisely when
µ belongs to the intersection of the convex hull of W (λ) with λ+ ZR. (Note that
these facts are far from trivial in general, and crucial for the whole theory!)
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Finally we have

S+
λ =

⊔
µ∈X∨
µ≤λ

S+
µ

and
S−λ =

⊔
µ∈X∨
µ≥λ

S−µ .

1.2. Weight functors. We denote by

s+λ : S+
λ → Gr, s−λ : S−λ → Gr

the embeddings, and one considers the functors

F±λ : PervG(O)(Gr)→ VectC

defined by

F+
λ (F) = H•c(S

+
λ , (s

+
λ )∗F), F−λ (F) = H•(S−λ , (s

−
λ )!F).

The following property is an easy consequence of (1.1) and basic properties of
cohomology.

Lemma 1.1. For any F ∈ PervG(O)(Gr) we have

Hnc (S+
λ , (s

+
λ )∗F) = 0 if n > 〈λ, 2ρ〉,

Hn(S−λ , (s
−
λ )!F) = 0 if n < 〈λ, 2ρ〉.

The following theorem is more difficult. It is an application of Braden’s hyperbolic
localization theorem, see [1, Theorem 2.10.7].

Theorem 1.2. For any F ∈ PervG(O)(Gr), λ ∈ X∨ and n in Z, there exists a
canonical isomorphism

Hnc (S+
λ , (s

+
λ )∗F) ∼= Hn(S−λ , (s

−
λ )!F).

This theorem and Lemma 1.1 imply that the spaces in the theorem vanish unless
n = 〈λ, 2ρ〉, i.e. we have

F+
λ (F) = H〈λ,2ρ〉c (S+

λ , (s
+
λ )∗F), F−λ (F) = H〈λ,2ρ〉(S−λ , (s

−
λ )!F).

Moreover these spaces are canonically isomorphic; they will therefore be denoted
Fλ(F).

One next obtains information about the value of the functor Fλ on simple objects.

Proposition 1.3. If λ ∈ X∨ and µ ∈ X∨+, the vector space Fλ(ICµ) has a basis

parametrized by the irreducible components of the intersection S+
λ ∩Grµ.

The main ingredients of the proof of this proposition are the following:

• by semisimplicity, ICµ identifies with the perverse degree-0 cohomology of
the !-pushforward of CGrµ [〈2ρ, µ〉] along the embedding Grµ ↪→ Gr;

• for a variety X of degree d, H2d
c (X) admits a basis parametrized by irre-

ducible components of X.

An additional important property of the weight functors is the following.

Proposition 1.4. For any F ∈ PervG(O)(Gr), we have a canonical isomorphism

H•(Gr,F) =
⊕
λ∈X∨

Fλ(F).
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2. Proof of the geometric Satake equivalence

2.1. Exactness. First we consider Item (1) in Theorem 0.1. Recall the convolution
diagram

(G(O)\Gr)× (G(O)\Gr)
p←− G(O)\Conv

m−→ G(O)\Gr.

If F and G belong to PervG(O)(Gr), it is not difficult to check that p∗(F � G) is
a perverse sheaf, and that it is constructible with respect to the stratification

(2.1) Conv =
⊔

λ,µ∈X∨+

π−1(Grλ)×G(O) Grµ.

(Here π : G(K ) → Gr is the natural quotient morphism, and we mean that the
restriction of each cohomology complex to each stratum is a constant sheaf.) The
exactness statement therefore follows from the fact that the functor

m∗ : Db(G(O)\Conv)→ Db(G(O)\Gr)

sends perverse sheaves constructible with respect to the stratification (2.1) to per-
verse sheaves. This property follows from an analysis of the dimension of inter-
sections of fibers of m with strata; this is formalized in the notion of “stratified
semismall map.” (For details on this notion, see [1, Definition 3.8.8]. For a proof
that m is stratified semismall, see [1, Proposition 9.5.4]. The proof is based on the
formulas (1.1).)

Remark 2.1. There is another known proof of Theorem 0.1(1), based on Lusztig’s
results mentioned in Lectures 2 and 9. For details, see [1, Exercise 9.4.1] or [2,
Proposition 2.2.1].

2.2. Tannakian formalism. As the next step, one checks that the functor

H•(Gr,−) : PervG(O)(Gr)→ VectC

is monoidal. One can also check that it is faithful. (This follows from Proposi-
tions 1.3 and 1.4, which show that the functor H•(Gr,−) does not send any nonzero
object to 0.) Tannakian formalism therefore provides for us a Hopf algebra CG and
an equivalence of monoidal categories

PervG(O)(Gr)
∼−→ Comod(CG)

(where Comod(CG) is the category of finite-dimensional comodules over CG) such
that the forgetful functor

Comod(CG)→ VectC
corresponds to

H•(Gr,−) : PervG(O)(Gr)→ VectC.

The rest of the proof will consist in analyzing the Hopf algebra CG, and finally
identifying it with the algebra of functions on the dual group G∨.

2.3. Commutativity. The first property one should check is that the product
on CG is commutative. By Tannakian formalism, this property is equivalent to
the existence of a “commutativity constraint” for the convolution product ?, i.e. a
bifunctorial isomorphism

F ? G ∼= G ? F
for F ,G in PervG(O)(Gr) compatible with the other structures we have on ?. This
construction is far from obvious, and is due to Drinfeld. It uses the “moduli”
description of Gr, i.e. the fact that this ind-scheme parametrizes the following data.
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We fix a smooth curve C and a point x ∈ C. Then the data are those of a G-torsor
on C and a trivialization of this torsor away from x, i.e. an isomorphism between
the restriction of the torsor to C r {x} and the trivial torsor G× (C r {x}). One
can construct a similar ind-scheme over C2, and then “move the points in C2” to
produce the commutativity constraint.

2.4. Identification of the group scheme. Now we know that CG is a commuta-
tive Hopf algebra over C, hence the algebra of functions on a group scheme G over
C. Using Tannakian formalism one successively checks that this group scheme has
the following properties:

(1) G is of finite type (i.e. CG is finitely generated as an algebra). (This uses
basic facts about the simple objects in PervG(O)(Gr).)

(2) G is connected. (Same.)
(3) G is is reductive. (This follows from the semisimplicity of the category

PervG(O)(Gr).)

The next step is to produce a maximal torus in G. Recall that this maximal
torus should be T∨ and that, by Tannakian formalism, producing a morphism of
algebraic groups T∨ → G is equivalent to producing a monoidal functor

(2.2) Rep(G)→ Rep(T∨)

compatible with the natural functors to VectC. Now, since X∨ is the character
lattice of T∨, we have a canonical equivalence between Rep(T∨) and the category

VectX
∨

C of finite-dimensional C-vector spaces graded by the abelian group X∨. And
we have a functor

Rep(G)→ VectX
∨

C
sending F to ⊕

λ∈X∨
Fλ(F).

This produces the desired functor (2.2). One checks that this functor is indeed
monoidal, and Proposition 1.4 says that it is compatible with the natural functors
to VectC.

This process produces a morphism T∨ → G. It is not difficult to check that this
morphism is an embedding, and that its image is a maximal torus in G.

Finally, it remains to determine the root datum of G with respect to T∨, and
more precisely to identify it with (X∨,R∨,X,R). The essential ingredients for that
are:

• the fact that the simple G-modules are parametrized by X∨+ (because we
know the classification of simple objects in PervG(O)(Gr));

• Proposition 1.3, together with the criterion for the intersection S+
λ ∩Grµ to

be nonempty, which determines the T∨-weights of the simple G-modules.
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