LECTURE 11: GEOMETRIC SATAKE EQUIVALENCE, II

Recall that we have fixed a complex connected reductive algebraic group G, with a Borel subgroup B and a maximal torus $T \subset B$. We have the loop group $G(\mathscr{K})$, the arc group $G(\mathscr{O})$, the affine Grassmannian $\operatorname{Gr} = G(\mathscr{K})/G(\mathscr{O})$, and the "Satake category"

$$\operatorname{Perv}_{G(\mathscr{O})}(\operatorname{Gr})$$

of $G(\mathcal{O})$ -equivariant perverse sheaves on Gr. Recall also that we have the (associative) convolution product \star on the derived category $D^{\mathrm{b}}(G(\mathcal{O})\backslash\mathrm{Gr})$ of sheaves on the quotient stack $G(\mathcal{O})\backslash\mathrm{Gr}$.

With this notation, the statement of the geometric Satake equivalence is as follows.

- **Theorem 0.1.** (1) If \mathcal{F}, \mathcal{G} belong to $\operatorname{Perv}_{G(\mathscr{O})}(\operatorname{Gr})$, then $\mathcal{F} \star \mathcal{G}$ belongs to the subcategory $\operatorname{Perv}_{G(\mathscr{O})}(\operatorname{Gr})$. As a consequence, the bifunctor \star restricts to a monoidal product on the abelian category $\operatorname{Perv}_{G(\mathscr{O})}(\operatorname{Gr})$.
 - (2) There exists an equivalence of monoidal categories

$$\mathbf{S}: (\operatorname{Perv}_{G(\mathscr{O})}(\operatorname{Gr}), \star) \cong (\operatorname{Rep}(G^{\vee}), \otimes)$$

such that the following diagram commutes:

$$(\operatorname{Perv}_{G(\mathscr{O})}(\operatorname{Gr}), \star) \xrightarrow{\mathsf{S}} (\operatorname{Rep}(G^{\vee}), \otimes)$$
$$\overset{\mathsf{H}^{\bullet}(\operatorname{Gr}, -)}{\overset{\mathsf{Vect}_{\mathbb{C}}}} \overset{\mathsf{For}}{\overset{\mathsf{For}}}$$

In this lecture we want to discuss the proof of this theorem.

1. Weight functors

1.1. Semiinfinite orbits. Consider the unipotent radical U of B, and the unipotent radical U^- of the opposite Borel subgroup. The decompositions of Gr into $U(\mathcal{K})$ and $U^-(\mathcal{K})$ are given by the *Iwasawa decompositions*:

$$\operatorname{Gr} = \bigsqcup_{\lambda \in \mathbf{X}^{\vee}} S_{\lambda}^{+} \quad \text{where } S_{\lambda}^{+} = U(\mathscr{K}) \cdot t^{\lambda} \cdot G(\mathscr{O}) / G(\mathscr{O})$$

and

$$\mathrm{Gr} = \bigsqcup_{\lambda \in \mathbf{X}^{\vee}} S_{\lambda}^{-} \quad \mathrm{where} \ S_{\lambda}^{-} = U^{-}(\mathscr{K}) \cdot t^{\lambda} \cdot G(\mathscr{O})/G(\mathscr{O}).$$

Here each S_{λ}^{\pm} is infinite-dimensional, but we control the dimension of their intersections with the $G(\mathcal{O})$ -orbits: we have

(1.1)
$$\dim(\operatorname{Gr}^{\lambda} \cap S_{\mu}^{+}) = \langle \rho, \lambda + \mu \rangle \quad \text{and} \quad \dim(\operatorname{Gr}^{\lambda} \cap S_{\mu}^{-}) = \langle \rho, \lambda - \mu \rangle.$$

We also know when these intersections are nonempty: this happens precisely when μ belongs to the intersection of the convex hull of $W(\lambda)$ with $\lambda + \mathbb{ZR}$. (Note that these facts are far from trivial in general, and crucial for the whole theory!)

Finally we have

$$\overline{S_{\lambda}^{+}} = \bigsqcup_{\substack{\mu \in \mathbf{X}^{\vee} \\ \mu \leq \lambda}} S_{\mu}^{+}$$

and

$$\overline{S_{\lambda}^{-}} = \bigsqcup_{\substack{\mu \in \mathbf{X}^{\vee} \\ \mu \ge \lambda}} S_{\mu}^{-}.$$

1.2. Weight functors. We denote by

$$s_{\lambda}^{+}: S_{\lambda}^{+} \to \operatorname{Gr}, \quad s_{\lambda}^{-}: S_{\lambda}^{-} \to \operatorname{Gr}$$

the embeddings, and one considers the functors

$$\mathsf{F}^{\pm}_{\lambda}: \operatorname{Perv}_{G(\mathscr{O})}(\operatorname{Gr}) \to \mathsf{Vect}_{\mathbb{C}}$$

defined by

$$\mathsf{F}^+_{\lambda}(\mathcal{F}) = \mathsf{H}^{\bullet}_c(S^+_{\lambda}, (s^+_{\lambda})^*\mathcal{F}), \qquad \mathsf{F}^-_{\lambda}(\mathcal{F}) = \mathsf{H}^{\bullet}(S^-_{\lambda}, (s^-_{\lambda})^!\mathcal{F}).$$

The following property is an easy consequence of (1.1) and basic properties of cohomology.

Lemma 1.1. For any $\mathcal{F} \in \operatorname{Perv}_{G(\mathscr{O})}(\operatorname{Gr})$ we have

$$\begin{aligned} \mathsf{H}^{n}_{c}(S^{+}_{\lambda},(s^{+}_{\lambda})^{*}\mathcal{F}) &= 0 \quad \text{if } n > \langle \lambda, 2\rho \rangle, \\ \mathsf{H}^{n}(S^{-}_{\lambda},(s^{-}_{\lambda})^{!}\mathcal{F}) &= 0 \quad \text{if } n < \langle \lambda, 2\rho \rangle. \end{aligned}$$

The following theorem is more difficult. It is an application of Braden's hyperbolic localization theorem, see [1, Theorem 2.10.7].

Theorem 1.2. For any $\mathcal{F} \in \operatorname{Perv}_{G(\mathscr{O})}(\operatorname{Gr}), \lambda \in \mathbf{X}^{\vee}$ and n in \mathbb{Z} , there exists a canonical isomorphism

$$\mathsf{H}^{n}_{c}(S^{+}_{\lambda}, (s^{+}_{\lambda})^{*}\mathcal{F}) \cong \mathsf{H}^{n}(S^{-}_{\lambda}, (s^{-}_{\lambda})^{!}\mathcal{F}).$$

This theorem and Lemma 1.1 imply that the spaces in the theorem vanish unless $n = \langle \lambda, 2\rho \rangle$, i.e. we have

$$\mathsf{F}_{\lambda}^{+}(\mathcal{F}) = \mathsf{H}_{c}^{\langle \lambda, 2\rho \rangle}(S_{\lambda}^{+}, (s_{\lambda}^{+})^{*}\mathcal{F}), \qquad \mathsf{F}_{\lambda}^{-}(\mathcal{F}) = \mathsf{H}^{\langle \lambda, 2\rho \rangle}(S_{\lambda}^{-}, (s_{\lambda}^{-})^{!}\mathcal{F}).$$

Moreover these spaces are canonically isomorphic; they will therefore be denoted $\mathsf{F}_{\lambda}(\mathcal{F}).$

One next obtains information about the value of the functor F_{λ} on simple objects.

Proposition 1.3. If $\lambda \in \mathbf{X}^{\vee}$ and $\mu \in \mathbf{X}^{\vee}_+$, the vector space $\mathsf{F}_{\lambda}(\mathrm{IC}_{\mu})$ has a basis parametrized by the irreducible components of the intersection $S^+_{\lambda} \cap \operatorname{Gr}^{\mu}$.

The main ingredients of the proof of this proposition are the following:

- by semisimplicity, IC_{μ} identifies with the perverse degree-0 cohomology of
- the !-pushforward of $\mathbb{C}_{\mathrm{Gr}^{\mu}}[\langle 2\rho, \mu \rangle]$ along the embedding $\mathrm{Gr}^{\mu} \hookrightarrow \mathrm{Gr}$; for a variety X of degree d, $\mathsf{H}_{c}^{2d}(X)$ admits a basis parametrized by irreducible components of X.

An additional important property of the weight functors is the following.

Proposition 1.4. For any $\mathcal{F} \in \operatorname{Perv}_{G(\mathscr{O})}(\operatorname{Gr})$, we have a canonical isomorphism

$$\mathsf{H}^{\bullet}(\mathrm{Gr},\mathcal{F}) = \bigoplus_{\lambda \in \mathbf{X}^{\vee}} \mathsf{F}_{\lambda}(\mathcal{F}).$$

2. Proof of the geometric Satake equivalence

2.1. **Exactness.** First we consider Item (1) in Theorem 0.1. Recall the convolution diagram

$$(G(\mathscr{O})\backslash \mathrm{Gr}) \times (G(\mathscr{O})\backslash \mathrm{Gr}) \xleftarrow{p} G(\mathscr{O})\backslash \mathrm{Conv} \xrightarrow{m} G(\mathscr{O})\backslash \mathrm{Gr}.$$

If \mathcal{F} and \mathcal{G} belong to $\operatorname{Perv}_{G(\mathscr{O})}(\operatorname{Gr})$, it is not difficult to check that $p^*(\mathcal{F} \boxtimes \mathcal{G})$ is a perverse sheaf, and that it is constructible with respect to the stratification

(2.1)
$$\operatorname{Conv} = \bigsqcup_{\lambda,\mu \in \mathbf{X}_{+}^{\vee}} \pi^{-1}(\operatorname{Gr}^{\lambda}) \times^{G(\mathscr{O})} \operatorname{Gr}^{\mu}.$$

(Here $\pi : G(\mathscr{K}) \to Gr$ is the natural quotient morphism, and we mean that the restriction of each cohomology complex to each stratum is a constant sheaf.) The exactness statement therefore follows from the fact that the functor

$$m_*: D^{\mathrm{b}}(G(\mathscr{O}) \setminus \mathrm{Conv}) \to D^{\mathrm{b}}(G(\mathscr{O}) \setminus \mathrm{Gr})$$

sends perverse sheaves constructible with respect to the stratification (2.1) to perverse sheaves. This property follows from an analysis of the dimension of intersections of fibers of m with strata; this is formalized in the notion of "stratified semismall map." (For details on this notion, see [1, Definition 3.8.8]. For a proof that m is stratified semismall, see [1, Proposition 9.5.4]. The proof is based on the formulas (1.1).)

Remark 2.1. There is another known proof of Theorem 0.1(1), based on Lusztig's results mentioned in Lectures 2 and 9. For details, see [1, Exercise 9.4.1] or [2, Proposition 2.2.1].

2.2. Tannakian formalism. As the next step, one checks that the functor

 $\mathsf{H}^{\bullet}(\mathrm{Gr},-):\mathrm{Perv}_{G(\mathscr{O})}(\mathrm{Gr})\to\mathsf{Vect}_{\mathbb{C}}$

is monoidal. One can also check that it is faithful. (This follows from Propositions 1.3 and 1.4, which show that the functor $H^{\bullet}(Gr, -)$ does not send any nonzero object to 0.) Tannakian formalism therefore provides for us a Hopf algebra C_G and an equivalence of monoidal categories

$$\operatorname{Perv}_{G(\mathscr{O})}(\operatorname{Gr}) \xrightarrow{\sim} \operatorname{Comod}(C_G)$$

(where $\mathsf{Comod}(C_G)$ is the category of finite-dimensional comodules over C_G) such that the forgetful functor

$$\mathsf{Comod}(C_G) \to \mathsf{Vect}_{\mathbb{C}}$$

corresponds to

$$\mathsf{H}^{\bullet}(\mathrm{Gr}, -) : \mathrm{Perv}_{G(\mathscr{O})}(\mathrm{Gr}) \to \mathsf{Vect}_{\mathbb{C}}$$

The rest of the proof will consist in analyzing the Hopf algebra C_G , and finally identifying it with the algebra of functions on the dual group G^{\vee} .

2.3. Commutativity. The first property one should check is that the product on C_G is commutative. By Tannakian formalism, this property is equivalent to the existence of a "commutativity constraint" for the convolution product \star , i.e. a bifunctorial isomorphism

$$\mathcal{F}\star\mathcal{G}\cong\mathcal{G}\star\mathcal{F}$$

for \mathcal{F}, \mathcal{G} in $\operatorname{Perv}_{G(\mathscr{O})}(\operatorname{Gr})$ compatible with the other structures we have on \star . This construction is far from obvious, and is due to Drinfeld. It uses the "moduli" description of Gr, i.e. the fact that this ind-scheme parametrizes the following data.

We fix a smooth curve C and a point $x \in C$. Then the data are those of a G-torsor on C and a trivialization of this torsor away from x, i.e. an isomorphism between the restriction of the torsor to $C \setminus \{x\}$ and the trivial torsor $G \times (C \setminus \{x\})$. One can construct a similar ind-scheme over C^2 , and then "move the points in C^2 " to produce the commutativity constraint.

2.4. Identification of the group scheme. Now we know that C_G is a *commuta*tive Hopf algebra over \mathbb{C} , hence the algebra of functions on a group scheme \mathfrak{G} over \mathbb{C} . Using Tannakian formalism one successively checks that this group scheme has the following properties:

- (1) \mathfrak{G} is of finite type (i.e. C_G is finitely generated as an algebra). (This uses basic facts about the simple objects in $\operatorname{Perv}_{G(\mathfrak{O})}(\operatorname{Gr})$.)
- (2) \mathfrak{G} is connected. (Same.)
- (3) \mathfrak{G} is is reductive. (This follows from the semisimplicity of the category $\operatorname{Perv}_{G(\mathscr{O})}(\operatorname{Gr})$.)

The next step is to produce a maximal torus in \mathfrak{G} . Recall that this maximal torus should be T^{\vee} and that, by Tannakian formalism, producing a morphism of algebraic groups $T^{\vee} \to \mathfrak{G}$ is equivalent to producing a monoidal functor

(2.2)
$$\operatorname{Rep}(\mathfrak{G}) \to \operatorname{Rep}(T^{\vee})$$

compatible with the natural functors to $\mathsf{Vect}_{\mathbb{C}}$. Now, since \mathbf{X}^{\vee} is the character lattice of T^{\vee} , we have a canonical equivalence between $\operatorname{Rep}(T^{\vee})$ and the category $\mathsf{Vect}_{\mathbb{C}}^{\mathbf{X}^{\vee}}$ of finite-dimensional \mathbb{C} -vector spaces graded by the abelian group \mathbf{X}^{\vee} . And we have a functor

$$\operatorname{Rep}(\mathfrak{G}) \to \operatorname{Vect}_{\mathbb{C}}^{\mathbf{X}^{\vee}}$$

sending \mathcal{F} to

$$\bigoplus_{\lambda\in\mathsf{X}^{\vee}}\mathsf{F}_{\lambda}(\mathcal{F}).$$

This produces the desired functor (2.2). One checks that this functor is indeed monoidal, and Proposition 1.4 says that it is compatible with the natural functors to $Vect_{\mathbb{C}}$.

This process produces a morphism $T^{\vee} \to \mathfrak{G}$. It is not difficult to check that this morphism is an embedding, and that its image is a maximal torus in \mathfrak{G} .

Finally, it remains to determine the root datum of \mathfrak{G} with respect to T^{\vee} , and more precisely to identify it with $(\mathbf{X}^{\vee}, \mathfrak{R}^{\vee}, \mathbf{X}, \mathfrak{R})$. The essential ingredients for that are:

- the fact that the simple \mathfrak{G} -modules are parametrized by \mathbf{X}^{\vee}_+ (because we know the classification of simple objects in $\operatorname{Perv}_{G(\mathscr{O})}(\operatorname{Gr})$);
- Proposition 1.3, together with the criterion for the intersection S⁺_λ ∩ Gr^μ to be nonempty, which determines the T[∨]-weights of the simple 𝔅-modules.

References

- P. Achar, Perverse sheaves and applications to representation theory, Math. Surveys Monogr. 258, American Mathematical Society, Providence, RI, 2021.
- [2] V. Ginzburg, Perverse sheaves on a Loop group and Langlands' duality, preprint arXiv:alggeom/9511007.