
LECTURE 14: GAITSGORY’S CENTRAL FUNCTOR AND

WAKIMOTO SHEAVES

Recall from Lectures 2 and 13 the spherical affine Hecke algebra

C (K\G/K)

and the affine Hecke algebra
C (I\G/I).

(Here K ⊂ G is the standard maximal open compact subgroup, and I ⊂ K is the
Iwahori subgroup determined by our choice of Borel subgroup.) A theorem of Bern-
stein asserts that C (K\G/K) identifies canonically with the center of C (I\G/I).
More specifically, consider the space

C (K\G/I).
of (K, I)-invariant locally constant functors on G with compact support, and the
map

π : C (I\G/I) → C (K\G/I)
defined by

π(f)(g) =

∫
K
f(x · g)dx.

It is easily seen that this map restricts to an algebra map

Z(C (I\G/I)) → C (K\G/K),

and Bernstein’s theorem states that the latter map is an isomorphism.
Gaitsgory’s central functor is a geometric counterpart of the inverse to this iso-

morphism.

1. The central functor

1.1. Nearby cycles. We start by explaining a general construction for sheaves.
Consider a complex algebraic variety X, and an algebraic functor f : X → C. We
set

X× := f−1(C×), X0 := f−1(0),

and consider the diagram

X̃
expX //

��

X× j //

��

X

f

��

X0ioo

��
C

exp // C× // C {0}oo

where all the squares are cartesian and the unlabelled arrow on the bottom line
are the obvious embeddings. The nearby cycles functor associated with f is the
functor

Ψf : D+(X×) → D+(X0)

defined by
Ψf (F ) = i∗j∗(expX)∗(expX)∗F [−1].
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The action of Z on C over C× (where 1 acts by z 7→ z + 2iπ) induces a canonical
automorphism of the functor Ψf , called the monodromy automorphism.

The basic properties of nearby cycles are as follows:

(1) The functor Ψf sends bounded constructible complexes to bounded con-
structible complexes (cf. [1, Theorem 4.2.3]).

(2) The functor Ψf sends perverse sheaves to perverse sheaves (cf. [1, Theo-
rem 4.2.8]).

(3) Nearby cycles commute with smooth pullback in the sense that given a
smooth map ϕ : Y → X, for any F in D+(X×) there exists a canonical
isomorphism

Ψf◦ϕ((ϕ
×)∗F ) ∼= (ϕ0)∗Ψf (F ),

see [1, Lemma 4.1.7(2)]. (Here ϕ× and ϕ0 are the restrictions of ϕ to
Y × = (f ◦ ϕ)−1(C×) and Y 0 = (f ◦ ϕ)−1(0) respectively.)

(4) Nearby cycles commute with proper pushforward in the sense that given
a proper map ϕ : Y → X, for any F in D+(Y ×) there exists a canonical
isomorphism

Ψf ((ϕ
×)∗F ) ∼= (ϕ0)∗Ψf◦ϕ(F ),

see [1, Lemma 4.1.7(1)].

1.2. Construction of Gaitsgory’s functor. We turn to the context of the geo-
metric Satake equivalence. We have a complex connected reductive algebraic group
G, with a Borel subgroup B and a maximal torus T ⊂ B. We have the loop group
G(K ), the arc group G(O), the affine Grassmannian GrG = G(K )/G(O), and the
“Satake category”

PervG(O)(GrG),

which is the heart of the perverse t-structure on Db(G(O)\G(K )/G(O)). The tri-
angulated category Db(G(O)\G(K )/G(O)) has a monoidal product ⋆G(O), which
restricts to a monoidal product on PervG(O)(GrG).

We also consider the Iwahori subgroup I ⊂ G(O) (i.e. the inverse image of B
under the natural morphismG(O) → G), and the affine flag variety FlG = G(K )/I.
This is an ind-scheme, and we have a canonical morphism

π : FlG → GrG

which is a locally trivial fibration with fibers isomorphic to G(O)/I ∼= G/B. Then
we have the derived category

Db(I\G(K )/I),

and the heart PervI(FlG) of the perverse t-structure on it. Here again we have
a monoidal product ⋆I on Db(I\G(K )/I), but it does not restrict to a monoidal
product on PervI(FlG): a product of perverse sheaves is not perverse in general.

Gaitsgory considers an ind-scheme GrG,C over C which has the property that

GrG,C|C× = GrG × C×, GrG,C|{0} = FlG.

(This ind-scheme is defined in terms of the description of GrG as a certain moduli
space of G-torsors on A1

C. One should think of it as a deformation of the affine
Grassmannian to the affine flag variety.) Then he defines the functor

Z : Db(G(O)\G(K )/G(O)) → Db(I\G(K )/I)
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by setting
Z(F ) = Ψ(p∗F [1])

where p : GrG,C|C× → GrG is the projection and Ψ is the nearby cycles functor
associated with the structure map GrG,C → C.

The following statement gathers some of the main results of [4]. The proofs
essentially boil down to applications of the properties of nearby cycles recalled
in §1.1. (For details, see e.g. [2].)

Theorem 1.1 (Gaitsgory, [4]). (1) The functor Z is monoidal (with respect to
the products ⋆G(O) and ⋆I) and t-exact (i.e. it sends perverse sheaves to
perverse sheaves).

(2) For any F in Db(G(O)\G(K )/G(O)) and G in Db(I\G(K )/I) there
exists a canonical isomorphism

Z(F ) ⋆I G ∼= G ⋆I Z(F ).

Moreover, these objects are perverse sheaves.
(3) For any F in Db(G(O)\G(K )/G(O)) there exists a canonical isomor-

phism π∗ ◦ Z(F ) ∼= F .
(4) For any F in Db(G(O)\G(K )/G(O)), the monodromy automorphism of

Z(F ) is unipotent.

2. Wakimoto sheaves

2.1. Standard and costandard perverse sheaves. Recall the (extended) affine
Weyl group

Wext = W ⋉X∗(T ).

Any λ ∈ X∗(T ) determines an element zλ ∈ T (K ) ⊂ G(K ), and for any w ∈ W
we choose a representative ẇ ∈ NG(T ). If x = w ⋉ λ ∈ Wext, we set

FlG,x := IẇzλI/I ⊂ FlG.

This is a locally closed subvariety of FlG, isomorphic to an affine space, and we
denote by

jw : FlG,w → FlG

the embedding. We also set

ℓ(w) = dim(FlG,w).

(For those who know the theory: this is the length function for a “quasi-Coxeter
structure” on FlG.)

An affine analogue of the Bruhat decomposition says that

FlG =
⊔

w∈Wext

FlG,w.

For w ∈ Wext we set

∆w = (jw)!CFlG,w
[ℓ(w)], ∇w = (jw)∗CFlG,w

[ℓ(w)].

These are perverse sheaves; they are called the standard and costandard perverse
sheaf associated with w respectively. (This is not completely obvious, and follows
from the fact that jw is an affine morphism.) There exists (up to scalar) a unique
nonzero morphism ∆w → ∇w. Its image is a simple perverse sheaf, denoted ICw,
and the objects (ICw : w ∈ Wext) are representatives for isomorphism classes of
simple objects in PervI(FlG).
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Note that for w = e (neutral element in Wext) we have ∆e = ∇e = ICe, and this
object is the unit object for the product ⋆I .

The following statement gathers the main properties of the standard and costan-
dard objects with respect to convolution. (For proofs, see [2, §4.1.2–4.1.3].)

Proposition 2.1. (1) For any w, y ∈ Wext such that ℓ(wy) = ℓ(w) + ℓ(y),
there exist canonical isomorphisms

∆w ⋆I ∆y
∼= ∆wy, ∇w ⋆I ∇y

∼= ∇wy.

(2) For any w ∈ Wext there exist canonical isomorphisms

∆w ⋆I ∇w−1
∼= ∆e

∼= ∇w−1 ⋆I ∆w.

(3) For any w, y ∈ Wext, the object ∆w ⋆I ∇y is perverse.

2.2. Wakimoto perverse sheaves. For λ ∈ X∗(T ), choose λ1, λ2 ∈ X∗(T )
+ such

that λ = λ1 − λ2, and set

Wλ = ∇λ1
⋆I ∆−λ2

.

It turns out that this object does not depend on the choice of λ1, λ2. (This follows
from the fact that for λ ∈ X∗(T )

+ we have ℓ(λ) = ⟨λ, 2ρ⟩; in particular, for
λ, µ ∈ X∗(T )

+ we have ℓ(λ+ µ) = ℓ(λ) + ℓ(µ).)

Proposition 2.2 (Mirković). (1) For any λ ∈ X∗(T ) the object Wλ is a per-
verse sheaf, and it is supported on FlG,λ.

(2) For any λ, µ ∈ X∗(T ) we have

Wλ ⋆I Wµ
∼= Wλ+µ.

For proofs, see [2, §4.2].

2.3. Wakimoto filtrations of central sheaves. We will say that an object F ∈
PervI(FlG) admits a Wakimoto filtration if it admits a finite filtration

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fn−1 ⊂ Fn = F

such that each Fi/Fi−1 is of the form Wλi for some λi ∈ X∗(T ). Such a filtration
(when it exists) might not be unique, but for any λ ∈ X∗(T ) the number of occur-
rences of Wλ as a subquotient is uniquely determined, and called the multiplicity
of Wλ in F . (For details, see [2, §4.3].)

Theorem 2.3 (Arkhipov–Bezrukavnikov, [3]). (1) For any F in PervG(O)(GrG),
the perverse sheaf Z(F ) admits a Wakimoto filtration.

(2) For any λ ∈ X∗(T ), the multiplicity of Wλ in Z(F ) is the dimension of the
λ-weight space of Sat(F ).

This proof is rather formal. For the 1st point, one only uses the fact that Z(F )
is central and convolution-exact (cf. Theorem 1.1(2)); see [2, §4.4.2] for details. For
the second point, one just needs to compute the cohomology of Wakimoto sheaves
with support in U−(K )-orbits in FlG; see [2, Proposition 4.6.5].
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