
LECTURE 2: THE SATAKE ISOMORPHISM

1. Representations of p-adic groups

1.1. Basic data. We fix a (non archimedian) local field F , let OF be its ring of
integers, and kF be its residue field. We also fix a uniformizer ϖ ∈ OF and denote
by q the cardinality of kF . What these words precisely mean will not be important;
the reader should rather keep in mind the following examples:

• F = Qp, OF = Zp, ϖ = p; here kF = Fp and q = p;
• F = Fq((t)), OF = Fq[[t]], ϖ = t; here kF = Fq.

We also fix a split reductive group scheme G over OF and set G = G(F ), K =
G(OF ). Then G has a canonical structure of topological group (it is locally compact
and totally disconnected) and K is a compact open subgroup. Once again, we
will not give formal definitions, but the reader can think of the examples G ∈
{GLn,SLn,PGLn}, with the topology of G and K induced by that of F (i.e. a
sequence of matrices converges iff all the entries in these matrices converge).

1.2. Quick reminder on Haar measures. In the representation of finite groups,
one often uses the ability to sum over elements in the group: think of the proof
of Maschke’s theorem, or the (related) fact that the element eG = 1

|G|
∑

g∈G g in

the group algebra C[G] satisfies eG · h = h · eG = eG for any h ∈ G. When the
group is not finite the sum doesn’t make sense anymore. But when the group has
a topology and is locally compact, there is a replacement given by the (left) Haar
measure. Namely, there exists a unique (up to positive scalar) measure dG on G
such that dG(hB) = dG(B) for any Borel set B ⊂ G. This measure is finite on
compact subsets of G, so that one can integrate compactly supported continuous
functions, and we therefore have∫

G

f(hg)dG(g) =

∫
G

f(g)dG(g)

for any such function f and any h ∈ G. When G is compact, the measure can be
normalized so that dG(G) = 1. (In case G is finite, one recovers the measure so
that each element has weight 1

|G| .)

In particular, on G we have a left Haar measure dG , which we normalize so that
dG(K) = 1.

There is similarly a right Haar measure, which satisfies the similar condition
as above but now with respect to multiplication on the right by an element on
the group. A group is said to be unimodular if the left and right Haar measure
coincide. This class includes all compact groups, and also the groups G as above.
In particular, dG is also right invariant.

1.3. Smooth representations. We are interested in smooth representations of
the group G on complex vector spaces, i.e. representations on a (not necessarily
finite-dimensional) complex vector space V such that the stabilizer of any vector
in V is open. These objects have been intensively studied but are complicated;

1



2 LECTURE 2: THE SATAKE ISOMORPHISM

as a first step one can consider the unramified smooth representations, i.e. those
which are generated (as representations of G) by V K. (If V is irreducible, this is
equivalent to V K being nonzero.) These representations can be described using a
Hecke algebra, as follows.

Denote by

HG

the space of compactly supported locally constant functions f : G → C which are
K-biinvariant, i.e. satisfy f(kgk′) = f(g) for any g ∈ G and k, k′ ∈ K. (This ring is
sometimes called the “spherical affine Hecke algebra” attached to G.)

If V is a smooth representation of G then there is a natural operation

HG × V K → V K

given by

(f, v) 7→
∫
G
f(g)(g · v)dG(g).

In fact the space HG admits an algebra structure, with product defined by

(f · g)(x) =
∫
G
f(z)g(z−1x)dG(z),

so that the operation above defines an HG-module structure on V K. (The unit
element is the characteristic function 1K.) Moreover, this construction provides an
equivalence of abelian categories

{unramified smooth representations of G} ∼= HG−Mod.

So, to go further in the study of unramified smooth representations one needs to
understand the ring HG .

Remark 1.1. For some details on the correspondence between Hecke algebra mod-
ules and representations, see [2].

1.4. Rough structure of the Hecke algebra. From now on we fix a split max-
imal torus T ⊂ G, and denote by

• W the Weyl group of (G,T );
• X∨ the lattice of cocharacters of T .

For any λ ∈ X∨, seen as a group schemes morphism Gm,OF
→ T , we have an

induced group morphism

F× = Gm,OF
(F ) → G(F ) = G.

The image of ϖ under this map will be denoted ϖλ. The Cartan decomposition
says that we have

G =
⊔

λ∈X∨/W

K ·ϖλ · K.

(Here the coset K ·ϖλ · K only depends on the W -orbit of λ.) Using this decompo-
sition one sees that

HG =
⊕

λ∈X∨/W

C · 1K·ϖλ·K.

It is also a classical fact that the algebra HG is commutative. (This statement is
sometimes called “Gelfand’s lemma.”)
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Example 1.2. Assume that G = T = Gm,OF
and F = Fq((t)). In this case we

have G = (Fq((t)))
× and K = (Fq[[t]])

×. (Here K consists of power series with
nonzero constant term.) The Cartan decomposition in this case boilds to down to
the observation that

(Fq((t)))
× =

⊔
n∈Z

tn · (Fq[[t]])
×.

Since (Fq((t)))
× is commutative, a function on (Fq((t)))

× is (Fq[[t]])
×-biinvariant

if and only if it factors through the quotient

(Fq((t)))
×/(Fq[[t]])

× ∼= Z.

If we denote by cn the characteristic function of tn · (Fq[[t]])
×, then for n,m, l ∈ Z

we have

(cn · cm)(tl) =

∫
(Fq((t)))×

1tn·(Fq [[t]])×(z)1tm·(Fq [[t]])×(z
−1tl)dx,

so that this quantity is the measure of tn(Fq[[t]])
× ∩ tl−m(Fq[[t]])

×. Now we have

tn(Fq[[t]])
× ∩ tl−m(Fq[[t]])

× =

{
tn(Fq[[t]])

× if n = l −m;

∅ otherwise.

Hence

cn · cm = cn+m.

In other words, we have

HG = C[x, x−1]

as algebras.
More generally, if G = T we have

HG = C[X∨].

2. The Satake isomorphism

2.1. Statement. The Satake isomorphism describes HG for a general G as above:
it provides an algebra isomorphism

HG
∼−→ C[X∨]W .

In particular, it follows that the simple HG-modules are 1-dimensional, and classified
by the quotient T∨/W where T∨ is the complex torus with character lattice X∨.

A survey of the proof of this result is given in [1]. For a more detailed description
of this proof in the case of GLn(Qp), see also [3]. For other useful references of this
subject, see [2, 4].

2.2. Construction of the morphism via constant term. We now fix a Borel
subgroup B ⊂ G containing T , and denote by U its unipotent radical, so that we
have

B = T ⋉ U.

This choice determines a system of positive roots, and we denote by ρ ∈ 1
2X

∗(T )
the half-sum of the positive roots.

Note that T = T (F ) fits in the general setting studied so far, with K ∩ T =
T (OF ), and that by Example 1.2 we have

HT = C[X∨].
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We consider the unique Haar measure dU on U := U(F ) such that U(OF ) has
measure 1. (Here again, U is known to be unimodular, so that dU is invariant on
both sides.) We denote by

δ1/2 : T → C
the unique (K ∩ T )-invariant function such that

δ1/2(ϖλ) = q−⟨λ,ρ⟩.

In fact, δ1/2 is a group morphism. For n ∈ Z we set δn/2 = (δ1/2)n.
The Satake transform is the map

S : HG → HT

given by

S(f)(t) = δ1/2(t) ·
∫
U
f(tu)dU (u)

for t ∈ T .

Remark 2.1. I don’t know a convincing heuristic explanation for the appearance of
the factor δ1/2 in this formula. In fact, one can replace this factor by any power
of δ1/2 (including the 0-th power) and still get an algebra morphism. However, for
other powers this morphism will not factor through theW -invariants (see §2.3 below
for details). There are a number of formula in representation theory that involve ρ
(e.g. Weyl’s character formula for compact Lie groups of reductive algebraic groups,
Serre duality for line bundles on flag varieties, or the “dot-action” in the modular
representation theory of reductive algebraic groups), and this is another example
of this phenomenon.

The meaning of this formula can be explained as follows. Consider the space M
of locally constant functions f : G → C which are left invariant under K and right
invariant under (K ∩ T )⋉ U , i.e. which satisfy

f(kxb) = f(x) for x ∈ G, k ∈ K and b ∈ (K ∩ T )⋉ U ,

and which moreover are nonzero only on finitely many double cosets for K (on the
left) and (K ∩ T ) ⋉ U (on the right). This space is a left module for HG for the
action defined by

(f · g)(x) =
∫
G
f(y−1)g(yx)dG(y)

for f ∈ HG , g ∈ M and x ∈ G, and a right module for HT for the action defined by

(g · h)(x) =
∫
T
g(xy)h(y−1)dT (y)

for g ∈ M, h ∈ HT and x ∈ G.

Lemma 2.2. For any f ∈ HG and g ∈ M we have

f · g = g · (δ−1/2S(f)).

Proof. The proof will use the following identity, which follows from [1, Equa-
tions (5), (8) and (10)]:

(2.1)

∫
G
f(g)dG(g) =

∫
K

∫
T

∫
U
f(kut)dG(k)dT (t)dU (u).
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It is well known that we have a decomposition

(2.2) G =
⊔

λ∈X∨

K ·ϖλ · U · (K ∩ T )

(called the Iwasawa decomposition). Hence an element in M is characterized by its
restriction to T . Now if x ∈ T , using (2.1) we see that

(f · g)(x) =
∫
G
f(y−1)g(yx)dG(y)

=

∫
K

∫
T

∫
U
f(t−1u−1k−1)g(kutx)dG(k)dT (t)dU (u).

Since f is right K-invariant, g is left K-invariant and right U-invariant, and K has
volume 1, we deduce that

(f · g)(x) =
∫
T

∫
U
f(t−1u−1)g(tx)dT (t)dU (u).

On the other hand we have

g · (δ−1/2S(f)) =
∫
T
g(xy)δ−1/2(y−1)S(f)(y−1)dT (y)

=

∫
T

∫
U
g(xy)f(y−1u)dT (y)dU (u) =

∫
T

∫
U
g(yx)f(y−1u−1)dT (y)dU (u).

Comparing these formulas we conclude. □

The decomposition (2.2) shows that

M =
⊕

λ∈X∨

1K·ϖλ·U·(K∩T ).

It is easily seen that for λ, µ ∈ X∨ we have

1K·ϖλ·U·(K∩T ) · 1ϖµ(K∩T ) = 1K·ϖλ+µ·U·(K∩T ).

Hence M is free, hence in particular faithful, as a right HT -module. This property
and Lemma 2.2 imply that the assignment

f 7→ δ−1/2S(f)

is an algebra morphism, from which one deduces easily that S is an algebra mor-
phism.

2.3. Proof. A more explicit version of the Satake isomorphism is as follows.

Theorem 2.3. The map

S : HG → HT

induces an algebra isomorphism

HG
∼−→ (HT )

W

where W acts on HT = C[X∨] via its natural action on X∨.

To prove this statement, one first has to check that S takes values inW -invariants
in HT . Then, one considers the subset

X∨
+ ⊂ X∨
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of dominant cocharacters. One has a basis

(1K·ϖλ·K : λ ∈ X∨
+)

of HG , and a basis of (HT )
W given by

(1⊔
µ∈W (λ) ϖ

µ·(T ∩K) : λ ∈ X∨
+)

of (HT )
W . To finish the proof it suffices to show that the matrix expressing the

image of the first basis in terms of the second one is invertible. For this one considers
the order on X∨ such that λ ⪯ µ iff µ − λ is a sum of positive coroots. Then it
suffices to show that the matrix is lower triangular (with invertible entries on the
diagonal) with respect to the restriction of this order to X∨

+. For this one has to
show the following:

(1) for any λ ∈ X∨
+, S(1K·ϖλ·K)(ϖ

λ) ̸= 0;
(2) for any λ, µ ∈ X∨

+, if S(1K·ϖλ·K)(ϖ
µ) ̸= 0 then µ ⪯ λ.

In fact, from the definition we see that for λ ∈ X∨
+ and µ ∈ X∨ we have

S(1K·ϖλ·K)(ϖ
µ) = q−⟨µ,ρ⟩·

∫
U
1K·ϖλ·K(ϖ

µu)dU (u) = q−⟨µ,ρ⟩·dU (U∩(ϖ−µ·KϖλK)).

Now it is known that

(ϖµ · U) ∩ (KϖλK) ̸= 0 ⇒ µ ⪯ λ,

which implies (2). And when λ = µ we have

U ∩ (ϖ−λ · KϖλK) = ϖ−λ · (K ∩ U) ·ϖλ.

We have

dU (ϖ
−λ · (K ∩ U) ·ϖλ) = δ(ϖ−λ) = q2⟨λ,ρ⟩

by [1, Formula (8)], hence

S(1K·ϖλ·K)(ϖ
λ) = q⟨λ,ρ⟩,

which shows (1).
For the details we refer to [1, §4.2].

3. Towards categorification

Consider the complex connected reductive group G∨ which is Langlands dual to
G. This means that G∨ has a maximal torus T∨ ⊂ G∨ whose group of characters
is X∨. The Weyl group W identifies with the Weyl group of G∨. Recall also that
the Grothendieck group K0(Rep(G∨)) identifies with (Z[X∨])W . By Chevalley’s
theorem, the simple modules for G∨ are classified by X∨

+; for λ ∈ X∨ we denote by
chλ the character of the simple module associated with λ.

The elements (chλ : λ ∈ X∨
+) form a Z-basis of (Z[X∨])W , hence a C-basis of

C⊗Z (Z[X∨])W ∼= (C[X∨])W = (HT )
W .

One might wonder what is the corresponding basis of HG under the isomorphism of
Theorem 2.3. In fact, if we denote this basis by (Mλ : λ ∈ X∨

+), then from the proof
sketched above we know that there exist coefficients (dµ,λ : λ, µ ∈ X+, µ ⪯ λ) such
that

Mλ =
∑

µ∈X+,
µ⪯λ

dµ,λ · 1KϖµK.
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Then the question above can be rephrased as asking for an interpretation of the
coefficients dµ,λ.

This question was tackled by Lusztig in [5], where he showed that dµ,λ can
be expressed in terms of the value at q of a certain Kazhdan–Lusztig polynomial
attached to some elements (depending on λ and µ) in the extended affine Weyl
group Wext; see e.g. [4, Proposition 4.4].1 Since these polynomials were also known
to compute dimensions of the stalks of certain simple perverse sheaves on the affine
Grassmannian of G (which is a geometric version of the quotient G/K), this was a
first indication that representations of G∨ might be connected to perverse sheaves
on the affine Grassmannian of G, and the starting point for the geometric Satake
equivalence.

References

[1] P. Cartier, Representations of p-adic groups: a survey, in Automorphic forms, representations

and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part
1, pp. 111–155, Proc. Sympos. Pure Math. XXXIII, Amer. Math. Soc., Providence, RI, 1979.

[2] B. Conrad et. al., Notes for the 2013-14 Seminaire Jacquet-Langlands, notes available at http:

//virtualmath1.stanford.edu/~conrad/JLseminar/.
[3] G. Chenevier, Formes automorphes pour GLn(A), notes available at http://gaetan.

chenevier.perso.math.cnrs.fr/M2_FA/cours7.pdf.

[4] B. Gross, On the Satake isomorphism, in Galois representations in arithmetic algebraic geom-
etry (Durham, 1996), 223–237, London Math. Soc. Lecture Note Ser. 254, Cambridge Univ.

Press, Cambridge, 1998.

[5] G. Lusztig, Singularities, character formulas, and a q-analog of weight multiplicities, in Anal-
ysis and topology on singular spaces, II, III (Luminy, 1981), 208–229, Astérisque 101–102,
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