LECTURE 14: GAITSGORY'S CENTRAL FUNCTOR AND WAKIMOTO SHEAVES

Recall from Lectures 2 and 13 the spherical affine Hecke algebra

$$\mathscr{C}(\mathcal{K} \backslash \mathcal{G} / \mathcal{K})$$

and the affine Hecke algebra

$$\mathscr{C}(\mathcal{I} \setminus \mathcal{G} / \mathcal{I}).$$

(Here $\mathcal{K} \subset \mathcal{G}$ is the standard maximal open compact subgroup, and $\mathcal{I} \subset \mathcal{K}$ is the Iwahori subgroup determined by our choice of Borel subgroup.) A theorem of Bernstein asserts that $\mathscr{C}(\mathcal{K} \setminus \mathcal{G}/\mathcal{K})$ identifies canonically with the center of $\mathscr{C}(\mathcal{I} \setminus \mathcal{G}/\mathcal{I})$. More specifically, consider the space

$$\mathscr{C}(\mathcal{K} \backslash \mathcal{G} / \mathcal{I}).$$

of $(\mathcal{K}, \mathcal{I})$ -invariant locally constant functors on \mathcal{G} with compact support, and the map

$$\pi: \mathscr{C}(\mathcal{I} \backslash \mathcal{G} / \mathcal{I}) \to \mathscr{C}(\mathcal{K} \backslash \mathcal{G} / \mathcal{I})$$

defined by

$$\pi(f)(g) = \int_{\mathcal{K}} f(x \cdot g) \mathrm{d}x.$$

It is easily seen that this map restricts to an algebra map

$$Z(\mathscr{C}(\mathcal{I}\backslash\mathcal{G}/\mathcal{I})) \to \mathscr{C}(\mathcal{K}\backslash\mathcal{G}/\mathcal{K}),$$

and Bernstein's theorem states that the latter map is an isomorphism.

Gaitsgory's central functor is a geometric counterpart of the inverse to this isomorphism.

1. The central functor

1.1. Nearby cycles. We start by explaining a general construction for sheaves. Consider a complex algebraic variety X, and an algebraic functor $f: X \to \mathbb{C}$. We set

$$X^{\times} := f^{-1}(\mathbb{C}^{\times}), \quad X^0 := f^{-1}(0).$$

and consider the diagram

where all the squares are cartesian and the unlabelled arrow on the bottom line are the obvious embeddings. The *nearby cycles functor* associated with f is the functor

$$\Psi_f: D^+(X^{\times}) \to D^+(X^0)$$

defined by

$$\Psi_f(\mathscr{F}) = i^* j_*(\exp_X)_*(\exp_X)^* \mathscr{F}[-1].$$

The action of \mathbb{Z} on \mathbb{C} over \mathbb{C}^{\times} (where 1 acts by $z \mapsto z + 2i\pi$) induces a canonical automorphism of the functor Ψ_f , called the monodromy automorphism.

The basic properties of nearby cycles are as follows:

- (1) The functor Ψ_f sends bounded constructible complexes to bounded constructible complexes (cf. [1, Theorem 4.2.3]).
- (2) The functor Ψ_f sends perverse sheaves to perverse sheaves (cf. [1, Theorem 4.2.8]).
- (3) Nearby cycles commute with smooth pullback in the sense that given a smooth map $\phi: Y \to X$, for any \mathscr{F} in $D^+(X^{\times})$ there exists a canonical isomorphism

$$\Psi_{f \circ \phi}((\phi^{\times})^* \mathscr{F}) \cong (\phi^0)^* \Psi_f(\mathscr{F}),$$

see [1, Lemma 4.1.7(2)]. (Here ϕ^{\times} and ϕ^{0} are the restrictions of ϕ to $Y^{\times} = (f \circ \phi)^{-1}(\mathbb{C}^{\times})$ and $Y^{0} = (f \circ \phi)^{-1}(0)$ respectively.)

(4) Nearby cycles commute with proper pushforward in the sense that given a proper map $\phi: Y \to X$, for any \mathscr{F} in $D^+(Y^{\times})$ there exists a canonical isomorphism

$$\Psi_f((\phi^{\times})_*\mathscr{F}) \cong (\phi^0)_* \Psi_{f \circ \phi}(\mathscr{F}),$$

see
$$[1, \text{Lemma } 4.1.7(1)].$$

1.2. Construction of Gaitsgory's functor. We turn to the context of the geometric Satake equivalence. We have a complex connected reductive algebraic group G, with a Borel subgroup B and a maximal torus $T \subset B$. We have the loop group $G(\mathscr{K})$, the arc group $G(\mathscr{O})$, the affine Grassmannian $\operatorname{Gr}_G = G(\mathscr{K})/G(\mathscr{O})$, and the "Satake category"

$$\operatorname{Perv}_{G(\mathscr{O})}(\operatorname{Gr}_G)$$

which is the heart of the perverse t-structure on $D^{\mathrm{b}}(G(\mathscr{O})\backslash G(\mathscr{K})/G(\mathscr{O}))$. The triangulated category $D^{\mathrm{b}}(G(\mathscr{O})\backslash G(\mathscr{K})/G(\mathscr{O}))$ has a monoidal product $\star^{G(\mathscr{O})}$, which restricts to a monoidal product on $\operatorname{Perv}_{G(\mathscr{O})}(\operatorname{Gr}_G)$.

We also consider the Iwahori subgroup $I \subset G(\mathscr{O})$ (i.e. the inverse image of B under the natural morphism $G(\mathscr{O}) \to G$), and the affine flag variety $\operatorname{Fl}_G = G(\mathscr{K})/I$. This is an ind-scheme, and we have a canonical morphism

$$\pi: \operatorname{Fl}_G \to \operatorname{Gr}_G$$

which is a locally trivial fibration with fibers isomorphic to $G(\mathcal{O})/I \cong G/B$. Then we have the derived category

$$D^{\mathrm{b}}(I \setminus G(\mathscr{K})/I),$$

and the heart $\operatorname{Perv}_{I}(\operatorname{Fl}_{G})$ of the perverse t-structure on it. Here again we have a monoidal product \star^{I} on $D^{\mathrm{b}}(I \setminus G(\mathscr{K})/I)$, but it does *not* restrict to a monoidal product on $\operatorname{Perv}_{I}(\operatorname{Fl}_{G})$: a product of perverse sheaves is *not* perverse in general.

Gaits gory considers an ind-scheme $\mathrm{Gr}_{G,\mathbb{C}}$ over \mathbb{C} which has the property that

$$\operatorname{Gr}_{G,\mathbb{C}|\mathbb{C}^{\times}} = \operatorname{Gr}_{G} \times \mathbb{C}^{\times}, \quad \operatorname{Gr}_{G,\mathbb{C}|\{0\}} = \operatorname{Fl}_{G}.$$

(This ind-scheme is defined in terms of the description of Gr_G as a certain moduli space of *G*-torsors on $\mathbb{A}^1_{\mathbb{C}}$. One should think of it as a deformation of the affine Grassmannian to the affine flag variety.) Then he defines the functor

$$\mathsf{Z}: D^{\mathrm{b}}(G(\mathscr{O}) \backslash G(\mathscr{K}) / G(\mathscr{O})) \to D^{\mathrm{b}}(I \backslash G(\mathscr{K}) / I)$$

by setting

$$\mathsf{Z}(\mathscr{F}) = \Psi(p^*\mathscr{F}[1])$$

where $p : \operatorname{Gr}_{G,\mathbb{C}|\mathbb{C}^{\times}} \to \operatorname{Gr}_{G}$ is the projection and Ψ is the nearby cycles functor associated with the structure map $\operatorname{Gr}_{G,\mathbb{C}} \to \mathbb{C}$.

The following statement gathers some of the main results of [4]. The proofs essentially boil down to applications of the properties of nearby cycles recalled in $\S1.1$. (For details, see e.g. [2].)

- **Theorem 1.1** (Gaitsgory, [4]). (1) The functor Z is monoidal (with respect to the products $\star^{G(\mathcal{O})}$ and \star^{I}) and t-exact (i.e. it sends perverse sheaves to perverse sheaves).
 - (2) For any \mathscr{F} in $D^{\mathrm{b}}(G(\mathscr{O})\backslash G(\mathscr{K})/G(\mathscr{O}))$ and \mathscr{G} in $D^{\mathrm{b}}(I\backslash G(\mathscr{K})/I)$ there exists a canonical isomorphism

$$\mathsf{Z}(\mathscr{F}) \star^{I} \mathscr{G} \cong \mathscr{G} \star^{I} \mathsf{Z}(\mathscr{F}).$$

Moreover, these objects are perverse sheaves.

- (3) For any \mathscr{F} in $D^{\mathrm{b}}(G(\mathscr{O})\backslash G(\mathscr{K})/G(\mathscr{O}))$ there exists a canonical isomorphism $\pi_* \circ \mathsf{Z}(\mathscr{F}) \cong \mathscr{F}$.
- (4) For any ℱ in D^b(G(O)\G(ℋ)/G(O)), the monodromy automorphism of Z(ℱ) is unipotent.

2. Wakimoto sheaves

2.1. Standard and costandard perverse sheaves. Recall the (extended) affine Weyl group

$$W_{\text{ext}} = W \ltimes X_*(T).$$

Any $\lambda \in X_*(T)$ determines an element $z^{\lambda} \in T(\mathscr{H}) \subset G(\mathscr{H})$, and for any $w \in W$ we choose a representative $\dot{w} \in N_G(T)$. If $x = w \ltimes \lambda \in W_{\text{ext}}$, we set

$$\operatorname{Fl}_{G,x} := I\dot{w}z^{\lambda}I/I \quad \subset \operatorname{Fl}_G.$$

This is a locally closed subvariety of Fl_G , isomorphic to an affine space, and we denote by

$$j_w: \operatorname{Fl}_{G,w} \to \operatorname{Fl}_G$$

the embedding. We also set

$$\ell(w) = \dim(\mathrm{Fl}_{G,w}).$$

(For those who know the theory: this is the length function for a "quasi-Coxeter structure" on Fl_{G} .)

An affine analogue of the Bruhat decomposition says that

$$\operatorname{Fl}_G = \bigsqcup_{w \in W_{\operatorname{ext}}} \operatorname{Fl}_{G,w}$$

For $w \in W_{\text{ext}}$ we set

$$\Delta_w = (j_w)_! \underline{\mathbb{C}}_{\mathrm{Fl}_{G,w}}[\ell(w)], \quad \nabla_w = (j_w)_* \underline{\mathbb{C}}_{\mathrm{Fl}_{G,w}}[\ell(w)]$$

These are *perverse sheaves*; they are called the standard and costandard perverse sheaf associated with w respectively. (This is not completely obvious, and follows from the fact that j_w is an *affine morphism*.) There exists (up to scalar) a unique nonzero morphism $\Delta_w \to \nabla_w$. Its image is a simple perverse sheaf, denoted IC_w , and the objects ($IC_w : w \in W_{ext}$) are representatives for isomorphism classes of simple objects in $Perv_I(Fl_G)$.

4 LECTURE 14: GAITSGORY'S CENTRAL FUNCTOR AND WAKIMOTO SHEAVES

Note that for w = e (neutral element in W_{ext}) we have $\Delta_e = \nabla_e = \text{IC}_e$, and this object is the unit object for the product \star^I .

The following statement gathers the main properties of the standard and costandard objects with respect to convolution. (For proofs, see $[2, \S4.1.2-4.1.3]$.)

Proposition 2.1. (1) For any $w, y \in W_{\text{ext}}$ such that $\ell(wy) = \ell(w) + \ell(y)$, there exist canonical isomorphisms

$$\Delta_w \star^I \Delta_y \cong \Delta_{wy}, \quad \nabla_w \star^I \nabla_y \cong \nabla_{wy},$$

(2) For any $w \in W_{ext}$ there exist canonical isomorphisms

$$\Delta_w \star^I \nabla_{w^{-1}} \cong \Delta_e \cong \nabla_{w^{-1}} \star^I \Delta_w$$

(3) For any $w, y \in W_{ext}$, the object $\Delta_w \star^I \nabla_y$ is perverse.

2.2. Wakimoto perverse sheaves. For $\lambda \in X_*(T)$, choose $\lambda_1, \lambda_2 \in X_*(T)^+$ such that $\lambda = \lambda_1 - \lambda_2$, and set

$$\mathscr{W}_{\lambda} = \nabla_{\lambda_1} \star^I \Delta_{-\lambda_2}.$$

It turns out that this object does not depend on the choice of λ_1, λ_2 . (This follows from the fact that for $\lambda \in X_*(T)^+$ we have $\ell(\lambda) = \langle \lambda, 2\rho \rangle$; in particular, for $\lambda, \mu \in X_*(T)^+$ we have $\ell(\lambda + \mu) = \ell(\lambda) + \ell(\mu)$.)

Proposition 2.2 (Mirković). (1) For any $\lambda \in X_*(T)$ the object \mathscr{W}_{λ} is a perverse sheaf, and it is supported on $\overline{\mathrm{Fl}_{G,\lambda}}$.

(2) For any $\lambda, \mu \in X_*(T)$ we have

$$\mathscr{W}_{\lambda} \star^{I} \mathscr{W}_{\mu} \cong \mathscr{W}_{\lambda+\mu}.$$

For proofs, see $[2, \S4.2]$.

2.3. Wakimoto filtrations of central sheaves. We will say that an object $\mathscr{F} \in \operatorname{Perv}_{I}(\operatorname{Fl}_{G})$ admits a Wakimoto filtration if it admits a finite filtration

$$0 = \mathscr{F}_0 \subset \mathscr{F}_1 \subset \cdots \subset \mathscr{F}_{n-1} \subset \mathscr{F}_n = \mathscr{F}$$

such that each $\mathscr{F}_i/\mathscr{F}_{i-1}$ is of the form \mathscr{W}_{λ_i} for some $\lambda_i \in X_*(T)$. Such a filtration (when it exists) might not be unique, but for any $\lambda \in X_*(T)$ the number of occurrences of \mathscr{W}_{λ} as a subquotient is uniquely determined, and called the multiplicity of \mathscr{W}_{λ} in \mathscr{F} . (For details, see [2, §4.3].)

Theorem 2.3 (Arkhipov–Bezrukavnikov, [3]). (1) For any \mathscr{F} in $\operatorname{Perv}_{G(\mathscr{O})}(\operatorname{Gr}_G)$, the perverse sheaf $\mathsf{Z}(\mathscr{F})$ admits a Wakimoto filtration.

(2) For any $\lambda \in X_*(T)$, the multiplicity of \mathscr{W}_{λ} in $\mathsf{Z}(\mathscr{F})$ is the dimension of the λ -weight space of $\mathsf{Sat}(\mathscr{F})$.

This proof is rather formal. For the 1st point, one only uses the fact that $Z(\mathscr{F})$ is central and convolution-exact (cf. Theorem 1.1(2)); see [2, §4.4.2] for details. For the second point, one just needs to compute the cohomology of Wakimoto sheaves with support in $U^{-}(\mathscr{K})$ -orbits in Fl_G; see [2, Proposition 4.6.5].

5

References

- P. Achar, Perverse sheaves and applications to representation theory, Math. Surveys Monogr. 258, American Mathematical Society, Providence, RI, 2021.
- [2] P. Achar and S. Riche, *Central sheaves on affine flag varieties*, book, preliminary version available at https://lmbp.uca.fr/~riche/central.pdf.
- [3] S. Arkhipov and R. Bezrukavnikov, Perverse sheaves on affine flags and Langlands dual group (with an appendix by R. Bezrukavnikov and I. Mirković), Israel J. Math. 170 (2009), 135–183.
- [4] D. Gaitsgory, Construction of central elements in the affine Hecke algebra via nearby cycles, Invent. Math. 144 (2001), no. 2, 253–280.